
OWL 2 Web Ontology Language
Primer

W3C Working Draft 21 April 2009

This version:
http://www.w3.org/TR/2009/WD-owl2-primer-20090421/

Latest version:
http://www.w3.org/TR/owl2-primer/

Previous version:
http://www.w3.org/TR/2008/WD-owl2-primer-20080411/

Authors:
Pascal Hitzler, University of Karlsruhe
Markus Krötzsch, University of Karlsruhe
Bijan Parsia, University of Manchester
Peter F. Patel-Schneider, Bell Labs Research, Alcatel-Lucent
Sebastian Rudolph, University of Karlsruhe

This document is also available in these non-normative formats: PDF version.

Copyright © 2009 W3C® (MIT, ERCIM, Keio), All Rights Reserved. W3C liability,
trademark and document use rules apply.

Abstract

The OWL 2 Web Ontology Language, informally OWL 2, is an ontology language
for the Semantic Web with formally defined meaning. OWL 2 ontologies provide
classes, properties, individuals, and data values and are stored as Semantic Web
documents. OWL 2 ontologies can be used along with information written in RDF,
and OWL 2 ontologies themselves are primarily exchanged as RDF documents.
The OWL 2 Document Overview describes the overall state of OWL 2, and should
be read before other OWL 2 documents.
This primer provides an approachable introduction to OWL 2, including orientation
for those coming from other disciplines, a running example showing how OWL 2
can be used to represent first simple information and then more complex
information, how OWL 2 manages ontologies, and finally the distinctions between
the various sublanguages of OWL 2.

OWL 2 Web Ontology LanguagePrimer W3C Working Draft 21 April 2009

Page 1 of 75 http://www.w3.org/TR/2009/WD-owl2-primer-20090421/

http://www.w3.org/
http://www.w3.org/
http://www.w3.org/TR/2009/WD-owl2-primer-20090421/
http://www.w3.org/TR/owl2-primer/
http://www.w3.org/TR/2008/WD-owl2-primer-20080411/
http://www.pascal-hitzler.de/
http://korrekt.org
http://www.cs.man.ac.uk/~bparsia/
http://ect.bell-labs.com/who/pfps/
http://www.sebastian-rudolph.de
http://www.w3.org/Consortium/Legal/ipr-notice#Copyright
http://www.w3.org/
http://www.csail.mit.edu/
http://www.ercim.org/
http://www.keio.ac.jp/
http://www.w3.org/Consortium/Legal/ipr-notice#Legal_Disclaimer
http://www.w3.org/Consortium/Legal/ipr-notice#W3C_Trademarks
http://www.w3.org/Consortium/Legal/copyright-documents
http://www.w3.org/TR/2009/WD-owl2-overview-20090421/

Status of this Document

May Be Superseded

This section describes the status of this document at the time of its publication.
Other documents may supersede this document. A list of current W3C publications
and the latest revision of this technical report can be found in the W3C technical
reports index at http://www.w3.org/TR/.

Summary of Changes

This Working Draft has undergone a complete rewrite since the previous version of
11 April 2008, to improve its readability and utility. Examples are now mostly also
available in Turtle syntax. This document will undergo further significant revision
before a final version is produced.

Please Comment By 12 May 2009

The OWL Working Group seeks public feedback on this Working Draft. Please
send your comments to public-owl-comments@w3.org (public archive). If possible,
please offer specific changes to the text that would address your concern. You may
also wish to check the Wiki Version of this document and see if the relevant text
has already been updated.

No Endorsement

Publication as a Working Draft does not imply endorsement by the W3C
Membership. This is a draft document and may be updated, replaced or obsoleted
by other documents at any time. It is inappropriate to cite this document as other
than work in progress.

Patents

This document was produced by a group operating under the 5 February 2004
W3C Patent Policy. This document is informative only. W3C maintains a public list
of any patent disclosures made in connection with the deliverables of the group;
that page also includes instructions for disclosing a patent. An individual who has
actual knowledge of a patent which the individual believes contains Essential
Claim(s) must disclose the information in accordance with section 6 of the W3C
Patent Policy.

OWL 2 Web Ontology LanguagePrimer W3C Working Draft 21 April 2009

Page 2 of 75 http://www.w3.org/TR/2009/WD-owl2-primer-20090421/

http://www.w3.org/TR/
http://www.w3.org/TR/
http://www.w3.org/2007/OWL/
mailto:public-owl-comments@w3.org
http://lists.w3.org/Archives/Public/public-owl-comments/
http://www.w3.org/2007/OWL/wiki/Primer
http://www.w3.org/Consortium/Patent-Policy-20040205/
http://www.w3.org/Consortium/Patent-Policy-20040205/
http://www.w3.org/2004/01/pp-impl/41712/status
http://www.w3.org/2004/01/pp-impl/41712/status
http://www.w3.org/Consortium/Patent-Policy-20040205/#def-essential
http://www.w3.org/Consortium/Patent-Policy-20040205/#def-essential
http://www.w3.org/Consortium/Patent-Policy-20040205/#sec-Disclosure
http://www.w3.org/Consortium/Patent-Policy-20040205/#sec-Disclosure

Table of Contents

• 1 Introduction
◦ 1.1 Guide to this Document
◦ 1.2 OWL Syntaxes

• 2 What is OWL 2?
• 3 Modelling Knowledge: Basic Notions
• 4 Classes, Properties, and Individuals – And Basic Modelling With Them

◦ 4.1 Classes and Instances
◦ 4.2 Class Hierarchies
◦ 4.3 Class Disjointness
◦ 4.4 Object Properties
◦ 4.5 Property Hierarchies
◦ 4.6 Domain and Range Restrictions
◦ 4.7 Equality and Inequality of Individuals
◦ 4.8 Datatypes

• 5 Advanced Class Relationships
◦ 5.1 Complex Classes
◦ 5.2 Property Restrictions
◦ 5.3 Property Cardinality Restrictions
◦ 5.4 Enumeration of Individuals

• 6 Advanced Use of Properties
◦ 6.1 Property Characteristics
◦ 6.2 Property Chains
◦ 6.3 Keys

• 7 Advanced Use of Datatypes
• 8 Document Information and Annotations

◦ 8.1 Annotating Axioms and Entities
◦ 8.2 Ontology Management
◦ 8.3 Entity Declarations

• 9 OWL 2 DL and OWL 2 Full
• 10 OWL 2 Profiles

◦ 10.1 OWL 2 EL
◦ 10.2 OWL 2 QL
◦ 10.3 OWL 2 RL

• 11 OWL Tools
• 12 What To Read Next
• 13 Appendices

◦ 13.1 How OWL 2 relates to other technologies
▪ 13.1.1 RDF(S)
▪ 13.1.2 SPARQL
▪ 13.1.3 XML
▪ 13.1.4 Databases
▪ 13.1.5 Object-oriented Programming

◦ 13.2 The Complete Sample Ontology
• 14 Acknowledgments
• 15 References

OWL 2 Web Ontology LanguagePrimer W3C Working Draft 21 April 2009

Page 3 of 75 http://www.w3.org/TR/2009/WD-owl2-primer-20090421/

1 Introduction

The W3C OWL 2 Web Ontology Language (OWL) is a Semantic Web language
designed to represent rich and complex knowledge about individuals, groups of
individuals, and relations between individuals. OWL is a computational logic-based
language such that knowledge expressed in OWL can be reasoned with by
computer programs either to verify the consistency of that knowledge or to make
implicit knowledge explicit. OWL documents, known as ontologies, can be
published in the World Wide Web and may refer to or be referred from other OWL
ontologies. OWL is part of the W3C's Semantic Web technology stack, which
includes RDF and SPARQL.

The key goal of the primer is to help develop insight into OWL, its strengths, and its
weaknesses. The core of the primer is an introduction to most of the language
features of OWL by way of a running example. Most of the examples in the primer
are taken from a sample ontology (which is presented entirely in an appendix). This
sample ontology is designed to touch the key language features of OWL in an
understandable way and not, in itself, to be a example of a good ontology.

1.1 Guide to this Document

Editor's Note: Pointers to sections to be checked in final version.

This document is intended to provide an initial understanding about OWL 2. In
particular it is supposed to be accessible for people yet unfamiliar with the topic.
Therefore, we start with giving some high-level introduction on the nature of OWL 2
in Section 2 before Section 3 provides some very basic notions in knowledge
representation and explains how they relate to terms used in OWL 2. Readers
familiar with knowledge representation and reasoning might only skim through this
section to get acquainted with the OWL 2 terminology.

Sections 4-8 describe most of the language features that OWL provides, starting
from very basic ones and proceeding to the more sophisticated. Section 4 presents
and discusses the elementary modeling features of OWL 2 before in Section 5
complex classes are introduced. Section 6 addresses advanced modeling features
for properties. Section 7 focuses on advanced modeling related to datatypes.
Section 8 concludes with extra-logical features used mainly for ontology
management purposes.

In Section 9 we address the differences between OWL 2 DL and OWL 2 Full, while
in Section 10 we describe the three Profiles of OWL 2. Tool support for OWL 2 is

OWL 2 Web Ontology LanguagePrimer W3C Working Draft 21 April 2009

Page 4 of 75 http://www.w3.org/TR/2009/WD-owl2-primer-20090421/

http://www.w3.org/2001/sw/

addressed in Section 11 and in Section 12 we give pointers on where to continue
reading after our informal introduction to OWL 2.

Finally, Section 13.1 explains how OWL 2 relates to other key technologies and
Section 13.2 lists the complete example ontology used in this document.

For readers already familiar with OWL 1, [OWL 2 New Features and Rationale]
provides a comprehensive overview of what has changed in OWL 2.

1.2 OWL Syntaxes

OWL is part of the Semantic Web, so names in OWL are international resource
identifiers (IRIs) [RFC-3987]. As IRIs are long, we will often make use of
abbreviation mechanisms for writing them in OWL. The way in which such
abbreviations work is specific to each syntactic format that can be used to encode
OWL ontologies, but the examples in this document can generally be understood
without knowing these details. Appropriate declarations for namespaces and
related mechanisms are given further below in Section 8.2.

There are various syntaxes available for OWL which serve various purposes. The
Functional-Style syntax [OWL 2 Specification] is designed to be easier for
specification purposes and for reasoning tools to use. The RDF/XML syntax for
OWL is just RDF/XML, with a particular translation for the OWL constructs [OWL 2
RDF Mapping]. This is the only syntax that is mandatory to be supported by all
OWL 2 tools. The Manchester syntax [OWL 2 Manchester Syntax] is an OWL
syntax that is designed to be easier for non-logicians to read. The OWL XML
syntax is an XML syntax for OWL defined by an XML schema [OWL 2
Specification]. There are tools that can translate between the different syntaxes for
OWL. In many syntactic forms, OWL language constructs are also represented by
IRIs, and some declarations might be needed to use the abbreviated forms as in
the examples. Again, necessary details are found in Section 8.2.

The examples and the sample ontology in the appendix can be viewed as any of
the four different syntaxes, and we provide both RDF/XML [RDF/XML Syntax] and
Turtle [RDF Turtle Syntax] serializations for the RDF-based syntax. You can control
which syntaxes are shown throughout the document by using the buttons below.

Editor's Note: Control Panel: css should include, for each type of syntax, a
heading line saying, e.g. “RDF/XML Syntax:”

Editor's Note: Control Panel: The Primer should eventually display only
functional style syntax by default so as to make the document's appearance less
technical.

OWL 2 Web Ontology LanguagePrimer W3C Working Draft 21 April 2009

Page 5 of 75 http://www.w3.org/TR/2009/WD-owl2-primer-20090421/

The buttons below can be used to show or hide all four syntaxes.

Hide Functional Syntax Hide RDF/XML Syntax Hide Turtle Syntax

Hide Manchester Syntax Hide OWL/XML Syntax

2 What is OWL 2?

OWL 2 is a language for expressing ontologies. The term ontology has a complex
history both in and out of computer science, but we use it to mean a certain kind of
computational artifact – i.e., something akin to a program, an XML schema, or a
web page – generally presented as a document. An ontology is a set of precise
descriptive statements about some part of the world (usually referred to as the
domain of interest or the subject matter of the ontology). Precise descriptions
satisfy several purposes: most notably, they prevent misunderstandings in human
communication and they ensure that software behaves in a uniform, predictable
way and works well with other software.

In order to precisely describe a domain of interest, it is helpful to come up with a set
of central terms – often called vocabulary – and fix their meaning. Besides a
concise natural language definition, the meaning of a term can be characterised by
stating how this term is interrelated to the other terms. A terminology, providing a
vocabulary together with such interrelation information constitutes an essential part
of a typical OWL 2 document. Besides this terminological knowledge, an ontology
might also contain so called assertional knowledge that deals with concrete objects
of the considered domain rather than general notions.

OWL 2 is not a programming language: OWL 2 is declarative, i.e. it describes a
state of affairs in a logical way. Appropriate tools (so-called reasoners) then allow
to ask questions about that state of affairs. How those questions are to be
processed is not part of the OWL document but depends on the specific
implementations. Still, the correct answer to any such question is predetermined by
the formal semantics (which comes in two versions: the direct semantics [OWL 2
Direct Semantics] and the RDF-based semantics [OWL 2 RDF-Based Semantics]).
Only if a specific implementation complies with these semantics, it is regarded
OWL 2 conformant (see [OWL 2 Conformance]). Through its declarative nature, the
activity of creating OWL 2 documents is conceptually different from programming.
Still, as in both cases complex formal documents are created, certain notions from
software engineering can be transferred to ontology engineering, such as
methodological and collaborative aspects, modularization, patterns, etc.

OWL 2 is not a schema language for syntax conformance. Unlike XML, OWL 2
does not provide elaborate means to prescribe how a document should be
structured syntactically. In particular, there is no way to enforce that a certain piece
of information (like the social security number of a person) has to be syntactically

OWL 2 Web Ontology LanguagePrimer W3C Working Draft 21 April 2009

Page 6 of 75 http://www.w3.org/TR/2009/WD-owl2-primer-20090421/

present. This should be kept in mind as OWL has some features that a user might
misinterpret this way.

OWL 2 is not a database framework. Admittedly, OWL 2 documents store
information and so do databases. Moreover a certain analogy between assertional
information and database content as well as terminological information and
database schemata can be drawn. However, usually there are crucial differences in
the underlying assumptions (technically: the used semantics). If some fact is not
present in a database, it is usually considered false (the so-called closed-world
assumption) whereas in the case of an OWL 2 document it may simply be missing
(but possibly true), following the open-world assumption. Moreover, database
schemata often come with the prescriptive constraint semantics mentioned above.
Still, technically, databases provide a viable backbone in many ontology-oriented
systems.

3 Modelling Knowledge: Basic Notions

OWL 2 is a knowledge representation language, designed to formulate, exchange
and reason with knowledge about a domain of interest. Some fundamental notions
should first be explained to understand how knowledge is represented in OWL 2.
These basic notions are:

• Axioms: the basic statements that an OWL ontology expresses
• Entities: elements used to refer to the real-world objects that are

modelled
• Expressions: combinations of entities to form complex descriptions from

basic ones

While OWL 2 aims to capture knowledge, the kind of “knowledge” that can be
represented by OWL does of course not reflect all aspects of human knowledge.
OWL can rather be considered as a powerful general-purpose modelling language
for certain parts of human knowledge. The modelling artefacts created in OWL are
called ontologies – a terminology that also helps to avoid confusion since the term
“model” is often used in a rather different sense in knowledge representation.

Now, in order to formulate knowledge explicitly, it is useful to assume that it
consists of elementary pieces that are often referred to as statements or
propositions. Statements like “it is raining” or “every man is mortal” are typical
examples for such basic propositions. In OWL 2, these basic “pieces of knowledge”
are called axioms. Indeed, every OWL 2 ontology is – from an abstract viewpoint –
essentially just a collection of axioms. It is characteristic for axioms that they can be
said to be true or false given a certain state of affairs. This distinguishes axioms
from entities and expressions that are described further below.

When humans think, they draw consequences from their knowledge. An important
feature of OWL is that it captures this aspect of human intelligence for the forms of
knowledge that it can represent. But what does it mean, generally speaking, that a
statement is a consequence of other statements? Essentially it means that this

OWL 2 Web Ontology LanguagePrimer W3C Working Draft 21 April 2009

Page 7 of 75 http://www.w3.org/TR/2009/WD-owl2-primer-20090421/

statement is true whenever the other statements are. In OWL terms: we say, a set
of axioms A entails an axiom a if in any state of affairs wherein all axioms from A
are true, also a is true. Moreover, a set of axioms may be consistent (that is, there
is a possible state of affairs in which all the axioms in the set are jointly true) or
inconsistent (there is no such state of affairs). The formal semantics of OWL
specifies, in essence, for which possible “states of affairs” – interpretations – a
particular OWL ontology is true.

