
Mathematical Markup Language (MathML) Version 3.0

W3C Working Draft 17 November 2008
This version: http://www.w3.org/TR/2008/WD-MathML3-20081117/
Latest MathML 3 version: http://www.w3.org/TR/MathML3/
Latest MathML Recommendation: http://www.w3.org/TR/MathML/
Previous version:

http://www.w3.org/TR/2008/WD-MathML3-20080409/
Editors: David Carlisle(NAG)

Patrick Ion(Mathematical Reviews, American Mathematical Society)
Robert Miner(Design Science, Inc.)

Principal Authors: Ron Ausbrooks, Bert Bos, Olga Caprotti, David Carlisle, Giorgi Chavchanidze, Ananth Coorg,
St\’ephane Dalmas, Stan Devitt, Sam Dooley, Margaret Hinchcliffe, Patrick Ion, Michael Kohlhase,
Azzeddine Lazrek, Dennis Leas, Paul Libbrecht, Manolis Mavrikis, Bruce Miller, Robert Miner, Mur-
ray Sargent, Kyle Siegrist, Neil Soiffer, Stephen Watt, Mohamed Zergaoui

In addition to the HTML version, this document is also available in these non-normative formats: XHTML+MathML
version and PDF version.

Copyright c© 1998-2008 W3C R© (MIT, ERCIM, Keio), All Rights Reserved.W3C liability, trademark, document
use and software licensing rules apply.

Abstract

This specification defines the Mathematical Markup Language, or MathML. MathML is an XML application for
describing mathematical notation and capturing both its structure and content. The goal of MathML is to enable
mathematics to be served, received, and processed on the World Wide Web, just as HTML has enabled this func-
tionality for text.

This specification of the markup language MathML is intended primarily for a readership consisting of those who
will be developing or implementing renderers or editors using it, or software that will communicate using MathML
as a protocol for input or output. It is not a User’s Guide but rather a reference document.

MathML can be used to encode both mathematical notation and mathematical content. About thirty-five of the
MathML tags describe abstract notational structures, while another about one hundred and seventy provide a way
of unambiguously specifying the intended meaning of an expression. Additional chapters discuss how the MathML
content and presentation elements interact, and how MathML renderers might be implemented and should interact
with browsers. Finally, this document addresses the issue of special characters used for mathematics, their handling
in MathML, their presence in Unicode, and their relation to fonts.

While MathML is human-readable, in all but the simplest cases, authors use equation editors, conversion programs,
and other specialized software tools to generate MathML. Several versions of such MathML tools exist, and more,
both freely available software and commercial products, are under development.

Status of this document

This section describes the status of this document at the time of its publication. Other documents may supersede
this document. A list of current W3C publications and the latest revision of this technical report can be found in
the W3C technical reports index at http://www.w3.org/TR/.

This document is a W3C Public Working Draft produced by the W3C Math Working Group as part of the W3C
Math Activity. The goals of the W3C Math Working Group are discussed in the W3C Math WG Charter (revised
July 2006). A list of participants in the W3C Math Working Group is available.

http://www.w3.org/TR/2008/WD-MathML3-20081117/
http://www.w3.org/TR/MathML3/
http://www.w3.org/TR/MathML/
http://www.w3.org/TR/2008/WD-MathML3-20080409/
file:overview.html
file:overview.xml
file:overview.xml
http://www.w3.org/Consortium/Legal/ipr-notice.html#Legal_Disclaimer
http://www.w3.org/Consortium/Legal/ipr-notice.html#W3C_Trademarks
http://www.w3.org/Consortium/Legal/copyright-documents.html
http://www.w3.org/Consortium/Legal/copyright-documents.html
http://www.w3.org/Consortium/Legal/copyright-software.html
http://www.w3.org/TR/
http://www.w3.org/Math/
http://www.w3.org/Math/Activity
http://www.w3.org/Math/Group/Documents/Charter2006.html

2

Publication as a Working Draft does not imply endorsement by the W3C Membership. This is a draft document
and may be updated, replaced or obsoleted by other documents at any time. It is inappropriate to cite this document
as other than work in progress.

This fourth Public Working Draft specifies a new version of the the Mathematical Markup Language, MathML 3.0
which is at present under active development. The Math WG hopes this draft will permit informed feedback. There
is a description of some considerations underlying this work in the W3C Math WG’s public Roadmap [roadmap].
Feedback should be sent to the Public W3C Math mailing list .

The MathML 2.0 (Second Edition) specification has been a W3C Recommendation since 2001. After its recom-
mendation, a W3C Math Interest Group collected reports of experience with the deployment of MathML and
identified issues with MathML that might be ameliorated. The rechartering of a Math Working Group allows the
revision to MathML 3.0 in the light of that experience, of other comments on the markup language, and of recent
changes in specifications of the W3C and in the technological context. MathML 3.0 does not signal any change in
the overall design of MathML. The major additions in MathML 3 are support for bidirectional layout, better line-
breaking and explicit positioning, elementary math notations, and a new strict content MathML vocabulary with
well-defined semantics generated from formal content dictionaries. The MathML 3 Specification has also been
restructured.

Public discussion of MathML and issues of support through the W3C for mathematics on the Web takes place
on the public mailing list of the Math Working Group (list archives). To subscribe send an email to www-math-
request@w3.org with the word subscribe in the subject line.

Please report errors in this document to www-math@w3.org.

This document was produced by a group operating under the 5 February 2004 W3C Patent Policy. W3C maintains a
public list of any patent disclosures made in connection with the deliverables of the group; that page also includes
instructions for disclosing a patent. An individual who has actual knowledge of a patent which the individual
believes contains Essential Claim(s) must disclose the information in accordance with section 6 of the W3C Patent
Policy.

The basic chapter structure of this document is based on the earlier MathML 2.0 Recommendation [MathML2].
That MathML 2.0 itself was a revision of the earlier W3C Recommendation MathML 1.01 [MathML1]; MathML
3.0 is a revision of the W3C Recommendation MathML 2.0. It differs from it in that all previous chapters have
been updated, some new elements and attributes added and some deprecated. This Public Working Draft differs
in structure from the initial Public Working Draft as renewed efforts to separate the formal from the explanatory
have resulted in eight chapters not seven. Much has been moved to separate documents containing Primer material,
material on Characters and Entities and on the MathML DOM. First Working Drafts of these documents will be
published soon. A current list of open issues, pointing into the relevant places in the draft, follows the Table of
Contents.

The present draft is an incremental one making public some of the results of Math Working Group work in recent
months. The biggest difference this time is in Chapter 4, although there have been smaller ameliorations throughout
the specification. A more detailed description of changes from the previous Recommendation follows.
• With the second Working Draft, much of the non-normative explication that formerly was found in

Chapters 1 and 2, and many examples from elsewhere in the previous MathML specifications, were
removed from the MathML3 specification and incorporated into a MathML Primer being prepared as
a separate document. It is expected this will help the use of this formal MathML3 specification as a
reference document in implementations, and offer the new user better help in understanding MathML’s
deployment. The remaining content of Chapters 1 and 2 is being edited to reflect the changes elsewhere
in the document, and in the rapidly evolving Web environment. Some of their text used to go back to
early days of the Web and XML, and its explanations are now commonplace.

• Chapter 3, on presentation-oriented markup, in this draft adds new material on linebreaking and on
markup for elementary math notations. Material introduced in the last draft revising the mpadded and

mailto:www-math@w3.org
mailto:www-math@w3.org
http://lists.w3.org/Archives/Public/www-math/
mailto:www-math-request@w3.org
mailto:www-math-request@w3.org
mailto:www-math@w3.org
http://www.w3.org/Consortium/Patent-Policy-20040205/
http://www.w3.org/2004/01/pp-impl/35549/status
http://www.w3.org/Consortium/Patent-Policy-20040205/#def-essential
http://www.w3.org/Consortium/Patent-Policy-20040205/#sec-Disclosure
http://www.w3.org/Consortium/Patent-Policy-20040205/#sec-Disclosure

3

maction elements has been further revised as a result of active discussion. It is possible it may undergo
further modification. In addition, the layout of schemata such as that for long division and its associated
mcolumn element have been carefully revised. Earlier work, as recorded in the W3C Note Arabic math-
ematical notation, has allowed clarification of the relationship with bidirectional text and examples with
RTL text have been added.

• Chapter 4, on content-oriented markup, contains major changes and additions in this Working Draft. The
meaning of the actual content remains as before in principle, but a lot of work has been done on express-
ing it better. The text of this chapter is generated by filtered extraction from XML Content Dictionaries
written in accordance with OpenMath. The details of the Content Dictionary format have been further
specified and the generation procedure improved. It is expected that the Content Dictionaries will be-
come a separate joint publication of the W3C and OpenMath referenced by the MathML3 specification.
The Content Dictionaries are now publicly available in draft and much work has already been done on
refining them. Their format is given in Chapter 8.

• Chapter 5 is being refined as its purpose has been further clarified. This chapter deals with interrelations
of parts of the MathML specification, especially with presentation and content markup.

• Chapter 6 has been rewritten and reorganized to reflect the new situation in regard to Unicode, and the
changed W3C context with regard to named character entities. The new W3C specification of Entity
Definitions for Characters in XML, which incorporates those used for mathematics is becoming a pub-
lic working draft [Entities]. It is expected that some new ancillary tables will be provided that reflect
requests the Math WG has received.

• Chapter 7 has been restored with a new and clearer purpose. This chapter looks outward to the larger
world in which MathML must function.

• Chapter 8 will specify the format of MathML3 Content Dictionaries, as previously handled more briefly
in sections 4.5 and 4.6. The DOM for MathML, previously in a chapter at this point, is being prepared
as a separate specification.