There are OWL tools – reasoners – that can automatically compute consequences.
The way axioms interact can be very subtle and difficult for people to understand.
This is both a strength and a weakness of OWL 2. It is a strength because OWL 2
can discover information that a person would not have spotted. This allows
knowledge engineers to model more directly and the system to provide useful
feedback and critique of the modelling. It is a weakness because it is comparatively
difficult for humans to immediately foresee the actual effect of various constructs in
various combinations. Tool support ameliorates the situation but successful
knowledge engineering often still requires some amount of training and experience.

Having a closer look at OWL axioms, we see that they are rarely “monolithic” but
more often have some internal structure that can be explicitly represented. They
normally refer to objects of the world and describe them e.g. by putting them into
categories (like “Mary is female”) or saying something about their relation (“John
and Mary are married”). All atomic constituents of axioms, be they objects (John,
Mary), categories (female) or relations (married) are called entities. In OWL 2, we
denote objects as individuals, categories as classes and relations as properties.
Properties in OWL 2 are further subdivided. Object properties relate objects to
objects (like a person to their spouse), while datatype properties assign data values
to objects (like an age to a person). Annotation properties are used to encode
information about (parts of) the ontology itself (like the author and creation date of
an axiom) instead of the domain of interest.

As a central feature of OWL, names of entities can be combined into expressions
using so called constructors. As a basic example, the atomic classes “female” and
“professor” could be combined conjunctively to describe the class of female
professors. The latter would be described by an OWL class expression, that could
be used in statements or in other expressions. In this sense, expressions can be
seen as new entities which are defined by their structure. In OWL, the constructors
for each sort of entity vary greatly. The expression language for classes is very rich
and sophisticated, whereas the expression language for properties is much less so.
These differences have historical as well as technical reasons.

Editor's Note: The following could be marked (via smaller font size or
indentation) in some way as additional explanation which can be skipped.

One can use basic algebra as a somewhat naive but possibly elucidating analogy
for the introduced terminology. An axiom would relate to an equation like x=y.
Clearly, this axiom can be said to be true or false, depending on the state of affairs
(i.e. the actual values of these variables). Moreover, the two axioms x=y and y=z

OWL 2 Web Ontology LanguagePrimer W3C Working Draft 21 April 2009

Page 8 of 75 http://www.w3.org/TR/2009/WD-owl2-primer-20090421/

entail the axiom x=z, as in every state of affairs where the former are true, the latter
is also true. Likewise, we can have consistent sets of axioms (x=y, y=z) or
inconsistent ones (x=y, y=x+1). Obviously, the axioms consist of entities (x, y, z)
which are not themselves true or false and can be combined by constructors (+, -,
etc.) into expressions (like x+y or y-z) which in a way represent new entities and
can be used instead of simple entities in axioms (x+y=y-z).

4 Classes, Properties, and Individuals – And Basic
Modelling With Them

After these general considerations, we now engage in the details of modeling with
OWL 2. In the subsequent sections, we introduce the essential modeling features
that OWL 2 offers, provide examples and give some general comments on how to
use them. We proceed from basic features, which are essentially available in any
modeling language, to more advanced constructs.

4.1 Classes and Instances

Suppose we want to represent information about a particular family. (We do not
intend this example to be representative of the sorts of domains OWL should be
used for, or as a canonical example of good modeling with OWL, or a correct
representation of the rather complex, shifting, and culturally dependent domain of
families. Instead, we intend it to be a rather simple exhibition of various features of
OWL.)

We first need to provide the information what persons we are talking about. This
can be done as follows:

ClassAssertion(:Person :Mary)

<Person rdf:about="Mary"/>

:Mary rdf:type :Person .

Individual: Mary
Types: Person

OWL 2 Web Ontology LanguagePrimer W3C Working Draft 21 April 2009

Page 9 of 75 http://www.w3.org/TR/2009/WD-owl2-primer-20090421/

<ClassAssertion>
<Class IRI="Person"/>
<NamedIndividual IRI="Mary"/>

</ClassAssertion>

This statement talks about an individual named Mary and states that this individual
is a person. More technically, being a person is expressed by stating that Mary
belongs to (or “is a member of” or, even more technically, “is an instance of”) the
class of all persons. In general classes are used to group individuals that have
something in common in order to refer to them. Consequently, we can use the
same type of statement to indicate that Mary is a woman by expressing that she is
an instance of the class of women:

ClassAssertion(:Woman :Mary)

<Woman rdf:about="Mary"/>

:Mary rdf:type :Woman .

Individual: Mary
Types: Woman

<ClassAssertion>
<Class IRI="Woman"/>
<NamedIndividual IRI="Mary"/>

</ClassAssertion>

Hereby it also becomes clear that class membership is not exclusive: as there may
be diverse criteria to group individuals (like gender, age, shoe size, etc.), one
individual may well belong to several classes simultaneously.

4.2 Class Hierarchies

In the previous section, we were talking about two classes: the class of all persons
and that of all women. To the human reader it is clear that these two classes are in
a special relationship: Person is more general than Woman, meaning that
whenever we know some individual to be a woman, it must be a person. However,
this correspondency cannot be derived from the labels “Person” and “Woman” but
is part of the human background knowledge about the world and our usage of

OWL 2 Web Ontology LanguagePrimer W3C Working Draft 21 April 2009

Page 10 of 75 http://www.w3.org/TR/2009/WD-owl2-primer-20090421/

those terms. Therefore, in order to enable a system to draw the desired
conclusions, it has to be informed about this corresondency. In OWL 2, this is done
by a so-called subclass axiom:

SubClassOf(:Woman :Person)

<owl:Class rdf:about="Woman">
<rdfs:subClassOf rdf:resource="Person"/>

</owl:Class>

:Woman rdfs:subClassOf :Person .

Class: Woman
SubClassOf: Person

<SubClassOf>
<Class IRI="Woman"/>
<Class IRI="Person"/>

</SubClassOf>

The presence of this axiom in an ontology enables reasoners to infer for every
individual that is specified as an instance of the class Woman, that it is an instance
of the class Person as well. As a rule of thumb, a subclass relationship between
two classes A and B can be specified, if the phrase “every A is a B” makes sense
and is correct.

It is common in ontological modelling to use subclass statements not only for
sporadically declaring such interdependencies, but to model whole class
hierarchies by specifying the generalization relationships of all classes in the
domain of interest. Suppose we also want to state that all mothers are women:

SubClassOf(:Mother :Woman)

<owl:Class rdf:about="Mother">
<rdfs:subClassOf rdf:resource="Woman"/>

</owl:Class>

OWL 2 Web Ontology LanguagePrimer W3C Working Draft 21 April 2009

Page 11 of 75 http://www.w3.org/TR/2009/WD-owl2-primer-20090421/

:Mother rdfs:subClassOf :Woman .

Class: Mother
SubClassOf: Woman

<SubClassOf>
<Class IRI="Mother"/>
<Class IRI="Woman"/>

</SubClassOf>

Then a reasoner could not only derive for every single individual that is classified
as mother, that it is also a woman (and consequently a person), but also that
Mother must be a subclass of Person – coinciding with our intuition. Technically,
this means that the subclass relationship between classes is transitive. Besides
this, it is also reflexive, meaning that every class is its own subclass – this is
intuitive as well since clearly, every person is a person etc.

Two classes can also be said to be equivalent in the sense that they contain
exactly the same individuals. The following example states that the class Person is
equivalent to the class Human.

EquivalentClasses(:Person :Human)

<owl:Class rdf:about="Person">
<owl:equivalentClass rdf:resource="Human"/>

</owl:Class>

:Person owl:equivalentClass :Human .

Class: Person
EquivalentTo: Human

<EquivalentClasses>
<Class IRI="Person"/>
<Class IRI="Human"/>

</EquivalentClasses>

OWL 2 Web Ontology LanguagePrimer W3C Working Draft 21 April 2009

Page 12 of 75 http://www.w3.org/TR/2009/WD-owl2-primer-20090421/

Stating that Person and Human are equivalent amounts exactly to the same as
stating that both Person is a subclass of Human and Human is a subclass of
Person.

4.3 Class Disjointness

In Section 4.3, we stated that an individual can be an instance of several classes.
However considering the classes Man and Woman, it can be excluded that there is
an individual that is an instance of both classes (for the sake of the example, we
disregard biological borderline cases). This “incompatibility relationship” between
classes is referred to as (class) disjointness. Again, the information that two
classes are disjoint is part of our background knowledge and has to be explicitly
stated for a reasoning system to make use of it. This is done as follows:

DisjointClasses(:Woman :Man)

<owl:AllDisjointClasses>
<owl:members rdf:parseType="Collection">

<owl:Class rdf:about="Woman"/>
<owl:Class rdf:about="Man"/>

</owl:members>
</owl:AllDisjointClasses>

[] rdf:type owl:AllDisjointClasses ;
owl:members (:Woman :Man) .

DisjointClasses: Woman Man

<DisjointClasses>
<Class IRI="Woman"/>
<Class IRI="Man"/>

</DisjointClasses>

In practice, disjointness statements are often forgotten or neglected. The arguable
reason for this could be that intuitively, classes are considered disjoint unless there
is other evidence. By omitting disjointness statements, many potentially useful
consequences can get lost. Note that in our example, the disjointness axiom is
needed to deduce that Mary is not a man. Moreover, given the above axioms, a
reasoner can infer the disjointness of the classes Mother and Man.

OWL 2 Web Ontology LanguagePrimer W3C Working Draft 21 April 2009

Page 13 of 75 http://www.w3.org/TR/2009/WD-owl2-primer-20090421/

4.4 Object Properties

In the preceding sections we were concerned with describing single individuals,
their class memberships, and how classes can relate to each other based on their
instances. But more often than not, an ontology is also meant to specify how the
individuals relate to other individuals. Obviously these relationships are central
when describing a family. We start by indicating that Mary is John's wife.

ObjectPropertyAssertion(:hasWife :John :Mary)

<rdf:Description rdf:about="John">
<hasWife rdf:resource="Mary"/>

</rdf:Description>

:John :hasWife :Mary .

Individual: John
Facts: hasWife Mary

<ObjectPropertyAssertion>
<ObjectProperty IRI="hasWife"/>
<NamedIndividual IRI="John"/>
<NamedIndividual IRI="Mary"/>

</ObjectPropertyAssertion>

Hereby, the entities describing in which way the individuals are related – like
hasWife in our case, are called properties.

Note that the order in which the individuals are written is important. While “Mary is
John's wife” might be true, “John is Mary's wife” certainly isn't. Indeed, this is a
common source of modeling errors. Likewise, it is important to use property names
which allow only one unique intuitive reading. In case of nouns (like “wife”), such
unambiguous names might be constructions with “of” or with “has” (wifeOf or
hasWife). For verbs (like “to love”) an inflected form (loves) or a passive version
with “by” (lovedBy) would prevent unintended readings.

We can also state that two individuals are not connected by a property. The
following, for example, states that Mary is not Jack's wife.

OWL 2 Web Ontology LanguagePrimer W3C Working Draft 21 April 2009

Page 14 of 75 http://www.w3.org/TR/2009/WD-owl2-primer-20090421/

NegativeObjectPropertyAssertion(:hasWife :Jack :Mary)

<owl:NegativePropertyAssertion>
<owl:sourceIndividual rdf:about="Jack">
<owl:assertionProperty rdf:about="hasWife">
<owl:targetIndividual rdf:about="Mary">

</owl:NegativePropertyAssertion>

[] rdf:type owl:NegativePropertyAssertion ;
owl:sourceIndividual :Jack ;
owl:assertionProperty :hasWife ;
owl:targetIndividual :Mary .

Individual: Jack
Facts: not hasWife Mary

<NegativeObjectPropertyAssertion>
<ObjectProperty IRI="hasWife"/>
<NamedIndividual IRI="Jack"/>
<NamedIndividual IRI="Mary"/>

</NegativeObjectPropertyAssertion>

4.5 Property Hierarchies

In Section 4.2 we argued that it is useful to specify that one class membership
implies another one. Essentially the same situation can occur for properties:
whenever B is known to be A's wife, it is also known to be A's spouse (note, that
this is not true the other way round). OWL allows to specify this statement as
follows:

SubObjectPropertyOf(:hasWife :hasSpouse)

<owl:ObjectProperty rdf:about="hasWife">
<rdfs:subPropertyOf rdf:resource="hasSpouse"/>

</owl:ObjectProperty>

OWL 2 Web Ontology LanguagePrimer W3C Working Draft 21 April 2009

Page 15 of 75 http://www.w3.org/TR/2009/WD-owl2-primer-20090421/

:hasWife rdfs:subPropertyOf :hasSpouse .

ObjectProperty: hasWife
SubPropertyOf: hasSpouse

<SubObjectPropertyOf>
<ObjectProperty IRI="hasWife"/>
<ObjectProperty IRI="hasSpouse"/>

</SubObjectPropertyOf>

Similarly, the subproperty relationship can also be stated for datatype properties
(and for annotation properties). There is also a syntactic shortcut for property
equivalence, which is similar to class equivalence.

4.6 Domain and Range Restrictions

Frequently, the information that two individuals are interconnected by a certain
property allows to draw further conclusions about the individuals themselves. In
particular, one might infer class memberships. For instance, the statement that B is
the wife of A obviously implies that B is a woman while A is a man. So in a way, the
statement that two individuals are related via a certain property carries implicit
additional information about these individuals. In our example, this additional
information can be expressed via class memberships. OWL provides a way to state
this correspondence:

ObjectPropertyDomain(:hasWife :Man)
ObjectPropertyRange(:hasWife :Woman)

<owl:ObjectProperty rdf:about="hasWife">
<rdfs:domain rdf:resource="Man"/>
<rdfs:range rdf:resource=#Woman"/>

</owl:ObjectProperty>

:hasWife rdfs:domain :Man ;
rdfs:range :Woman .

OWL 2 Web Ontology LanguagePrimer W3C Working Draft 21 April 2009

Page 16 of 75 http://www.w3.org/TR/2009/WD-owl2-primer-20090421/

ObjectProperty: hasWife
Domain: Man
Range: Woman

<ObjectPropertyDomain>
<ObjectProperty IRI="hasWife"/>
<Class Man"/>

</ObjectPropertyDomain>
<ObjectPropertyRange>

<ObjectProperty IRI="hasWife"/>
<Class IRI="Woman"/>

</ObjectPropertyRange>

Having these two axioms in place and given e.g. the information that Sasha is
related to Hillary via the property hasWife, a reasoner would be able to infer that
Sasha is a man and Hillary a woman.

4.7 Equality and Inequality of Individuals

Note that from the information given so far, it can be deduced that John and Mary
are not the same individual as they are known to be instances of the disjoint
classes Man and Woman, respectively. However, if we add information about
another family member, say Bill, and indicate that he is a man, then there is nothing
said so far that implies that John and Bill are not the same. OWL does not make
the assumption that different names are names for different individuals. (This
“unique names assumption” would be particularly dangerous in the Semantic Web,
where names may be coined by different organizations at different times
unknowingly referring to the same individual.) Hence, if we want to exclude the
option of John and Bill being the same individual, this has to be explicitly specified
as follows:

DifferentIndividuals(:John :Bill)

<rdf:Description rdf:about="John">
<owl:differentFrom rdf:resource="Bill"/>

</rdf:Description>

:John owl:differentFrom :Bill .

OWL 2 Web Ontology LanguagePrimer W3C Working Draft 21 April 2009

Page 17 of 75 http://www.w3.org/TR/2009/WD-owl2-primer-20090421/

Individual: John
DifferentFrom: Bill

<DifferentIndividuals>
<NamedIndividual IRI="John"/>
<NamedIndividual IRI="Bill"/>

</DifferentIndividuals>

It is also possible to state that two names refer to (denote) the same individual. For
example, we can say that John and Jack are the same individual.

SameIndividual(:John :Jack)

<rdf:Description rdf:about="John">
<owl:sameAs rdf:resource="Jack"/>

</rdf:Description>

:John owl:sameAs :Jack.

Individual: John
SameAs: Jack

<SameIndividual>
<NamedIndividual IRI="John"/>
<NamedIndividual IRI="Jack"/>

</SameIndividual>

This would enable a reasoner to infer any information about the individual Jack
which is written down for the individual John.

4.8 Datatypes

So far, we have seen how we can describe individuals via class memberships and
via their relatedness to other individuals. In many cases, however, individuals are
to be described by data values. Think of a person's birth date, his age, his email
address etc. For this purpose, OWL provides another kind of properties, so-called
Datatype properties. These properties allow to relate individuals to data values

OWL 2 Web Ontology LanguagePrimer W3C Working Draft 21 April 2009

Page 18 of 75 http://www.w3.org/TR/2009/WD-owl2-primer-20090421/

(instead of to other individuals). The following is an example using a datatype
property. It states that John's age is 51.

DataPropertyAssertion(:hasAge :John "51"^^xsd:integer)

<Person rdf:about="John">
<hasAge rdf:datatype="http://www.w3.org/2001/XMLSchema#integer">51</hasAge>

</Person>

:John :hasAge 51 .

Individual: John
Facts: hasAge "51"^^xsd:integer

<DataPropertyAssertion>
<DataProperty IRI="hasAge"/>
<NamedIndividual IRI="John"/>
<Literal datatypeIRI="http://www.w3.org/2001/XMLSchema#integer">51</Literal>

</DataPropertyAssertion>

Likewise, we can state that Jack's age is not 53.

NegativeDataPropertyAssertion(:hasAge :Jack "53"^^xsd:integer)

<owl:NegativePropertyAssertion>
<owl:sourceIndividual rdf:about="Jack"/>
<owl:assertionProperty rdf:about="hasAge"/>
<owl:targetValue rdf:datatype="http://www.w3.org/2001/XMLSchema#integer">

53
</owl:targetValue>

</owl:NegativePropertyAssertion>

[] rdf:type owl:NegativePropertyAssertion ;
owl:sourceIndividual :Jack ;
owl:assertionProperty :hasAge ;
owl:targetValue 53 .

OWL 2 Web Ontology LanguagePrimer W3C Working Draft 21 April 2009

Page 19 of 75 http://www.w3.org/TR/2009/WD-owl2-primer-20090421/

Individual: Jack
Facts: not hasAge "53"^^xsd:integer

<NegativeDataPropertyAssertion>
<DataProperty IRI="hasAge"/>
<NamedIndividual IRI="Jack"/>
<Literal datatypeIRI="http://www.w3.org/2001/XMLSchema#integer">53</Literal>

</NegativeDataPropertyAssertion>

Domain and range can also be stated for datatype properties as it is done for object
properties. In that case, however, the range will be a datatype instead of a class.
The following states that the hasAge property is only used to relate persons with
non-negative integers.

DataPropertyDomain(:hasAge :Person)
DataPropertyRange(:hasAge xsd:NonNegativeInteger)

<owl:DatatypeProperty rdf:about="hasAge">
<rdfs:domain rdf:resource="Person"/>
<rdfs:range rdf:datatpye="http://www.w3.org/2001/XMLSchema#NonNegativeInteger"/>

</owl:DatatypeProperty>

:hasAge rdfs:domain :Person ;
rdfs:range xsd:NonNegativeInteger .

DatatpyeProperty: hasAge
Domain: Person
Range: xsd:NonNegativeInteger

<DatatypePropertyDomain>
<DatatypeProperty IRI="hasAge"/>
<Class IRI="Person"/>

</DatatypePropertyDomain>
<DatatypePropertyRange>

<DatatypeProperty IRI="hasAge"/>
<Datatype IRI="http://www.w3.org/2001/XMLSchema#NonNegativeInteger"/>

</DatatypePropertyRange>

OWL 2 Web Ontology LanguagePrimer W3C Working Draft 21 April 2009

Page 20 of 75 http://www.w3.org/TR/2009/WD-owl2-primer-20090421/

We would like to point out at this stage a common mistake which easily occurs
when using property domains and ranges. In the example just given, which states
that the hasAge property is only used to relate persons with non-negative integers,
assume that we also specify the information that Felix is in the class Cat and that
Felix hasAge 9. From the combined information, it would then be possible to
deduce that Felix is also in the class Person, which is probably not intended. This is
a commonly modelling error: note that a domain (or range) statement is not a
constraint on the knowledge, but allows to infer further knowledge. If we state – as
in our example – that an age is only given for persons, then everything we give an
age for automatically becomes a person.

5 Advanced Class Relationships

In the previous sections we have dealt with classes as something “opaque”
carrying a name. We used them to characterize individuals, and related them to
other classes via subclass or disjointness statements.

We will now demonstrate how named classes, properties, and individuals can be
used as building blocks to define new classes.

5.1 Complex Classes

The language elements described so far allow to model simple ontologies. But their
expressivity hardly surpasses that of RDFS. In order to express more complex
knowledge, OWL provides logical class constructors. In particular, OWL provides
language elements for logical and, or, and not. The corresponding OWL terms are
borrowed from set theory: (class) intersection, union and complement. These
constructors allow to combine atomic classes – i.e. classes with names – to
complex classes.

The intersection of two classes consists of exactly those individuals which are
instances of both classes. The following example states that the class Mother
consists of exactly those objects which are instances of both Woman and Parent:

EquivalentClasses(
:Mother
ObjectIntersectionOf(:Woman :Parent)

)

<owl:Class rdf:about="Mother">
<owl:equivalentClass>

<owl:Class>
<owl:intersectionOf rdf:parseType="Collection">

<owl:Class rdf:about="Woman"/>

OWL 2 Web Ontology LanguagePrimer W3C Working Draft 21 April 2009

Page 21 of 75 http://www.w3.org/TR/2009/WD-owl2-primer-20090421/

<owl:Class rdf:about="Parent"/>
</owl:intersectionOf>

</owl:Class>
</owl:equivalentClass>

</owl:Class>

:Mother owl:equivalentClass [
rdf:type owl:Class ;
owl:intersectionOf (:Woman :Parent)

] .

Class: Mother
EquivalentTo: Woman and Parent

<EquivalentClasses>
<Class IRI="Mother"/>
<ObjectIntersectionOf>

<Class IRI="Woman"/>
<Class IRI="Parent"/>

</ObjectIntersectionOf>
</EquivalentClasses>

An example for an inference which can be drawn from this is that all instances of
the class Mother are also in the class Parent.

The union of two classes contains every individual which is contained in one of
these classes. Therefore we could characterize the class of all parents as the union
of the classes Mother and Father:

EquivalentClasses(
:Parent
ObjectUnionOf(:Mother :Father)

)

<owl:Class rdf:about="Parent">
<owl:equivalentClass>

<owl:Class>
<owl:unionOf rdf:parseType="Collection">

<owl:Class rdf:about="Mother"/>
<owl:Class rdf:about="Father"/>

OWL 2 Web Ontology LanguagePrimer W3C Working Draft 21 April 2009

Page 22 of 75 http://www.w3.org/TR/2009/WD-owl2-primer-20090421/

</owl:unionOf>
</owl:Class>

</owl:equivalentClass>
</owl:Class>

:Parent owl:equivalentClass [
rdf:type owl:Class ;
owl:unionOf (:Mother :Father)

] .

Class: Parent
EquivalentTo: Mother or Father

<EquivalentClasses>
<Class IRI="Parent"/>
<ObjectUnionOf>

<Class IRI="Mother"/>
<Class IRI="Father"/>

</ObjectUnionOf>
</EquivalentClasses>

The complement of a class corresponds to logical negation: it consists of exactly
those objects which are not members of the class itself. The following definition of
childless persons uses the class complement and also demonstrates that class
constructors can be nested:

EquivalentClasses(
:ChildlessPerson
ObjectIntersectionOf(

:Person
ObjectComplementOf(:Parent)

)
)

<owl:Class rdf:about="ChildlessPerson">
<owl:equivalentClass>

<owl:Class>
<owl:intersectionOf rdf:parseType="Collection">

<owl:Class rdf:about="Person"/>
<owl:Class>

<owl:complementOf rdf:resource="Parent"/>

OWL 2 Web Ontology LanguagePrimer W3C Working Draft 21 April 2009

Page 23 of 75 http://www.w3.org/TR/2009/WD-owl2-primer-20090421/

</owl:Class>
</owl:intersectionOf>

</owl:Class>
</owl:equivalentClass>

</owl:Class>

:ChildlessPerson owl:equivalentClass [
rdf:type owl:Class ;
owl:intersectionOf (:Person [owl:complementOf :Parent])

] .

Class: ChildlessPerson
EquivalentTo: Person and not Parent

<EquivalentClasses>
<Class IRI="ChildlessPerson"/>
<ObjectIntersectionOf>

<Class IRI="Person"/>
<ObjectComplementOf>

<Class IRI="Parent"/>
</ObjectComplementOf>

</ObjectIntersectionOf>
</EquivalentClasses>

All the above examples demonstrate the usage of class constructors in order to
define new classes as combination of others. But, of course, it is also possible to
use class constructors together with a subclass statement in order to indicate
necessary, but not sufficient, conditions for a class. The following statement
indicates that every Grandfather is both a man and a parent (whereas the converse
is not necessarily true):

SubClassOf(
:Grandfather
ObjectIntersectionOf(:Man :Parent)

)

<owl:Class rdf:about="Grandfather">
<rdfs:subClassOf>

<owl:Class>
<owl:intersectionOf rdf:parseType="Collection">

OWL 2 Web Ontology LanguagePrimer W3C Working Draft 21 April 2009

Page 24 of 75 http://www.w3.org/TR/2009/WD-owl2-primer-20090421/

<owl:Class rdf:about="Man"/>
<owl:Class rdf:about="Parent"/>

</owl:intersectionOf>
</owl:Class>

</rdfs:subClassOf>
</owl:Class>

:Grandfather rdfs:subClassOf [
rdf:type owl:Class ;
owl:intersectionOf (:Man :Parent)

] .

Class: Grandfather
SubClassOf: Man and Parent

<SubClassOf>
<Class IRI="Grandfather"/>
<ObjectIntersectionOf>

<Class IRI="Man"/>
<Class IRI="Parent"/>

</ObjectIntersectionOf>
</SubClassOf>

In general, complex classes can be used in every place where named classes can
occur, hence also in class assertions:

ClassAssertion(
ObjectIntersectionOf(

:Person
ObjectComplementOf(:Parent)

)
:John

)

<rdf:Description rdf:about="John">
<rdf:type>

<owl:Class>
<owl:intersectionOf rdf:parseType="Collection">

<owl:Class rdf:about="Person"/>
<owl:Class>

<owl:complementOf rdf:about="Parent"/>

OWL 2 Web Ontology LanguagePrimer W3C Working Draft 21 April 2009

Page 25 of 75 http://www.w3.org/TR/2009/WD-owl2-primer-20090421/

</owl:Class>
</owl:intersectionOf>

</owl:Class>
</rdf:type>

</rdf:Description>

:John rdf:type [
rdf:type owl:Class ;
owl:intersectionOf (:Person

[rdf:type owl:Class ;
owl:complementOf :Parent]

)
] .

Individual: John
Types: Person and not Parent

<ClassAssertion>
<ObjectIntersectionOf>
<Class IRI="Person"/>
<ObjectComplementOf>

<Class IRI="Parent"/>
</ObjectComplementOf>

</ObjectIntersectionOf>
<NamedIndividual IRI="John"/>

</ClassAssertion>

5.2 Property Restrictions

By property restrictions we understand another type of logic-based constructors for
complex classes. As the name suggests, property restrictions are constructors
involving properties.

The first property restriction called existential quantification defines a class as the
set of all individuals that are connected via a particular property to another
individual which is an instance of a certain class. This is best explained by an
example, like the following which defines the class of parents as the class of
individuals that are linked to a person by the hasChild property.

EquivalentClasses(
:Parent

OWL 2 Web Ontology LanguagePrimer W3C Working Draft 21 April 2009

Page 26 of 75 http://www.w3.org/TR/2009/WD-owl2-primer-20090421/

ObjectSomeValuesFrom(:hasChild :Person)
)

<owl:Class rdf:about="Parent">
<owl:equivalentClass>

<owl:Restriction>
<owl:onProperty rdf:resource="hasChild"/>
<owl:someValuesFrom rdf:resource="Person"/>

</owl:Restriction>
</owl:equivalentClass>

</owl:Class>

:Parent owl:equivalentClass [
rdf:type owl:Restriction ;
owl:onProperty :hasChild ;
owl:someValuesFrom :Person

] .

Class: Parent
EquivalentTo: hasChild some Person

<EquivalentClasses>
<Class IRI="Parent"/>
<ObjectSomeValuesFrom>

<ObjectProperty IRI="hasChild"/>
<Class IRI="Person"/>

</ObjectSomeValuesFrom>
</EquivalentClasses>

Another property restriction, called universal quantification is used to describe a
class of individuals for which all “property-successors” are instances of a given
class. We can use the following statement to indicate that a person is happy
exactly if all their children are happy.

EquivalentClasses(
ObjectIntersectionOf(:Person :Happy)
ObjectAllValuesFrom(:hasChild :Happy)

)

OWL 2 Web Ontology LanguagePrimer W3C Working Draft 21 April 2009

Page 27 of 75 http://www.w3.org/TR/2009/WD-owl2-primer-20090421/

<owl:Class>
<owl:intersectionOf parseType="Collection">

<owl:Class rdf:about="Person"/>
<owl:Class rdf:about="Happy"/>

</owl:intersectionOf>
<owl:equivalentClass>

<owl:Restriction>
<owl:onProperty rdf:about="hasChild"/>
<owl:allValuesFrom rdf:about="Happy"/>

</owl:Restriction>
</owl:equivalentClass>

</owl:Class>

[] rdf:type owl:Class ;
owl:intersectionOf (:Person :Happy) ;
owl:equivalentClass [

rdf:type owl:Restriction ;
owl:onProperty :hasChild ;
owl:allValuesFrom :Happy

] .

Class: X
EquivalentTo: Person and Happy

Class: X
EquivalentTo: hasChild all Happy

<EquivalentClasses>
<ObjectIntersectionOf>

<Class IRI="Person"/>
<Class IRI="Happy"/>

</ObjectIntersectionOf>
<ObjectAllValuesFrom>

<ObjectProperty IRI="hasChild"/>
<Class IRI="Happy"/>

</ObjectAllValuesFrom>
</EquivalentClasses>

The usage of property restrictions may cause some conceptual confusion to
“modeling beginners.” As a rule of thumb, when translating a natural language
statement into a logical axiom, existential quantification occurs far more frequently.
Natural language indicators for the usage of universal quantification are words like
“only,” “exclusively,” or “nothing but.”

OWL 2 Web Ontology LanguagePrimer W3C Working Draft 21 April 2009

Page 28 of 75 http://www.w3.org/TR/2009/WD-owl2-primer-20090421/

There is one particular misconception concerning the universal role restriction. As
an example, consider the above happiness axiom. The intuitive reading suggests
that in order to be happy, a person must have at least one happy child. Yet, this is
not the case: any individual that is not a “starting point” of the property hasChild is
class member of any class defined by universal quantification over hasChild.
Hence, by our above statement, every childless person would be qualified as
happy. In order to formalize the aforementioned intended reading, the statement
would have to read as follows:

Editor's Note: The following example needs a fix in the Manchester syntax-
Manchester syntax document doesn't tell how to handle this in fact.

EquivalentClasses(
ObjectIntersectionOf(:Person :Happy)
ObjectIntersectionOf(

ObjectAllValuesFrom(:hasChild :Happy)
ObjectSomeValuesFrom(:hasChild :Happy)

)
)

<owl:Class>
<owl:intersectionOf parseType="Collection">

<owl:Class rdf:about="Person"/>
<owl:Class rdf:about="Happy"/>

</owl:intersectionOf>
<owl:equivalentClass>

<owl:Class>
<owl:intersectionOf parseType="Collection">

<owl:Restriction>
<owl:onProperty rdf:about="hasChild"/>
<owl:allValuesFrom rdf:about="Happy"/>

</owl:Restriction>
<owl:Restriction>

<owl:onProperty rdf:about="hasChild"/>
<owl:someValuesFrom rdf:about="Happy"/>

</owl:Restriction>
</owl:intersectionOf>

</owl:Class>
</owl:equivalentClass>

</owl:Class>

[] rdf:type owl:Class ;
owl:intersectionOf (:Person :Happy) ;
owl:equivalentClass [

rdf:type owl:Class ;

OWL 2 Web Ontology LanguagePrimer W3C Working Draft 21 April 2009

Page 29 of 75 http://www.w3.org/TR/2009/WD-owl2-primer-20090421/

owl:intersectionOf ([rdf:type owl:Restriction ;
owl:onProperty :hasChild ;
owl:allValuesFrom :Happy]

[rdf:type owl:Restriction ;
owl:onProperty :hasChild ;
owl:someValuesFrom :Happy]

)
] .

Class: X
EquivalentTo: Person and Happy

Class: X
EquivalentTo: hasChild all Happy and hasChild some Happy

<EquivalentClasses>
<ObjectIntersectionOf>

<Class IRI="Person"/>
<Class IRI="Happy"/>

</ObjectIntersectionOf>
<ObjectIntersectionOf>

<ObjectAllValuesFrom>
<ObjectProperty IRI="hasChild"/>
<Class IRI="Happy"/>

</ObjectAllValuesFrom>
<ObjectSomeValuesFrom>

<ObjectProperty IRI="hasChild"/>
<Class IRI="Happy"/>

</ObjectSomeValuesFrom>
</ObjectIntersectionOf>

</EquivalentClasses>

This example also illustrates how property restrictions can be nested with complex
classes.

Moreover, we might be interested in describing a class of individuals that are
related to one particular individual. For instance we could define the class of John's
children:

EquivalentClasses(
:JohnsChildren
ObjectHasValue(:hasParent :John)

)

OWL 2 Web Ontology LanguagePrimer W3C Working Draft 21 April 2009

Page 30 of 75 http://www.w3.org/TR/2009/WD-owl2-primer-20090421/

<owl:Class rdf:about="JohnsChildren">
<owl:equivalentClass>

<owl:Restriction>
<owl:onProperty rdf:resource="hasParent/>
<owl:hasValue rdf:resource="John"/>

</owl:Restriction>
</owl:equivalentClass>

</owl:Class>

:JohnsChildren owl:equivalentClass [
rdf:type owl:Restriction ;
owl:onProperty :hasParent ;
owl:hasValue :John

] .

Class: JohnsChildren
EquivalentTo: hasParent value John

<EquivalentClasses>
<Class IRI="JohnsChildren"/>
<ObjectHasValue>

<ObjectProperty IRI="hasParent"/>
<Class IRI="John"/>

</ObjectHasValue>
</EquivalentClasses>

As a special case of individuals being interlinked by properties, an individual might
be linked to itself. Indeed, OWL provides the possibility to e.g. define the class
NarcisticPerson as the class of individuals that are linked to themselves by a loves-
property.

EquivalentClasses(
:NarcisticPerson
ObjectHasSelf(:loves)

)

<owl:Class rdf:about="NarcisticPerson">
<owl:equivalentClass>

<owl:Restriction>
<owl:onProperty rdf:resource="loves"/>
<owl:hasSelf rdf:datatype="&xsd;boolean">

OWL 2 Web Ontology LanguagePrimer W3C Working Draft 21 April 2009

Page 31 of 75 http://www.w3.org/TR/2009/WD-owl2-primer-20090421/

true
</owl:hasSelf>

</owl:Restriction>
</owl:equivalentClass>

</owl:Class>

:NarcisticPerson owl:equivalentClass [
rdf:type owl:Restriction ;
owl:onProperty :loves ;
owl:hasSelf "true"^^xsd:boolean .

] .

Class: NarcisticPerson
EquivalentTo: loves Self

<EquivalentClasses>
<Class IRI="NarcisticPerson"/>
<ObjectHasSelf>

<ObjectProperty IRI="loves"/>
</ObjectHasSelf>

</EquivalentClasses>

5.3 Property Cardinality Restrictions

Using existential and universal quantification, we can say something about all
respectively at least one of somebody's children. In a similar way, we can construct
classes depending on the number of children. The following example states that
John has at most four children who are themselves parents:

ClassAssertion(
ObjectMaxCardinality(4 :hasChild :Parent)
:John

)

<rdf:Description rdf:about="John">
<rdf:type>

<owl:Class>
<owl:Restriction>

<owl:maxQualifiedCardinality rdf:datatype="&xsd;nonNegativeInteger">
4

OWL 2 Web Ontology LanguagePrimer W3C Working Draft 21 April 2009

Page 32 of 75 http://www.w3.org/TR/2009/WD-owl2-primer-20090421/

</owl:maxQualifiedCardinality>
<owl:onProperty rdf:about="hasChild"/>
<owl:onClass rdf:about="Parent"/>

</owl:Restriction>
</owl:Class>

</rdf:type>
</rdf:Description>

:John rdf:type [
rdf:type owl:Restriction ;
owl:maxQualifiedCardinality "4"^^xsd:nonNegativeInteger ;
owl:onProperty :hasChild ;
owl:onClass :Parent

] .

Individual: John
Types: hasChild max 4 Parent

<ClassAssertion>
<ObjectMaxCardinality cardinality="4">

<ObjectProperty IRI="hasChild"/>
<Class IRI="Parent"/>

</ObjectMaxCardinality>
<NamedIndividual IRI="John"/>

</ClassAssertion>

Note that this statement allows John to have arbitrarily many further children which
are not parents.

Likewise, it is also possible to declare a minimum number by saying that John is an
instance of the class of individuals having at least two children that are parents:

ClassAssertion(
ObjectMinCardinality(2 :hasChild :Parent)
:John

)

<rdf:Description rdf:about="John">
<rdf:type>

<owl:Class>
<owl:Restriction>

OWL 2 Web Ontology LanguagePrimer W3C Working Draft 21 April 2009

Page 33 of 75 http://www.w3.org/TR/2009/WD-owl2-primer-20090421/

<owl:minQualifiedCardinality rdf:datatype="&xsd;nonNegativeInteger">
2

</owl:minQualifiedCardinality>
<owl:onProperty rdf:about="hasChild"/>
<owl:onClass rdf:about="Parent"/>

</owl:Restriction>
</owl:Class>

</rdf:type>
</rdf:Description>

:John rdf:type [
rdf:type owl:Restriction ;
owl:minQualifiedCardinality "2"^^xsd:nonNegativeInteger ;
owl:onProperty :hasChild ;
owl:onClass :Parent

] .

Individual: John
Types: hasChild min 2 Parent

<ClassAssertion>
<ObjectMinCardinality cardinality="2">

<ObjectProperty IRI="hasChild"/>
<Class IRI="Parent"/>

</ObjectMinCardinality>
<NamedIndividual IRI="John"/>

</ClassAssertion>

If we happen to know the exact number of John's parent children, this can be
specified as follows:

ClassAssertion(
ObjectExactCardinality(3 :hasChild :Parent)
:John

)

<rdf:Description rdf:about="John">
<rdf:type>

<owl:Class>
<owl:Restriction>

<owl:qualifiedCardinality rdf:datatype="&xsd;nonNegativeInteger">

OWL 2 Web Ontology LanguagePrimer W3C Working Draft 21 April 2009

Page 34 of 75 http://www.w3.org/TR/2009/WD-owl2-primer-20090421/

3
</owl:qualifiedCardinality>
<owl:onProperty rdf:about="hasChild"/>
<owl:onClass rdf:about="Parent"/>

</owl:Restriction>
</owl:Class>

</rdf:type>
</rdf:Description>

:John rdf:type [
rdf:type owl:Restriction ;
owl:qualifiedCardinality "3"^^xsd:nonNegativeInteger ;
owl:onProperty :hasChild ;
owl:onClass :Parent

] .

Individual: John
Types: hasChild exactly 3 Parent

<ClassAssertion>
<ObjectExactCardinality cardinality="3">

<ObjectProperty IRI="hasChild"/>
<Class IRI="Parent"/>

</ObjectExactCardinality>
<NamedIndividual IRI="John"/>

</ClassAssertion>

In a cardinality restriction, providing the class is optional; if we just want to talk
about the number of all of John's children we can write the following:

ClassAssertion(
ObjectExactCardinality(5 :hasChild)
:John

)

<rdf:Description rdf:about="John">
<rdf:type>

<owl:Class>
<owl:Restriction>

<owl:cardinality rdf:datatype="&xsd;nonNegativeInteger">
5

OWL 2 Web Ontology LanguagePrimer W3C Working Draft 21 April 2009

Page 35 of 75 http://www.w3.org/TR/2009/WD-owl2-primer-20090421/

</owl:cardinality>
<owl:onProperty rdf:about="hasChild"/>

</owl:Restriction>
</owl:Class>

</rdf:type>
</rdf:Description>

:John rdf:type [
rdf:type owl:Restriction ;
owl:cardinality "5"^^xsd:nonNegativeInteger ;
owl:onProperty :hasChild

] .

Individual: John
Types: hasChild exactly 5

<ClassAssertion>
<ObjectExactCardinality cardinality="5">

<ObjectProperty IRI="hasChild"/>
</ObjectExactCardinality>
<NamedIndividual IRI="John"/>

</ClassAssertion>

5.4 Enumeration of Individuals

A very straightforward way to describe a class is just to enumerate all its instances.
OWL provides this possibility, e.g. we can create a class of birthday guests:

EquivalentClasses(
:MyBirthdayGuests
ObjectOneOf(:Bill :John :Mary)

)

<owl:Class rdf:about="MyBirthdayGuests">
<owl:equivalentClass>

<owl:Class>
<owl:oneOf rdf:parseType="Collection">

<rdf:Description rdf:about="Bill"/>
<rdf:Description rdf:about="John"/>
<rdf:Description rdf:about="Mary"/>

OWL 2 Web Ontology LanguagePrimer W3C Working Draft 21 April 2009

Page 36 of 75 http://www.w3.org/TR/2009/WD-owl2-primer-20090421/

</owl:oneOf>
</owl:Class

</owl:equivalentClass>
</owl:Class>

:MyBirthdayGuests owl:equivalentClass [
rdf:type owl:Class ;
owl:oneOf (:Bill :John :Mary)

] .

Class: MyBirthdayGuests
EquivalentTo: { Bill John Mary }

<EquivalentClasses>
<Class IRI="MyBirthdayGuests"/>
<ObjectOneOf>

<NamedIndividual IRI="Bill"/>
<NamedIndividual IRI="John"/>
<NamedIndividual IRI="Mary"/>

</ObjectOneOf>
</EquivalentClasses>

Note that this axiom provides more information than simply asserting class
membership of Bill, John, and Mary as described in Section 4.1. In addition to that,
it also stipulates that Bill, John, and Mary are the only members of
MyBirthdayGuest. Therefore, classes defined this way are sometimes referred to
as closed classes. If we now assert Jeff as an instance of MyBirthdayGuest, the
consequence is that Jeff must be equal to one of the above three persons.

6 Advanced Use of Properties

Until now we focussed on classes and properties that were merely used as building
blocks for class expressions. In the following, we will see what other modeling
capabilities with properties OWL 2 offers.

6.1 Property Characteristics

Sometimes one property can be obtained by taking another property and changing
its direction, i.e. inverting it. For example, the property hasParent can be defined as
the inverse property of hasChild:

OWL 2 Web Ontology LanguagePrimer W3C Working Draft 21 April 2009

Page 37 of 75 http://www.w3.org/TR/2009/WD-owl2-primer-20090421/

InverseObjectProperties(:hasParent :hasChild)

<owl:ObjectProperty rdf:about="hasParent">
<owl:inverseOf rdf:resource="hasChild"/>

</owl:ObjectProperty>

:hasParent owl:inverseOf :hasChild .

ObjectProperty: hasParent
InverseOf: hasChild

<InverseObjectProperties>
<ObjectProperty IRI="hasParent"/>
<ObjectProperty IRI="hasChild"/>

</InverseObjectProperties>

This would for example allow to deduce for arbitrary individuals A and B, where A is
linked to B by the hasChild property, that B and A are also interlinked by the
hasParent property. However, we do not need to explicitly assign a name to the
inverse of a property if we just want to use it, say, inside a class expression.
Instead of using the new hasParent property for the definition of the class Orphan,
we can directly refer to it as the hasChild-inverse:

EquivalentClasses(
:Orphan
ObjectAllValuesFrom(

ObjectInverseOf(:hasChild)
:Dead

)
)

<owl:Class rdf:about="Orphan">
<owl:equivalentClass>

<owl:Restriction>
<owl:onProperty>

<owl:ObjectProperty>
<owl:inverseOf rdf:about="hasChild"/>

</owl:ObjectProperty>

OWL 2 Web Ontology LanguagePrimer W3C Working Draft 21 April 2009

Page 38 of 75 http://www.w3.org/TR/2009/WD-owl2-primer-20090421/

</owl:onProperty>
<owl:Class rdf:about="Dead">

</owl:Restriction>
</owl:equivalentClass>

</owl:Class>

:Orphan owl:equivalentClass [
rdf:type owl:Restriction ;
owl:onProperty [owl:inverseOf :hasChild] ;
owl:allValuesFrom :Dead

] .

Class: Orphan
EquivalentTo: inverse hasChild all Dead

<EquivalentClasses>
<Class IRI="Orphan"/>
<ObjectAllValuesFrom>

<InverseObjectProperty>
<ObjectProperty IRI="hasChild"/>

</InverseObjectProperty>
<Class IRI="Dead"/>

</ObjectAllValuesFrom>
</EquivalentClasses>

In some cases, a property and its inverse coincide, or in other words, the direction
of a property doesn't matter. For instance the property hasSpouse relates A with B
exactly if it relates B with A. For obvious reasons, a property with this characteristic
is called symmetric, and it can be specified as follows

SymmetricObjectProperty(:hasSpouse)

<owl:SymmetricProperty rdf:about="hasSpouse"/>

:hasSpouse rdf:type owl:SymmetricProperty .

OWL 2 Web Ontology LanguagePrimer W3C Working Draft 21 April 2009

Page 39 of 75 http://www.w3.org/TR/2009/WD-owl2-primer-20090421/

ObjectProperty: hasSpouse
Characteristics: Symmetric

<SymmetricObjectProperty>
<ObjectProperty IRI="hasSpouse"/>

</SymmetricObjectProperty>

On the other hand, a property can also be asymmetric meaning that if it connects A
with B it never connects B with A. Clearly (excluding paradoxical scenarios
resulting from time travels), this is the case for the property hasChild and is
expressed like this:

AsymmetricObjectProperty(:hasChild)

<owl:AsymmetricProperty rdf:about="hasChild"/>

:hasChild rdf:type owl:AsymmetricProperty .

ObjectProperty: hasChild
Characteristics: Asymmetric

<AsymmetricObjectProperty>
<ObjectProperty IRI="hasChild"/>

</AsymmetricObjectProperty>

Previously, we considered subproperties in analogy to subclasses. It turns out that
it also make sense to transfer the notion of class disjointness to properties: two
properties are disjoint if there are no two individuals that are interlinked by both
properties. Following common law, we can thus state that parent-child marriages
cannot occur:

DisjointObjectProperties(:hasParent :hasSpouse)

OWL 2 Web Ontology LanguagePrimer W3C Working Draft 21 April 2009

Page 40 of 75 http://www.w3.org/TR/2009/WD-owl2-primer-20090421/

<rdf:Description rdf:about="hasParent">
<owl:propertyDisjointWith rdf:resource="hasSpouse"/>

</rdf:Description>

:hasParent owl:propertyDisjointWith :hasSpouse .

DisjointProperties: hasParent hasSpouse

<DisjointObjectProperties>
<ObjectProperty IRI="hasParent"/>
<ObjectProperty IRI="hasSpouse"/>

</DisjointObjectProperties>

Properties can also be reflexive: such a property relates everything to itself. For the
following example, note that everybody has himself as a relative.

ReflexiveObjectProperty(:hasRelative)

<owl:ReflexiveProperty rdf:about="hasRelative"/>

:hasRelative rdf:type owl:ReflexiveProperty .

ObjectProperty: hasRelative
Characteristics: Reflexive

<ReflexiveObjectProperty>
<ObjectProperty IRI="hasRelative"/>

</ReflexiveObjectProperty>

Note that this does not necessarily mean that every two individuals which are
related by a reflexive property are identical.

OWL 2 Web Ontology LanguagePrimer W3C Working Draft 21 April 2009

Page 41 of 75 http://www.w3.org/TR/2009/WD-owl2-primer-20090421/

Properties can furthermore be irreflexive, meaning that no individual can be related
to itself by such a role. A typical example is the following which simply states that
nobody can be his own parent.

IrreflexiveObjectProperty(:parentOf)

<owl:IrreflexiveProperty rdf:about="parentOf"/>

:parentOf rdf:type owl:IrreflexiveProperty .

Objectproperty: parentOf
Characteristics: Irreflexive

<IreflexiveObjectProperty>
<ObjectProperty IRI="parentOf"/>

</IreflexiveObjectProperty>

Next, consider the hasHusband property. As every person can have only one
husband (which we take for granted for the sake of the example), every individual
can be linked by the hasHusband property to at most one other individual. This kind
of properties are called functional and are described as follows:

FunctionalObjectProperty(:hasHusband)

<owl:FunctionalProperty rdf:about="hasHusband"/>

:hasHusband rdf:type owl:FunctionalProperty .

ObjectProperty: hasHusband
Characteristics: Functional

OWL 2 Web Ontology LanguagePrimer W3C Working Draft 21 April 2009

Page 42 of 75 http://www.w3.org/TR/2009/WD-owl2-primer-20090421/

<FunctionalObjectProperty>
<ObjectProperty IRI="hasHusband"/>

</FunctionalObjectProperty>

Note that this statement does not require every individual to have a husband, it just
states that there can be no more than one. It is also possible to indicate that the
inverse of a given property is functional:

InverseFunctionalObjectProperty(:hasHusband)

<owl:InverseFunctionalProperty rdf:about="hasHusband"/>

:hasHusband rdf:type owl:InverseFunctionalProperty .

ObjectProperty: hasHusband
Characteristics: InverseFunctional

<InverseFunctionalObjectProperty>
<ObjectProperty IRI="hasHusband"/>

</InverseFunctionalObjectProperty>

This indicates that an individual can be husband of at most one other individual.
The example also indicates the difference between functionality and inverse
functionality, as in a polygynous situation the former axiom is valid whereas the
latter isn't.

Now have a look at a property hasAncestor which is meant to link individuals A and
B whenever A is a direct descendant of B. Clearly, the property hasParent is a
“special case” of hasAncestor and can be defined as a subproperty thereof. Still, it
would be nice to "automatically" include parents of parents (and parents of parents
of parents). This can be done by defining hasAncestor as transitive property. A
transitive property interlinks two individuals A and C whenever it interlinks A with B
and B with C for some individual B.

TransitiveObjectProperty(:hasAncestor)

OWL 2 Web Ontology LanguagePrimer W3C Working Draft 21 April 2009

Page 43 of 75 http://www.w3.org/TR/2009/WD-owl2-primer-20090421/

<owl:TransitiveProperty rdf:about="hasAncestor"/>

:hasAncestor rdf:type owl:TransitiveProperty .

ObjectProperty: hasAncestor
Characteristics: Transitive

<TransitiveObjectProperty>
<ObjectProperty IRI="hasAncestor"/>

</TransitiveObjectProperty>

6.2 Property Chains

While the last example from the previous section allowed to infer an hasAncestor
property whenever there is a chain of hasParent properties, we might want to be a
bit more specific and define, say, a hasGrandparent property instead. Technically,
this means that we want hasGrandparent to connect all individuals that are linked
by a chain of exactly two hasParent properties. In contrast to the previous
hasAncestor example, we do not want hasParent to be a special case of
hasGrandparent nor do we want hasGrandparent to refer to great-grandparents
etc. We can express that every such chain has to be spanned by a
hasGrandparent property as follows:

SubObjectPropertyOf(
ObjectPropertyChain(:hasParent :hasParent)
:hasGrandparent

)

<rdf:Description rdf:about="hasGrandparent">
<owl:propertyChainAxiom rdf:parseType="Collection">

<owl:ObjectProperty rdf:about="hasParent"/>
<owl:ObjectProperty rdf:about="hasParent"/>

</owl:propertyChainAxiom>
</rdf:Description>

:hasGrandparent owl:propertyChainAxiom (:hasParent :hasParent) .

OWL 2 Web Ontology LanguagePrimer W3C Working Draft 21 April 2009

Page 44 of 75 http://www.w3.org/TR/2009/WD-owl2-primer-20090421/

ObjectProperty: hasGrandparent
SubPropertyChain: hasParent o hasParent

<SubObjectPropertyOf>
<PropertyChain>

<ObjectProperty IRI="hasParent"/>
<ObjectProperty IRI="hasParent"/>

</PropertyChain>
<ObjectProperty IRI="hasGrandparent"/>

</SubObjectPropertyOf>

6.3 Keys

In OWL 2 a collection of (data or object) properties can be assigned as a key to a
class expression. This means that each named instance of the class expression is
uniquely identified by the set of values which these properties attain in relation to
the instance.

A simple example of this would be the identification of a person by her social
security number.

HasKey(:Person hasSSN)

<owl:Class rdf:about="Person">
<owl:hasKey rdf:parseType="Collection">

<owl:ObjectProperty rdf:about="hasSSN">
</owl:hasKey>

</owl:Class>

:Person owl:hasKey :hasSSN .

HasKey: Person hasSSN

<HasKey>
<Class IRI="Person"/>
<ObjectProperty IRI="hasSSN"/>

</HasKey>

OWL 2 Web Ontology LanguagePrimer W3C Working Draft 21 April 2009

Page 45 of 75 http://www.w3.org/TR/2009/WD-owl2-primer-20090421/

7 Advanced Use of Datatypes

Editor's Note: This section will discuss data ranges, facets, available datatypes,
etc.

8 Document Information and Annotations

In the following, we describe features of OWL 2 which do not actually contribute to
the “logical” knowledge specified in the ontology. Rather these are used to provide
additional information about the ontology itself, axioms, or even single entities.

8.1 Annotating Axioms and Entities

In many cases, we want to furnish parts of our OWL ontology with information that
actually does not describe the domain itself but talks about the description of the
domain. OWL provides annotations for this purpose. An OWL annotation simply
associates property-value pairs with parts of an ontology, or the entire ontology
itself. Even annotations themselves can be annotated. Annotation information is not
really part of the logical meaning of an ontology.

So, for example, we could add information to one of the classes of our ontology,
giving a natural language description of its meaning.

AnnotationAssertion(rdfs:label :Person "Represents the set of all people.")

<owl:Class rdf:about="Person">
<rdfs:label>Represents the set of all people.</rdfs:label>

</owl:Class>

:Person rdfs:label "Represents the set of all people."^^xsd:string .

Class: Person
Annotations: rdfs:label "Represents the set of all people."

<AnnotationAssertion>
<AnnotationProperty IRI="&rdfs;label"/>
<IRI>Person</IRI>

OWL 2 Web Ontology LanguagePrimer W3C Working Draft 21 April 2009

Page 46 of 75 http://www.w3.org/TR/2009/WD-owl2-primer-20090421/

<Literal>Represents the set of all people.</Literal>
</AnnotationAssertion>

The following is an example of an axiom with an annotation.

SubClassOf(
Annotation(rdfs:label "States that every man is a person.")
:Man
:Person

)

<owl:Class rdf:about="Man">
<rdfs:subClassOf rdf:resource="Person"/>

</owl:Class>
<owl:Axiom>

<owl:subject rdf:resource="Man"/>
<owl:predicate rdf:resource="&rdfs;subClassOf"/>
<owl:object rdf:resource="Person"/>
<rdfs:label>States that every man is a person.</rdfs:label>

</owl:Axiom>

:Man rdfs:subClassOf :Person .
[] rdf:type owl:Axiom ;

owl:subject :Man ;
owl:predicate rdfs:subClassOf ;
owl:object :Person ;
rdfs:label "States that every man is a person."^^xsd:string .

Class: Man
SubClassOf: Annotations: rdfs:label "States that every man is a person." Person

<SubClassOf>
<Annotation>

<AnnotationProperty IRI="&rdfs;label"/>
<Literal datatypeIRI="xsd:string">"States that every man is a person."</Literal>

</Annotation>
<Class IRI="Man"/>
<Class IRI="Person"/>

</SubClassOf>

OWL 2 Web Ontology LanguagePrimer W3C Working Draft 21 April 2009

Page 47 of 75 http://www.w3.org/TR/2009/WD-owl2-primer-20090421/

8.2 Ontology Management

In OWL, general information about a topic is almost always gathered into an
ontology that is then used by various applications. We can also provide a name for
OWL ontologies, which is generally the place where the ontology document is
located in the web. Particular information about a topic can also be placed in an
ontology, if it is used by different applications.

Ontology(<http://example.com/owl/families>
...

)

<rdf:RDF ...>
<owl:Ontology rdf:about="http://example.com/owl/families"/>
...

</rdf:RDF>

<http://example.com/owl/families> rdf:type owl:Ontology .

Ontology: <http://example.com/owl/families>

<Ontology ...
ontologyIRI="http://example.com/owl/families">
...

</Ontology>

We place OWL ontologies into OWL documents, which are then placed into local
filesystems or on the World Wide Web. Aside from containing an OWL ontology,
OWL documents also contain information about transforming the short names
normally used in OWL ontologies (e.g., Person) into IRIs, by providing the
expansion for prefixes. The IRI is then the concatention of the prefix expansion and
the reference.

In our example we have so far used a number of prefixes, including xsd and the
empty prefix. The former prefix has been used in compact names for XML Schema
datatypes, whose IRIs are fixed by the XML Schema recommendation. We thus
must use the standard expansion for xsd, which is http://www.w3.org/2001/
XMLSchema#. The expansion we pick for the other prefix will affect the names of
the classes, properties, and individuals in our ontology, as well as the name of the
ontology itself. If we are going to put the ontology on the web, we should pick an

OWL 2 Web Ontology LanguagePrimer W3C Working Draft 21 April 2009

Page 48 of 75 http://www.w3.org/TR/2009/WD-owl2-primer-20090421/

expansion that is in some part of the web that we control, so that we are not using
someone else's names by accident. (Here we use a made-up place that no one
controls.) The two XML-based syntaxes need namespaces for built-in names and
also can use XML entities for namespaces.

Namespace(=<http://example.com/owl/families/>)
Namespace(otherOnt=<http://example.org/otherOntologies/families/>)
Namespace(xsd=<http://www.w3.org/2001/XMLSchema#>)

<!DOCTYPE rdf:RDF [
<!ENTITY xsd "http://www.w3.org/2001/XMLSchema#" >
<!ENTITY otherOnt "http://example.org/otherOntologies/families/" >

]>

<rdf:RDF xml:base="http://example.com/owl/families/"
xmlns="http://example.com/owl/families/"
xmlns:otherOnt="http://example.org/otherOntologies/families/"
xmlns:owl="http://www.w3.org/2002/07/owl#"
xmlns:rdfs="http://www.w3.org/2000/01/rdf-schema#"
xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#">

<owl:Ontology rdf:about="http://example.com/owl/families"/>
...

@prefix : <http://example.com/owl/families/>
@prefix otherOnt: <http://example.org/otherOntologies/families/>
@prefix owl: <http://www.w3.org/2002/07/owl#>
@prefix rdfs: <http://www.w3.org/2000/01/rdf-schema#>
@prefix rdf: <http://www.w3.org/1999/02/22-rdf-syntax-ns#>
@prefix xsd: <http://www.w3.org/2001/XMLSchema#>

Prefix: <http://example.com/owl/families/>
Prefix: otherOnt <http://example.org/otherOntologies/families/>

<!DOCTYPE Ontology [
<!ENTITY xsd "http://www.w3.org/2001/XMLSchema#" >

]>
<Ontology

xml:base="http://example.com/owl/families/"
xmlns="http://www.w3.org/2002/07/owl#"

OWL 2 Web Ontology LanguagePrimer W3C Working Draft 21 April 2009

Page 49 of 75 http://www.w3.org/TR/2009/WD-owl2-primer-20090421/

xmlns:g="http://example.org/otherOntologies/families/"
ontologyIRI="http://example.com/owl/families">

...
</Ontology>

It is also common in OWL to reuse general information that is stored in one
ontology in other ontologies. Instead of requiring the copying of this information,
OWL allows the import of the contents of entire ontologies in other ontologies,
using import statements, as follows:

Import(http://example.org/otherOntologies/families.owl)

<owl:Ontology rdf:about="http://example.com/owl/families">
<owl:imports rdf:resource="http://example.org/otherOntologies/families.owl" />

</owl:Ontology>

<http://example.com/owl/families> owl:imports <http://example.org/otherOntologies/families.owl> .

Import: <http://example.org/otherOntologies/families.owl>

<Prefix name="otherOnt" IRI="http://example.org/otherOntologies/families/"/>
<Import>http://example.org/otherOntologies/families.owl</Import>

As the Semantic Web and ontology construction is distributed, it is common for
ontologies to use different names for the same concept, property, or individual. As
we have seen, several constructs in OWL can be used to state that different names
refer to the same class, property, or individual, so, for example, we could – instead
of tediously renaming entities – tie the names used in our ontology to the names
used in an imported ontology as follows:

SameIndividuals(:John otherOnt:JohnBrown)
SameIndividuals(:Mary otherOnt:MaryBrown)
EquivalentClasses(:Adult otherOnt:Grownup)
EquivalentObjectProperties(:hasChild otherOnt:child)
EquivalentDataProperties(:hasAge otherOnt:age)

OWL 2 Web Ontology LanguagePrimer W3C Working Draft 21 April 2009

Page 50 of 75 http://www.w3.org/TR/2009/WD-owl2-primer-20090421/

<rdf:Description rdf:about="John">
<owl:sameAs rdf:resource="&otherOnt;JohnBrown"/>

</rdf:Description>

<rdf:Description rdf:about="Mary">
<owl:sameAs rdf:resource="&otherOnt;MaryBrown"/>

</rdf:Description>

<owl:Class rdf:about="Adult">
<owl:equivalentClass rdf:resource="&otherOnt;Grownup"/>

</owl:Class>

<owl:DatatypeProperty rdf:about="hasAge">
<owl:equivalentProperty rdf:resource="&otherOnt;age"/>

</owl:DatatypeProperty>

<owl:Class rdf:about="Adult">
<owl:equivalentClass rdf:resource="&otherOnt;Grownup"/>

</owl:Class>

:Mary owl:sameAs otherOnt:MaryBrown .
:John owl:sameAs otherOnt:JohnBrown .
:Adult owl:equivalentClass otherOnt:Grownup .
:hasChild owl:equivalentProperty otherOnt:child .
:hasAge owl:equivalentProperty otherOnt:age .

SameIndividual: John otherOnt:JohnBrown
SameIndividual: Mary otherOnt:MaryBrown
EquivalentClasses: Adult otherOnt:Grownup
EquivalentProperties: hasChild otherOnt:child
EquivalentProperties: hasAge otherOnt:age

<SameIndividuals>
<Individual IRI="John"/>
<Individual IRI="otherOnt:JohnBrown"/>

</SameIndividuals>

<SameIndividuals>
<Individual IRI="Mary"/>
<Individual IRI="otherOnt:MaryBrown"/>

</SameIndividuals>

<EquivalentClasses>
<Class IRI="Adult"/>
<Class IRI="otherOnt:Grownup"/>

OWL 2 Web Ontology LanguagePrimer W3C Working Draft 21 April 2009

Page 51 of 75 http://www.w3.org/TR/2009/WD-owl2-primer-20090421/

</EquivalentClasses>

<EquivalentObjectProperties>
<ObjectProperty IRI="hasChild"/>
<ObjectProperty IRI="otherOnt:child"/>

</EquivalentObjectProperties>

<EquivalentDataProperties>
<DataProperty IRI="hasAge"/>
<DataProperty IRI="otherOnt:age"/>

</EquivalentDataProperties>

8.3 Entity Declarations

To help with managing ontologies, OWL has the notion of declarations. The basic
idea is that each class, property, or individual is supposed to be declared in an
ontology, and then it can be used in that ontology and ontologies that import that
ontology.

In the Manchester syntax, declarations are implicit. Constructs that provide
information about a class, property, or individual implicitly declare that class,
property, or individual if needed. The other syntaxes have explicit declarations.

Declaration(NamedIndividual(:John))
Declaration(Class(:Person))
Declaration(ObjectProperty(:hasWife))
Declaration(DataProperty(:hasAge))

<owl:NamedIndividual rdf:about="John"/>
<owl:Class rdf:about="Person"/>
<owl:ObjectProperty rdf:about="hasWife"/>
<owl:DatatypeProperty rdf:about="hasAge"/>

:John rdf:type owl:NamedIndividual .
:Person rdf:type owl:Class .
:hasWife rdf:type owl:ObjectProperty .
:hasAge rdf:type owl:DatatypeProperty .

Individual: John
Class: Person

OWL 2 Web Ontology LanguagePrimer W3C Working Draft 21 April 2009

Page 52 of 75 http://www.w3.org/TR/2009/WD-owl2-primer-20090421/

ObjectProperty: hasWife
Dataproperty: hasAge

<Declaration>
<NamedIndividual IRI="John"/>

</Declaration>
<Declaration>

<Class IRI="Person"/>
</Declaration>
<Declaration>

<ObjectProperty IRI="hasWife"/>
</Declaration>
<Declaration>

<DataProperty IRI="hasAge"/>
</Declaration>

However, an IRI may denote different entity-types (e.g. both an individual and a
class) at the same time. This possibility, called “punning,” has been introduced to
allow for a certain amount of metamodeling; we give an example of this in Section
9. Still, OWL 2 does require some discipline in using and reusing names. To allow
a more readable syntax, and for other technical reasons, OWL 2 DL requires that a
name is not used for more than one property type (object, datatype or annotation
property) nor can an IRI denote both a class and a datatype. Moreover, “built-in”
names (such as those used by RDF and RDFS and various syntaxes of OWL)
cannot be freely used in OWL.

9 OWL 2 DL and OWL 2 Full

There are two ways of thinking about OWL 2. One way, called OWL 2 DL,
concentrates on OWL 2 as an ontology language – the constructs of OWL 2 form
the syntax needed to write ontologies and do not have a separate existence. The
other way, called OWL 2 Full, concentrates on OWL 2 as an extension of the
Resource Description Framework (RDF) [RDF] – here the constructs of OWL 2 are
groups of RDF triples and have the standard meaning of RDF triples to go along
with their meaning as construct of an ontology language.

The meaning of ontologies in OWL 2 DL is given by a direct model-theoretic
semantics [OWL 2 Direct Semantics], which provides a meaning for OWL 2 in a
[Description Logic] style. Meaning for OWL 2 Full is provided by the RDF-based
semantics [OWL 2 RDF-Based Semantics], which is an extension of the semantics
for RDFS [RDF Semantics].

When thinking about ontologies the differences between OWL 2 DL and OWL 2
Full are generally quite slight. Any OWL 2 DL ontology can be considered as a
collection of RDF triples (an RDF graph). The OWL 2 DL meaning of the ontology

OWL 2 Web Ontology LanguagePrimer W3C Working Draft 21 April 2009

Page 53 of 75 http://www.w3.org/TR/2009/WD-owl2-primer-20090421/

and the OWL 2 Full meaning of this RDF graph are very close. The two main
differences are that in OWL 2 DL annotations have no meaning and in OWL 2 Full
there are some extra inferences that arise from the RDF view of the universe.

Conceptually, we can think of the difference between OWL 2 DL and OWL 2 Full in
two ways:

• One can see OWL 2 DL as a syntactically restricted version of OWL 2 Full
where the restrictions are designed to make life easier for implementors.
In fact, since OWL 2 Full is undecidable, OWL 2 DL makes writing a
reasoner that, in principle, can return all yes and no answers (subject to
resource constraints) possible. As a consequence of its design, there are
several production quality OWL 2 DL reasoners that cover the entire
language. There are no such OWL 2 Full reasoners.

• One can see OWL 2 Full as the most straightforward extension of RDFS.
As such, OWL 2 Full follows the RDFS semantics and general syntactic
philosophy (i.e., everything is a triple and the language is fully reflective).

Of course, OWL 2 Full and OWL 2 DL have been designed together and thus have
influenced each other. For example, one design goal of OWL 2 was to bring OWL 2
DL syntactically closer to OWL 2 Full (that is, to allow more RDF Graphs/OWL 2
Full ontologies to be legal OWL 2 DL ontologies). This led to the incorporation of
so-called punning into OWL 2, e.g., using the same IRI as a name for both a class
and an individual. An example of such usage would be the following, which states
that John is a father, and that father is a social role.

ClassAssertion(:Father :John)
ClassAssertion(:SocialRole :Father)

<Father rdf:about="John"/>
<SocialRole rdf:about="Father"/>

:John rdf:type :Father .
:Father rdf:type :SocialRole .

Individual: John
Types: Father

Individual: Father
Types: SocialRole

OWL 2 Web Ontology LanguagePrimer W3C Working Draft 21 April 2009

Page 54 of 75 http://www.w3.org/TR/2009/WD-owl2-primer-20090421/

<ClassAssertion>
<Class URI="Father"/>
<NamedIndividual IRI="John"/>

</ClassAssertion>
<ClassAssertion>

<Class URI="SocialRole"/>
<NamedIndividual IRI="Father"/>

</ClassAssertion>

Note that in the first statement, Father is used as a class, while in the second it is
used as an individual. In this sense, SocialRole acts as a metaclass for the class
Father.

In OWL 1, a document containing these two statements would be an OWL 1 Full
document, but not an OWL 1 DL document. In OWL 2 DL, however, this is allowed.
It must be noted, though, that the OWL 2 DL semantics accommodates this by
understanding the class Father and the individual Father as two different views on
the same IRI, i.e. they are interpreted semantically as if they were distinct.

10 OWL 2 Profiles

In addition to OWL 2 DL and OWL 2 Full, OWL 2 specifies three profiles. OWL 2, in
general, is a very expressive language (both computationally and for users) and
thus can be difficult to implement well and to work with. These additional profiles
are designed to be approachable subsets of OWL 2 sufficient for a variety of
applications. As with OWL 2 DL, computational considerations are a major
requirement of these profiles (and they are all much easier to implement with
robust scalability given existing technology), but there are many subsets of OWL 2
that have good computational properties. The selected OWL 2 profiles were
identified as having substantial user communities already, although there were
several others not included and one should expect more to emerge. The [OWL 2
Profiles] document provides a clear template for specifying additional profiles.

In order to guarantee for scalable reasoning, the existing profiles share some
limitations regarding their expressiveness. In general, they disallow negation and
disjunction, as these constructs complicate reasoning and have shown to be only
rarely needed for modelling. For example, none of the profiles would allow to
specify that every person is male or female. Further specific modelling restrictions
of the profiles will be dealt with in the sections on the individual profiles.

We discuss each profile and its design rationale, and provide some guidance for
users in selecting which profile to work with. Please be aware that this discussion is
not comprehensive, nor can it be. Part of any decision has to be based on available
tooling and how that fits it with the rest of your system or workflow.

OWL 2 Web Ontology LanguagePrimer W3C Working Draft 21 April 2009

Page 55 of 75 http://www.w3.org/TR/2009/WD-owl2-primer-20090421/

By and large, different profiles can be distinguished syntactically with there being
inclusion relations between various profiles. For example, OWL 2 DL can be seen
as a syntactic fragment of OWL 2 Full and OWL 2 QL is a syntactic fragment of
OWL 2 DL (and thus of OWL 2 Full). Ideally, one can use a reasoner (or other tool)
that is conforming for a superprofile on the subprofile with no change in the results
derived. For profiles such as OWL 2 EL and OWL 2 QL in relation to OWL 2 DL this
principle does hold: Every conforming OWL 2 DL reasoner is an OWL 2 EL and
OWL 2 QL reasoner (but may differ in performance since the OWL 2 DL reasoner
is tuned for a more general set of cases).

10.1 OWL 2 EL

OWL 2 EL is a profile of OWL 2 very closely related to the description logic EL++
[EL++], and basic reasoning tasks for it can be performed in time that is polynomial
with respect to the size of the ontology. Working with OWL 2 EL is fairly similar to
working with OWL 2 DL: one can use class expressions on both sides of a
subClassStatement and even infer such relations. For many class expression
oriented ontologies, OWL 2 EL makes a good approximation target, that is, by only
a little simplification one can get an OWL 2 EL ontology and preserve much of the
meaning of the original ontology.

OWL 2 EL is very robust computationally and reasonably easy to implement. Not
only does it scale well for facts and axioms, but it scales well for complex
expressions.

OWL 2 EL is designed with large biohealth ontologies in mind, such as SNOMED-
CT, the NCI thesaurus, and Galen. Common characteristics of such ontologies
include complex structural descriptions (e.g., defining certain body parts in terms of
what parts they contain and are contained in or propagating diseases along part-
subpart relations), huge numbers of classes, the heavy use of classification to
manage the terminology, and the application of the resulting terminology to vast
amounts of data. Thus, OWL 2 EL has a comparatively expressive class
expression language and it has no restrictions on how they may be used in axioms.
It also has fairly expressive property expressions, including property chains but
excluding inverse.

Sensible use of OWL 2 EL is obviously not restricted to the biohealth domain: as
with the other profiles, OWL 2 EL is domain independent. However, OWL 2 EL
shines when your domain and your application require recognition of structurally
complex objects. Such domains include system configurations, product inventories,
and many scientific domains.

Besides negation and disjunction, OWL 2 EL also disallows universal quantification
on properties. Therefore propositions like “all children of a rich person are rich”
cannot be stated. Moreover, as all kinds of role inverses are not available, there is
no way of specifying that, say, parentOf and childOf are inverses of each other.

OWL 2 Web Ontology LanguagePrimer W3C Working Draft 21 April 2009

Page 56 of 75 http://www.w3.org/TR/2009/WD-owl2-primer-20090421/

The following is an example which uses some of the typical modelling features
available in OWL 2 EL.

SubClassOf(
:Father
ObjectIntersectionOf(:Man :Parent)

)

EquivalentClass(
:Parent
ObjectSomeValuesFrom(

:hasChild
:Person
)

)

EquivalentClasses(
:NarcisticPerson
ObjectHasSelf(:loves)
)

DisjointClasses(
:Mother
:Father
:YoungChild
)

SubObjectPropertyOf(
ObjectPropertyChain(:hasFather :hasBrother)
:hasUncle
)

NegativeObjectPropertyAssertion(
:hasDaughter
:Bill
:Susan
)

<owl:Class rdf:about="Father">
<rdfs:subClassOf>

<owl:Class>
<owl:intersectionOf rdf:parseType="Collection">

<owl:Class rdf:about="Man"/>
<owl:Class rdf:about="Parent"/>

</owl:intersectionOf>
</owl:Class>

</rdfs:subClassOf>
</owl:Class>

OWL 2 Web Ontology LanguagePrimer W3C Working Draft 21 April 2009

Page 57 of 75 http://www.w3.org/TR/2009/WD-owl2-primer-20090421/

<owl:Class rdf:about="Parent">
<owl:equivalentClass>

<owl:Restriction>
<owl:onProperty rdf:resource="hasChild"/>
<owl:someValuesFrom rdf:resource="Person"/>

</owl:Restriction>
</owl:equivalentClass>

</owl:Class>

<owl:Class rdf:about="NarcisticPerson">
<owl:equivalentClass>

<owl:Restriction>
<owl:onProperty rdf:resource="loves"/>
<owl:hasSelf rdf:datatype="&xsd;boolean">

true
</owl:hasSelf>

</owl:Restriction>
</owl:equivalentClass>

</owl:Class>

<owl:AllDisjointClasses>
<owl:members rdf:parseType="Collection">

<owl:Class rdf:about="Mother"/>
<owl:Class rdf:about="Father"/>
<owl:Class rdf:about="YoungChild"/>

</owl:members>
</owl:AllDisjointClasses>

<rdf:Description rdf:about="hasUncle">
<owl:propertyChainAxiom rdf:parseType="Collection">

<owl:ObjectProperty rdf:about="hasFather"/>
<owl:ObjectProperty rdf:about="hasBrother"/>

</owl:propertyChainAxiom>
</rdf:Description>

<owl:NegativePropertyAssertion>
<owl:sourceIndividual rdf:about="Bill">
<owl:assertionProperty rdf:about="hasDaughter">
<owl:targetIndividual rdf:about="Susan">

</owl:NegativePropertyAssertion>

:Father rdfs:subClassOf [
rdf:type owl:Class ;
owl:intersectionOf (:Man :Parent)

] .

:Parent owl:equivalentClass [
rdf:type owl:Restriction ;
owl:onProperty :hasChild ;

OWL 2 Web Ontology LanguagePrimer W3C Working Draft 21 April 2009

Page 58 of 75 http://www.w3.org/TR/2009/WD-owl2-primer-20090421/

owl:someValuesFrom :Person
] .

:NarcisticPerson owl:equivalentClass [
rdf:type owl:Restriction ;
owl:onProperty :loves ;
owl:hasSelf true

] .

[] rdf:type owl:AllDisjointClasses ;
owl:members (:Mother :Fatherf:YoungChild).

:hasUncle owl:propertyChain (:hasFather :hasBrother) .

[] rdf:type owl:NegativePropertyAssertion ;
owl:sourceIndividual :Bill ;
owl:assertionProperty :hasDaughter ;
owl:targetIndividual :Susan .

Class: Father
SubClassOf: Man and Parent

Class: Parent
EquivalentTo: hasChild some Person

Class: NarcisticPerson
EquivalentTo: loves Self

DisjointClasses: Mother Father YoungChild

ObjectProperty: hasUncle
SubPropertyChain: hasFather o hasBrother

Individual: Bill
Facts: not hasDaughter Susan

<SubClassOf>
<Class IRI="Father"/>
<ObjectIntersectionOf>

<Class IRI="Man"/>
<Class IRI="Parent"/>

</ObjectIntersectionOf>
</SubClassOf>

<EquivalentClasses>
<Class IRI="Parent"/>
<ObjectSomeValuesFrom>

OWL 2 Web Ontology LanguagePrimer W3C Working Draft 21 April 2009

Page 59 of 75 http://www.w3.org/TR/2009/WD-owl2-primer-20090421/

<ObjectProperty IRI="hasChild"/>
<Class IRI="Person"/>

</ObjectSomeValuesFrom>
</EquivalentClasses>

<EquivalentClasses>
<Class IRI="NarcisticPerson"/>
<ObjectHasSelf>

<ObjectProperty IRI="loves"/>
</ObjectHasSelf>

</EquivalentClasses>

<DisjointClasses>
<Class IRI="Father"/>
<Class IRI="Mother"/>
<Class IRI="YoungChild"/>

</DisjointClasses>

<SubObjectPropertyOf>
<PropertyChain>

<ObjectProperty IRI="hasFather"/>
<ObjectProperty IRI="hasBrother"/>

</PropertyChain>
<ObjectProperty IRI="hasUncle"/>

</SubObjectPropertyOf>

<NegativeObjectPropertyAssertion>
<ObjectProperty IRI="hasDaughter"/>
<NamedIndividual IRI="Bill"/>
<NamedIndividual IRI="Susan"/>

</NegativeObjectPropertyAssertion>

10.2 OWL 2 QL

OWL 2 QL is inspired by one of the variants of the description logic DL Lite [DL
Lite], which emerged from research on database integration. Implementationally, it
can be realized on top of standard relational database technology (e.g., SQL)
simply by expanding queries in the light of class axioms. This means it can be
tightly integrated with RDBMSs and benefit from their robust implementations and
multi-user features. Furthermore, it can be implemented without having to “touch
the data,” so really as a translational/preprocessing layer. Expressively, it can
represent key features of Entity-relationship and UML diagrams (at least those with
functional restrictions). Thus, it is suitable both for representing database schemas
and for integrating them via query rewriting. As a result, it can also be used directly
as a high level database schema language, though users may prefer a diagram
based syntax.

OWL 2 QL also captures many commonly used features in RDFS and small
extensions thereof, such as inverse properties and subproperty hierarchies. OWL 2

OWL 2 Web Ontology LanguagePrimer W3C Working Draft 21 April 2009

Page 60 of 75 http://www.w3.org/TR/2009/WD-owl2-primer-20090421/

QL restricts class axioms asymmetrically, that is, you can use constructs as the
subclass that you cannot use as the superclass.

Among other constructs, OWL 2 QL disallows existential quantification of roles to a
class expression, i.e. it can be stated that every person has a parent but not that
every person has a female parent. Moreover property chain axioms are not
supported.

The following is an example which uses some of the typical modelling features
available in OWL 2 QL. The first axiom states that every childless person is a
person for which there does not exist another person which has the first person as
parent.

SubClassOf(
:ChildlessPerson
ObjectIntersectionOf(

:Person
ObjectComplementOf(

ObjectSomeValuesFrom(
ObjectInverseOf(:hasParent)
:Person

)
)

)
)

DisjointClasses(
:Mother
:Father
:YoungChild

)

DisjointObjectProperties(
:hasSon
:hasDaughter

)

SubObjectPropertyOf(
:hasFather
:hasParent

)

<owl:Class rdf:about="ChildlessPerson">
<rdfs:subClassOf>

<owl:Class>
<owl:intersectionOf rdf:parseType="Collection">

<owl:Class rdf:about="Person"/>
<owl:Class>

OWL 2 Web Ontology LanguagePrimer W3C Working Draft 21 April 2009

Page 61 of 75 http://www.w3.org/TR/2009/WD-owl2-primer-20090421/

<owl:complementOf>
<owl:Restriction>

<owl:onProperty>
<owl:ObjectProperty>

<owl:inverseOf rdf:resource="hasParent"/>
</owl:ObjectProperty>

</owl:onProperty>
<owl:someValuesFrom rdf:resource="Person"/>

</owl:Restriction>
</owl:complementOf>

</owl:Class>
</owl:intersectionOf>

</owl:Class>
</rdfs:subClassOf>

</owl:Class>

<owl:AllDisjointClasses>
<owl:members rdf:parseType="Collection">

<owl:Class rdf:about="Mother"/>
<owl:Class rdf:about="Father"/>
<owl:Class rdf:about="YoungChild"/>

</owl:members>
</owl:AllDisjointClasses>

<owl:ObjectProperty rdf:about="hasSon">
<owl:propertyDisjointWith rdf:resource="hasDaughter"/>

</owl:ObjectProperty>

<owl:ObjectProperty rdf:about="hasFather">
<rdfs:subPropertyOf rdf:resource="hasParent"/>

</owl:ObjectProperty>

:ChildlessPerson owl:subClassOf [
rdf:type owl:Class ;
owl:intersectionOf (:Person

[owl:complementOf [
rdf:type owl:Restriction ;
owl:onProperty [owl:inverseOf :hasParent] ;
owl:someValuesFrom :Person

]
]

)
] .

[] rdf:type owl:AllDisjointClasses ;
owl:members (:Mother :Father :YoungChild) .

:hasSon owl:propertyDisjointWith :hasDaughter.

OWL 2 Web Ontology LanguagePrimer W3C Working Draft 21 April 2009

Page 62 of 75 http://www.w3.org/TR/2009/WD-owl2-primer-20090421/

:hasFather rdfs:subPropertyOf :hasParent.

Class: ChildlessPerson
SubClassOf: Person and not inverse hasParent some Person

DisjointClasses: Mother Father YoungChild

DisjointProperties: hasSon hasDaughter

ObjectProperty: hasFather
SubPropertyOf: hasParent

<SubClassOf>
<Class IRI="ChildlessPerson"/>
<ObjectIntersectionOf>

<Class IRI="Person"/>
<ObjectComplementOf>

<ObjectSomeValuesFrom>
<InverseObjectProperty>

<ObjectPropertyIRI="hasParent"/>
</InverseObjectProperty>
<Class IRI="Person"/>

</ObjectSomeValuesFrom>
</ObjectComplementOf>

</ObjectIntersectionOf>
</SubClassOf>

<DisjointClasses>
<Class IRI="Father"/>
<Class IRI="Mother"/>
<Class IRI="YoungChild"/>

</DisjointClasses>

<DisjointObjectProperties>
<ObjectProperty IRI="hasSon"/>
<ObjectProperty IRI="hasDaughter"/>

</DisjointObjectProperties>

<SubObjectPropertyOf>
<ObjectProperty IRI="hasFather"/>
<ObjectProperty IRI="hasParent"/>

</SubObjectPropertyOf>

OWL 2 Web Ontology LanguagePrimer W3C Working Draft 21 April 2009

Page 63 of 75 http://www.w3.org/TR/2009/WD-owl2-primer-20090421/

10.3 OWL 2 RL

The OWL 2 RL profile is aimed at applications that require scalable reasoning
without sacrificing too much expressive power. It is designed to accommodate both
OWL 2 applications that can trade the full expressivity of the language for
efficiency, and RDF(S) applications that need some added expressivity from OWL
2. This is achieved by defining a syntactic subset of OWL 2 which is amenable to
implementation using rule-based technologies, and presenting a partial
axiomatization of the OWL 2 RDF-Based Semantics in the form of first-order
implications that can be used as the basis for such an implementation. The design
of OWL 2 RL has been inspired by Description Logic Programs [DLP] and pD*
[pD*].

Suitable rule-based implementations of OWL 2 RL will have desirable
computational properties; for example, they can return all and only the correct
answers to certain kinds of queries. Such an implementation can also be used with
arbitrary RDF graphs. (In this case, however, these properties no longer hold – in
particular, it is no longer possible to guarantee that all correct answers can be
returned.)

As a consequence, OWL 2 RL is ideal for enriching RDF data, especially when the
data must be massaged by additional rules. From a modeling perspective,
however, this pushes us farther away from working with class expressions: OWL 2
RL ensures we cannot (easily) talk about unknown individuals in our superclass
expressions (this restriction follows from the nature of rules). Compared with OWL
2 QL, OWL 2 RL works better when you have already massaged your data into
RDF and are working with it as RDF.

One downside of OWL 2 RL is that it cannot express that the existence of an
individual enforces the existence of another individual: for instance, the statement
“every person has a parent” is not expressible in OWL RL.

OWL 2 RL restricts class axioms asymmetrically, that is, you can use constructs as
the subclass that you cannot use as the superclass. The following is an example
which uses some of the typical modelling features available in OWL 2 RL. The first
– somewhat contrived – axiom states that for each of Mary, Bill, and Meg who is
female, the following holds: she is a parent with at most one child, and all her
children (if she has any) are female.

SubClassOf(
ObjectIntersectionOf(

ObjectOneOf(:Mary :Bill :Meg)
:Female

)
ObjectIntersectionOf(

:Parent
ObjectMaxCardinality(1 :hasChild)

OWL 2 Web Ontology LanguagePrimer W3C Working Draft 21 April 2009

Page 64 of 75 http://www.w3.org/TR/2009/WD-owl2-primer-20090421/

ObjectAllValuesFrom(:hasChild :Female)
)

)

DisjointClasses(
:Mother
:Father
:YoungChild

)

SubObjectPropertyOf(
ObjectPropertyChain(:hasFather :hasBrother)
:hasUncle

)

<owl:Class>
<owl:intersectionOf rdf:parseType="Collection">

<owl:Class>
<owl:oneOf rdf:parseType="Collection">

<rdf:Description rdf:about="Mary"/>
<rdf:Description rdf:about="Bill"/>
<rdf:Description rdf:about="Meg"/>

</owl:oneOf>
</owl:Class>
<owl:Class rdf:about="Female"/>

</owl:intersectionOf>
<rdfs:subClassOf>

<owl:Class>
<owl:intersectionOf rdf:parseType="Collection">

<owl:Class rdf:about="Parent"/>
<owl:Restriction>

<owl:maxCardinality rdf:datatype="&xsd;nonNegativeInteger">
2

</owl:maxCardinality>
<owl:onProperty rdf:resource="hasChild"/>

</owl:Restriction>
<owl:Restriction>

<owl:onProperty rdf:resource="hasChild"/>
<owl:allValuesFrom rdf:resource="Female"/>

</owl:Restriction>
</owl:intersectionOf>

</owl:Class>
</rdfs:subClassOf>

</owl:Class>

<owl:AllDisjointClasses>
<owl:members rdf:parseType="Collection">

<owl:Class rdf:about="Mother"/>
<owl:Class rdf:about="Father"/>

OWL 2 Web Ontology LanguagePrimer W3C Working Draft 21 April 2009

Page 65 of 75 http://www.w3.org/TR/2009/WD-owl2-primer-20090421/

<owl:Class rdf:about="YoungChild"/>
</owl:members>

</owl:AllDisjointClasses>

<rdf:Description rdf:about="hasUncle">
<owl:propertyChainAxiom rdf:parseType="Collection">

<owl:ObjectProperty rdf:about="hasFather"/>
<owl:ObjectProperty rdf:about="hasBrother"/>

</owl:propertyChainAxiom>
</rdf:Description>

[] rdf:type owl:Class ;
owl:intersectionOf ([rdf:type owl:Class ;

owl:oneOf (:Mary :Bill :Meg)]
:Female

) ;
rdfs:subClassOf [

rdf:type owl:Class ;
owl:intersectionOf (:Parent

[rdf:type owl:Restriction ;
owl:maxCardinality "1"^^xsd:nonNegativeInteger ;
owl:onProperty :hasChild]

[rdf:type owl:Restriction ;
owl:onProperty :hasChild ;
owl:allValuesFrom :Female]

)
] .

[] rdf:type owl:AllDisjointClasses ;
owl:members (:Mother :Father :YoungChild) .

:hasUncle owl:propertyChain (:hasFather :hasBrother) .

Class: X
SubClassOf: Parent and hasChild max 1 and hasChild only Female

Class: X
EquivalentTo: {Mary Bill Meg} and Female

DisjointClasses: Mother Father YoungChild

ObjectProperty: hasUncle
SubPropertyChain: hasFather o hasBrother

<SubClassOf>
<ObjectIntersectionOf>

OWL 2 Web Ontology LanguagePrimer W3C Working Draft 21 April 2009

Page 66 of 75 http://www.w3.org/TR/2009/WD-owl2-primer-20090421/

<ObjectOneOf>
<NamedIndividual IRI="Mary"/>
<NamedIndividual IRI="Bill"/>
<NamedIndividual IRI="Meg"/>

</ObjectOneOf>
<Class IRI="Female"/>

</ObjectIntersectionOf>
<ObjectIntersectionOf>

<Class IRI="Parent"/>
<ObjectMaxCardinality cardinality="1">

<ObjectProperty IRI="hasChild"/>
</ObjectMaxCardinality>
<ObjectAllValuesFrom>

<ObjectProperty IRI="hasChild"/>
<Class IRI="Female"/>

</ObjectAllValuesFrom>
</ObjectIntersectionOf>

</SubClassOf>

<DisjointClasses>
<Class IRI="Father"/>
<Class IRI="Mother"/>
<Class IRI="YoungChild"/>

</DisjointClasses>

<SubObjectPropertyOf>
<PropertyChain>

<ObjectProperty IRI="hasFather"/>
<ObjectProperty IRI="hasBrother"/>

</PropertyChain>
<ObjectProperty IRI="hasUncle"/>

</SubObjectPropertyOf>

11 OWL Tools

Editor's Note: Writing this part has been deferred to incorporate reference
implementations. It will also contain a description of tool categories (reasoners,
editors, etc.)

12 What To Read Next

This short primer can only scratch the surface of OWL. There are many longer and
more involved tutorials on OWL and how to use OWL tools that can be found by
searching on the Web. Reading one of these documents and using a tool to build
an OWL ontology is probably the best way to learn more about OWL.

OWL 2 Web Ontology LanguagePrimer W3C Working Draft 21 April 2009

Page 67 of 75 http://www.w3.org/TR/2009/WD-owl2-primer-20090421/

This short primer is also not a normative definition of OWL. The normative
definition of the OWL syntax as well as informative descriptions of the meaning of
each OWL construct can be found in the OWL 2 Structural Specification and
Functional Syntax document [OWL 2 Specification]. For those interested in more
formal documents, the formal meaning of OWL 2 can be found in the OWL 2
Semantics document [OWL 2 Semantics], and the mapping between OWL syntax
and RDF triples can be found in the OWL 2 Mapping to RDF Graphs document
[OWL 2 RDF Mapping].

13 Appendices

13.1 How OWL 2 relates to other technologies

Editor's Note: This section is still to be rewritten

OWL is a language for expressing ontologies. The term ontology has a complex
history both in and out of computer science, but we use it to mean a certain kind of
computational artifact -- i.e., something akin to a program, an XML schema, or a
web page -- generally presented as a document. An ontology is a set of descriptive
statements about some part of the world (usually referred to as the domain or the
subject matter of the ontology).

The descriptive nature of OWL is worth emphasizing: Unlike schema languages or
object-oriented programming languages, OWL is not particularly prescriptive. For
example, a primary task of an XML Schema is prescribing what elements can occur
as children of other elements. Typically, a schema is used to validate that a
document conforms to the restrictions expressed in the schema. Similarly, an XML
Schema is, to a first approximation, about XML documents. That is, the basic XML
Schema perspective is that there are elements, attributes, namespaces, and other
features of XML and a Schema describes the permitted ways to use such features
in a document or data format. In contrast, the basic OWL perspective is that there
are things (in a broad sense of the term) that are related to other things and may be
grouped into sets of things according to their commonality. Whether these things
are physical objects or data items depends on the intent of the modeler. Of course,
it is perfectly possible to use XML Schema to describe the “Tree Mark Up” (TML)
language and use TML to record information about trees. But there is a level of
indirection in this use of XML Schema. The XML Schema for TML is (most directly)
a model of a set of XML documents (which themselves are intended to represent
trees). An OWL ontology about trees is most directly a model of a set of things (in
this case trees), their relations, and their categorizations.

One interesting feature of XML's separation of well-formedness and validity is to
weaken the general prescriptiveness of schema languages. Unlike SGML, XML
does not require that an XML document is valid against at least one schema.

OWL is much less suitable for validation. For example, suppose we define the
class Citizen to be those things that have a parent which is also a Citizen

OWL 2 Web Ontology LanguagePrimer W3C Working Draft 21 April 2009

Page 68 of 75 http://www.w3.org/TR/2009/WD-owl2-primer-20090421/

(assuming we have some bootstrap condition for founding citizens; we ignore that
part of the definition for the moment). The definition might look something like:

Class: Citizen EquivalentTo: hasParent some Citizen

Read prescriptively, we would expect that the following assertion to be invalid
(incorrect, inconsistent) in light of this definition:

Individual: Sheevah Types: Citizen

Since this says that Sheevah is a Citizen but doesn't tell us anything about her
parents. That is, the definition does not force us to include information about
Sheevah's parents in order to claim that she is a Citizen.

Individual: Sheevah Types: Citizen
Facts: hasParent Suma

While we have not said anything about Suma's citizenship, we have not ruled out
that she is a Citizen. Everything we have said about Sheevah is consistent with
her being a Citizen, thus, from an OWL perspective, there is no problem. In a
prescriptive system, missing information generally is a problem or a relatively rare
occurrence. For example, in RDBMs system the most common way of dealing with
missing information is to have special values, i.e., null values. That is, we must
explictly say what we do not know. In OWL, everything not explictly said and not
explicitly ruled out is considered possible.

Editor's Note: References in the following are missing

OWL 2 is, in many respects, similar to many other technologies: in particular, OWL
uses a class-object paradigm which aligns it (to some degree) with object oriented
programming and entity-relationship diagrams. Furthermore, it is has an XML
based concrete syntax as well as an RDF one, making it easy for people familiar
with those technologies to project features from them onto OWL. In general, people
familiar with other technologies are sometimes misled by the similarities and thus
very surprised by the differences. In the following, we provide discussions of OWL
from the lens of related or contrasting technologies, including RDF, XML, object
oriented programming, databases, and the prior version of OWL, OWL 1. If you are
familiar with any of these technologies, we recommend reading the relevant section
of the appendix before proceeding with the rest of the primer.

OWL 2 Web Ontology LanguagePrimer W3C Working Draft 21 April 2009

Page 69 of 75 http://www.w3.org/TR/2009/WD-owl2-primer-20090421/

Editor's Note: The Working Group is committed to making these technology-
specific sections be accessible by users of those technology. We particularly
solicit comments on whether this is the case and how to make them moreso.

Editor's Note: There is a proposal for having technology and application tips,
notes, and tricks scattered throughout the document, but with optional display.
Thus, as with the syntax, different users can configure the document to their
tastes and needs.

13.1.1 RDF(S)

Of the technologies discussed in this section, the Resource Description Framework
(RDF) and the RDF Schema (RDFS) Language (collectively referred to as RDF(S))
is the closest to OWL. RDF(S) has roots in logic based knowledge representation;
in many ways, RDF(S) can be seen as a subset of OWL; and, perhaps most
prominently, the primary exchange syntax for OWL has been RDF/XML. However,
there are differences of style, emphasis, and common practice that can make
relying on RDF(S) intuitions misleading when working with OWL. For example,
while OWL statements and expressions can be encoded as RDF facts (triples),
viewing most OWL statements and expressions as collections of facts is not
typically a fruitful way of writing or understanding them. Similarly, it is fairly common
and effective to work with RDF as a graph data structure or database where the
primary focus is on the explicit statements in the graph.

Even when we consider parts of RDFS which support implicit knowledge, such as
determining subclass relationships, the relation between the explicit and implicit
statements is very direct. Thus, it is easy to conceptualize inference in terms of
graph structure manipulation. In contrast, determining implicit knowledge in OWL,
including determining subclass relationships and typing and checking consistency
of an ontology, requires techniques that are much more akin to theorem proving.

13.1.2 SPARQL

13.1.3 XML

OWL and the XML family of technologies share some common parts: OWL can be
expressed in XML languages (such as RDF/XML or the XML syntax for OWL and
thus be manipulated by XML tools. OWL reuses datatypes and datatype derivation
facets from XML Schema (and can use certain forms of XML Schema type
definitions). Finally, OWL and XML can both be used for conceptual modeling as
well as data definition, though they ways they go about it are fairly distinct and
OWL is oriented toward more abstract, higher level conceptual modeling than is
XML.

OWL is designed to support the discovery of relationships between classes through

OWL 2 Web Ontology LanguagePrimer W3C Working Draft 21 April 2009

Page 70 of 75 http://www.w3.org/TR/2009/WD-owl2-primer-20090421/

automated reasoning. OWL also builds in far fewer presumptions about the entities
it is describing both generally and in terms of their physical realization in
computational systems.

Both OWL and XML Schema support strong abstraction facilities. However XML
Schema, is much more concerned with the data organization issues relating to its
core mission of validating XML documents.

13.1.4 Databases

Databases (either relational or object-oriented) also store and organize information.
However, databases are oriented to environments where all information that an
application needs is available, where considerations of data integrity in situations of
simultaneous access and update are important, or where very large amounts of
data needs to be worked with. OWL is more oriented towards flexible and
expressive description of data (or information), and only considers information to be
complete if the completeness can be determined from other information.

Ontologies in OWL are much more powerful and flexible than database schemas.
Database schemas generally only shape the kinds of information that is associated
with objects (or tuples) that belong to a class (or table). Classes in OWL ontologies
can do this, but also can provide recognition conditions so that explicit typing is not
required in OWL. Of course this flexibility means that determining typing in OWL
can require complex inferences.

A final major difference between databases and OWL is that the information stored
in a database is derived from the database schema and integrity constraints – if the
schema doesn't sanction the storage of certain kinds of information, then that
information cannot be stored, and, similarly, if the information violates an integrity
constraint it also cannot be stored. OWL, on the other hand, allows arbitrary
information to be associated with just about any object – if there is nothing in the
ontology forbidding the associated then it is allowable. OWL is thus much more
flexible in its information storage.

13.1.5 Object-oriented Programming

Object-oriented programming (OOP) also has object-centered modeling
characteristics, and thus has much in common with OWL. However, OOP generally
is performed in complete-information contexts, and where the information that can
possibly be known about an object is circumscribed by the information in the type
of the object. As with databases, the differing stances on completeness and object
information is a major difference between OWL and OOP. Similarly OOP classes
are much less expressive than OWL classes.

OWL 2 Web Ontology LanguagePrimer W3C Working Draft 21 April 2009

Page 71 of 75 http://www.w3.org/TR/2009/WD-owl2-primer-20090421/

Furthermore, OWL is a strictly declarative and logical language. OWL therefore has
none of the operational aspects of OOP, like methods, and similarly reasoning in
OWL is strictly logical, with nothing comparing to inheritance, particularly
inheritance with exceptions or overriding.

OWL is used in a number of different ways and for a number of different domains --
far too many to enumerate here. But it's worth examining a few examples to get a
feel for the sorts of problem OWL has worked well for.

Using all of the expressive power of OWL, effectively, requires a fair bit of skill.

13.2 The Complete Sample Ontology

Here we include the complete sample OWL ontology. The ontology here is ordered
in a commonly-used ordering, with ontology information first, followed by
information about properties, then classes, then individuals.

Editor's Note: The complete sample OWL ontology will go here

14 Acknowledgments

The starting point for the development of OWL 2 was the OWL1.1 member
submission, itself a result of user and developer feedback, and in particular of
information gathered during the OWL Experiences and Directions (OWLED)
Workshop series. The working group also considered postponed issues from the
WebOnt Working Group.

This document has been produced by the OWL Working Group (see below), and its
contents reflect extensive discussions within the Working Group as a whole.

Editor's Note: Remainder of this section needs to be redone

Editor's Note: There'll be a list of everyone whose comments resulted in a
change to a draft of the text.

• Jie Bao
• Michel Dumontier
• Henson Graves
• Rinke Hoekstra
• Doug Lenat
• Alan Rector
• Deborah McGuinness
• Uli Sattler

OWL 2 Web Ontology LanguagePrimer W3C Working Draft 21 April 2009

Page 72 of 75 http://www.w3.org/TR/2009/WD-owl2-primer-20090421/

http://www.w3.org/Submission/2006/10/
http://www.w3.org/Submission/2006/10/
http://www.webont.org/owled/
http://www.webont.org/owled/
http://www.w3.org/2001/sw/WebOnt/webont-issues.html
http://www.w3.org/2004/OWL/

• Michael Schneider
• Ivan Herman

The regular attendees at meetings of the OWL Working Group at the time of
publication of this document were: Jie Bao (RPI), Diego Calvanese (Free University
of Bozen-Bolzano), Bernardo Cuenca Grau (Oxford University), Martin Dzbor
(Open University), Achille Fokoue (IBM Corporation), Christine Golbreich
(Université de Versailles St-Quentin and LIRMM), Sandro Hawke (W3C/MIT), Ivan
Herman (W3C/ERCIM), Rinke Hoekstra (University of Amsterdam), Ian Horrocks
(Oxford University), Elisa Kendall (Sandpiper Software), Markus Krötzsch (FZI),
Carsten Lutz (Universität Bremen), Deborah L. McGuinness (RPI), Boris Motik
(Oxford University), Jeff Pan (University of Aberdeen), Bijan Parsia (University of
Manchester), Peter F. Patel-Schneider (Bell Labs Research, Alcatel-Lucent), Alan
Ruttenberg (Science Commons), Uli Sattler (University of Manchester), Michael
Schneider (FZI), Mike Smith (Clark & Parsia), Evan Wallace (NIST), and Zhe Wu
(Oracle Corporation). We would also like to thank past members of the working
group: Jeremy Carroll, Jim Hendler, Vipul Kashyap.

15 References

[Description Logics]
The Description Logic Handbook: Theory, Implementation, and Applications,
second edition. Franz Baader, Diego Calvanese, Deborah McGuinness,
Daniele Nardi, and Peter Patel-Schneider, eds. Cambridge University Press,
2007

[DLP]
Description Logic Programs: Combining Logic Programs with Description
Logic. Benjamin N. Grosof, Ian Horrocks, Raphael Volz, and Stefan Decker. in
Proc. of the 12th Int. World Wide Web Conference (WWW 2003), Budapest,
Hungary, 2003. pp.: 48–57

[DL-Lite]
Tractable Reasoning and Efficient Query Answering in Description Logics:
The DL-Lite Family. Diego Calvanese, Giuseppe de Giacomo, Domenico
Lembo, Maurizio Lenzerini, Riccardo Rosati. J. of Automated Reasoning
39(3):385–429, 2007

[EL++]
Pushing the EL Envelope. Franz Baader, Sebastian Brandt, and Carsten Lutz.
In Proc. of the 19th Joint Int. Conf. on Artificial Intelligence (IJCAI 2005), 2005

[OWL 2 Conformance]
OWL 2 Web Ontology Language: Conformance Michael Smith, Ian Horrocks,
Markus Krötzsch, eds. W3C Working Draft, 21 April 2009, http://www.w3.org/
TR/2009/WD-owl2-test-20090421/. Latest version available at
http://www.w3.org/TR/owl2-test/.

[OWL 2 Manchester Syntax]
OWL 2 Web Ontology Language: Manchester Syntax Matthew Horridge, Peter
F. Patel-Schneider. W3C Working Draft, 21 April 2009, http://www.w3.org/TR/
2009/WD-owl2-manchester-syntax-20090421/. Latest version available at
http://www.w3.org/TR/owl2-manchester-syntax/.

OWL 2 Web Ontology LanguagePrimer W3C Working Draft 21 April 2009

Page 73 of 75 http://www.w3.org/TR/2009/WD-owl2-primer-20090421/

http://www.cambridge.org/uk/catalogue/catalogue.asp?isbn=9780521876254
http://www.cambridge.org/uk/catalogue/catalogue.asp?isbn=9780521876254
http://www2003.org/cdrom/papers/refereed/p117/p117-grosof.html
http://www2003.org/cdrom/papers/refereed/p117/p117-grosof.html
http://www.springerlink.com/content/n17338715966v81h/
http://www.springerlink.com/content/n17338715966v81h/
http://lat.inf.tu-dresden.de/~clu/papers/archive/ijcai05.pdf
http://www.w3.org/TR/2009/WD-owl2-test-20090421/
http://www.w3.org/TR/2009/WD-owl2-test-20090421/
http://www.w3.org/TR/2009/WD-owl2-test-20090421/
http://www.w3.org/TR/owl2-test/
http://www.w3.org/TR/2009/WD-owl2-manchester-syntax-20090421/
http://www.w3.org/TR/2009/WD-owl2-manchester-syntax-20090421/
http://www.w3.org/TR/2009/WD-owl2-manchester-syntax-20090421/
http://www.w3.org/TR/owl2-manchester-syntax/

[OWL 2 New Features and Rationale]
OWL 2 Web Ontology Language: New Features and Rationale Christine
Golbreich, Evan K. Wallace. W3C Working Draft, 21 April 2009,
http://www.w3.org/TR/2009/WD-owl2-new-features-20090421/. Latest version
available at http://www.w3.org/TR/owl2-new-features/.

[OWL 2 Profiles]
OWL 2 Web Ontology Language: Profiles Boris Motik, Bernardo Cuenca
Grau, Ian Horrocks, Zhe Wu, Achille Fokoue, Carsten Lutz, eds. W3C
Working Draft, 21 April 2009, http://www.w3.org/TR/2009/WD-
owl2-profiles-20090421/. Latest version available at http://www.w3.org/TR/
owl2-profiles/.

[OWL 2 RDF-Based Semantics]
OWL 2 Web Ontology Language: RDF-Based Semantics Michael Schneider,
editor. W3C Working Draft, 21 April 2009, http://www.w3.org/TR/2009/WD-
owl2-rdf-based-semantics-20090421/. Latest version available at
http://www.w3.org/TR/owl2-rdf-based-semantics/.

[OWL 2 RDF Mapping]
OWL 2 Web Ontology Language: Mapping to RDF Graphs Peter F. Patel-
Schneider, Boris Motik, eds. W3C Working Draft, 21 April 2009,
http://www.w3.org/TR/2009/WD-owl2-mapping-to-rdf-20090421/. Latest
version available at http://www.w3.org/TR/owl2-mapping-to-rdf/.

[OWL 2 Semantics]
OWL 2 Web Ontology Language: Direct Semantics Boris Motik, Peter F.
Patel-Schneider, Bernardo Cuenca Grau, eds. W3C Working Draft, 21 April
2009, http://www.w3.org/TR/2009/WD-owl2-semantics-20090421/. Latest
version available at http://www.w3.org/TR/owl2-semantics/.

[OWL 2 Specification]
OWL 2 Web Ontology Language: Structural Specification and Functional-Style
Syntax Boris Motik, Peter F. Patel-Schneider, Bijan Parsia, eds. W3C Working
Draft, 21 April 2009, http://www.w3.org/TR/2009/WD-owl2-syntax-20090421/.
Latest version available at http://www.w3.org/TR/owl2-syntax/.

[OWL 2 XML Syntax]
OWL 2 Web Ontology Language: XML Serialization Boris Motik, Bijan Parsia,
Peter Patel-Schneider, eds. W3C Working Draft, 21 April 2009,
http://www.w3.org/TR/2009/WD-owl2-xml-serialization-20090421/. Latest
version available at http://www.w3.org/TR/owl2-xml-serialization/.

[pD*]
Completeness, decidability and complexity of entailment for RDF Schema and
a semantic extension involving the OWL vocabulary. Herman J. ter Horst. J. of
Web Semantics 3(2–3):79–115, 2005

[RDF]
Resource Description Framework (RDF): Concepts and Abstract Syntax.
Graham Klyne, and Jeremy J. Carroll, eds., W3C Recommendation 10
February 2004

[RDF Semantics]
RDF Semantics. Patrick Hayes, Editor, W3C Recommendation, 10 February
2004

[RDF Turtle Syntax]
Turtle - Terse RDF Triple Language. David Beckett and Tim Berners-Lee, 14
January 2008

OWL 2 Web Ontology LanguagePrimer W3C Working Draft 21 April 2009

Page 74 of 75 http://www.w3.org/TR/2009/WD-owl2-primer-20090421/

http://www.w3.org/TR/2009/WD-owl2-new-features-20090421/
http://www.w3.org/TR/2009/WD-owl2-new-features-20090421/
http://www.w3.org/TR/owl2-new-features/
http://www.w3.org/TR/2009/WD-owl2-profiles-20090421/
http://www.w3.org/TR/2009/WD-owl2-profiles-20090421/
http://www.w3.org/TR/2009/WD-owl2-profiles-20090421/
http://www.w3.org/TR/owl2-profiles/
http://www.w3.org/TR/owl2-profiles/
http://www.w3.org/TR/2009/WD-owl2-rdf-based-semantics-20090421/
http://www.w3.org/TR/2009/WD-owl2-rdf-based-semantics-20090421/
http://www.w3.org/TR/2009/WD-owl2-rdf-based-semantics-20090421/
http://www.w3.org/TR/owl2-rdf-based-semantics/
http://www.w3.org/TR/2009/WD-owl2-mapping-to-rdf-20090421/
http://www.w3.org/TR/2009/WD-owl2-mapping-to-rdf-20090421/
http://www.w3.org/TR/owl2-mapping-to-rdf/
http://www.w3.org/TR/2009/WD-owl2-semantics-20090421/
http://www.w3.org/TR/2009/WD-owl2-semantics-20090421/
http://www.w3.org/TR/owl2-semantics/
http://www.w3.org/TR/2009/WD-owl2-syntax-20090421/
http://www.w3.org/TR/2009/WD-owl2-syntax-20090421/
http://www.w3.org/TR/2009/WD-owl2-syntax-20090421/
http://www.w3.org/TR/owl2-syntax/
http://www.w3.org/TR/2009/WD-owl2-xml-serialization-20090421/
http://www.w3.org/TR/2009/WD-owl2-xml-serialization-20090421/
http://www.w3.org/TR/owl2-xml-serialization/
http://linkinghub.elsevier.com/retrieve/pii/S1570826805000144
http://linkinghub.elsevier.com/retrieve/pii/S1570826805000144
http://www.w3.org/TR/rdf-concepts/
http://www.w3.org/TR/rdf-mt/
http://www.w3.org/TeamSubmission/2008/SUBM-turtle-20080114/

[RDF/XML Syntax]
RDF/XML Syntax Specification (Revisited). Dave Beckett, ed., W3C
Recommendation, 10 February 2004

[RFC-3987]
RFC 3987 – Internationalized Resource Identifiers (IRIs). M. Duerst and M.
Suignard. IETF, January 2005, http://www.ietf.org/rfc/rfc3987.txt.

[SPARQL]
SPARQL Query Language for RDF. Eric Prud'hommeaux and Andy
Seaborne, eds., W3C Recommendation 15 January 2008

[XML Schema Datatypes]
W3C XML Schema Definition Language (XSD) 1.1 Part 2: Datatypes. D.
Peterson, S. Gao, A. Malhotra, C. M. Sperberg-McQueen, and H. S.
Thompson, eds. W3C Working Draft 20 June 2008

OWL 2 Web Ontology LanguagePrimer W3C Working Draft 21 April 2009

Page 75 of 75 http://www.w3.org/TR/2009/WD-owl2-primer-20090421/

http://www.w3.org/TR/2004/REC-rdf-syntax-grammar-20040210/
http://www.ietf.org/rfc/rfc3987.txt
http://www.ietf.org/rfc/rfc3987.txt
http://www.w3.org/TR/rdf-sparql-query/
http://www.w3.org/TR/xmlschema11-2/

	OWL 2 Web Ontology LanguagePrimer
	W3C Working Draft 21 April 2009
	Abstract
	Status of this Document
	May Be Superseded
	Summary of Changes
	Please Comment By 12 May 2009
	No Endorsement
	Patents

	Table of Contents
	1 Introduction
	1.1 Guide to this Document
	1.2 OWL Syntaxes

	2 What is OWL 2?
	3 Modelling Knowledge: Basic Notions
	4 Classes, Properties, and Individuals – And Basic Modelling With Them
	4.1 Classes and Instances
	4.2 Class Hierarchies
	4.3 Class Disjointness
	4.4 Object Properties
	4.5 Property Hierarchies
	4.6 Domain and Range Restrictions
	4.7 Equality and Inequality of Individuals
	4.8 Datatypes

	5 Advanced Class Relationships
	5.1 Complex Classes
	5.2 Property Restrictions
	5.3 Property Cardinality Restrictions
	5.4 Enumeration of Individuals

	6 Advanced Use of Properties
	6.1 Property Characteristics
	6.2 Property Chains
	6.3 Keys

	7 Advanced Use of Datatypes
	8 Document Information and Annotations
	8.1 Annotating Axioms and Entities
	8.2 Ontology Management
	8.3 Entity Declarations

	9 OWL 2 DL and OWL 2 Full
	10 OWL 2 Profiles
	10.1 OWL 2 EL
	10.2 OWL 2 QL
	10.3 OWL 2 RL

	11 OWL Tools
	12 What To Read Next
	13 Appendices
	13.1 How OWL 2 relates to other technologies
	13.1.1 RDF(S)
	13.1.2 SPARQL
	13.1.3 XML
	13.1.4 Databases
	13.1.5 Object-oriented Programming

	13.2 The Complete Sample Ontology

	14 Acknowledgments
	15 References