• The Appendices, of which there are eight shown, have not been fully reworked. Eventually what amount
to revisions of the present appendices A, F, G, H, I and J are all that are expected to remain. Appendix A
now contains the new RelaxNG schema for MathML3 as well as discussion of MathML3 DTD issues.

http://www.w3.org/TR/2006/NOTE-arabic-math-20060131/
http://www.w3.org/TR/2006/NOTE-arabic-math-20060131/

Contents

1 Introduction 9
1.1 Mathematics and its Notation . 9
1.2 Origins and Goals . 10

1.2.1 Design Goals of MathML . 10
1.3 A First Example . 11

2 MathML Fundamentals 12
2.1 MathML Syntax and Grammar . 12

2.1.1 General Considerations . 12
2.1.2 Children versus Arguments . 13
2.1.3 MathML Attribute Values . 13
2.1.4 Attributes Shared by all MathML Elements . 19
2.1.5 Collapsing Whitespace in Input . 19

2.2 Interfacing MathML with other contexts . 20
2.3 Conformance . 20

2.3.1 MathML Conformance . 21
2.3.2 Handling of Errors . 23
2.3.3 Attributes for unspecified data . 23

2.4 Future Extensions . 24
2.4.1 Style Sheets . 24
2.4.2 XML Extensions to MathML . 24
2.4.3 Scientific Documents . 25
2.4.4 XML Extensions to MathML . 25

2.5 Embedding MathML in other Documents . 25
2.5.1 MathML and Namespaces . 25
2.5.2 The Top-Level math Element . 27

3 Presentation Markup 30
3.1 Introduction . 30

3.1.1 What Presentation Elements Represent . 30
3.1.2 Terminology Used In This Chapter . 31
3.1.3 Required Arguments . 32
3.1.4 Elements with Special Behaviors . 33
3.1.5 Directionality . 34
3.1.6 Linebreaking of Expressions . 35
3.1.7 Summary of Presentation Elements . 36

3.2 Token Elements . 37
3.2.1 MathML characters in token elements . 37
3.2.2 Mathematics style attributes common to token elements 38
3.2.3 Identifier (mi) . 41

4

CONTENTS 5

3.2.4 Number (mn) . 43
3.2.5 Operator, Fence, Separator or Accent (mo) . 44
3.2.6 Text (mtext) . 57
3.2.7 Space (mspace) . 58
3.2.8 String Literal (ms) . 61
3.2.9 Using images to represent symbols (mglyph) . 61
3.2.10 Line mline . 63

3.3 General Layout Schemata . 63
3.3.1 Horizontally Group Sub-Expressions (mrow) . 64
3.3.2 Fractions (mfrac) . 66
3.3.3 Radicals (msqrt, mroot) . 68
3.3.4 Style Change (mstyle) . 68
3.3.5 Error Message (merror) . 73
3.3.6 Adjust Space Around Content (mpadded) . 74
3.3.7 Making Sub-Expressions Invisible (mphantom) . 78
3.3.8 Expression Inside Pair of Fences (mfenced) . 80
3.3.9 Enclose Expression Inside Notation (menclose) . 83

3.4 Script and Limit Schemata . 84
3.4.1 Subscript (msub) . 85
3.4.2 Superscript (msup) . 85
3.4.3 Subscript-superscript Pair (msubsup) . 86
3.4.4 Underscript (munder) . 87
3.4.5 Overscript (mover) . 88
3.4.6 Underscript-overscript Pair (munderover) . 90
3.4.7 Prescripts and Tensor Indices (mmultiscripts) . 91

3.5 Tabular Math . 93
3.5.1 Table or Matrix (mtable) . 93
3.5.2 Row in Table or Matrix (mtr) . 96
3.5.3 Labeled Row in Table or Matrix (mlabeledtr) . 97
3.5.4 Entry in Table or Matrix (mtd) . 98
3.5.5 Alignment Markers . 99
3.5.6 mcolumn . 107

3.6 Enlivening Expressions . 111
3.6.1 Bind Action to Sub-Expression (maction) . 111

3.7 Elementary Math . 112
3.7.1 Addition, Subtraction, and Multiplication . 112
3.7.2 Long Division . 113
3.7.3 Repeating decimal . 115

3.8 Semantics and Presentation . 115

4 Content Markup 116
4.1 Introduction . 116
4.2 Strict Content MathML . 116

4.2.1 The structure of MathML Content Expressions . 116
4.2.2 Encoding OpenMath Objects . 117
4.2.3 Numbers (cn) . 117
4.2.4 Symbols and Identifiers . 118
4.2.5 Function Application (apply) . 120
4.2.6 Bindings and Bound Variables (bind) . 121
4.2.7 Structure Sharing (share) . 123

6 CONTENTS

4.2.8 Attribution via semantics . 125
4.2.9 In Situ Error Markup . 126

4.3 Pragmatic Content MathML . 127
4.3.1 Pragmatic Numbers (cn) . 127
4.3.2 Operator Elements . 129
4.3.3 Pragmatic Elements with Attributes . 130
4.3.4 Bindings with apply . 130
4.3.5 Container Markup . 131
4.3.6 Symbols and Identifiers With Presentation MathML . 133
4.3.7 Elementary MathML Types on Operator and Container Elements 134
4.3.8 Qualifiers for Bound Variables . 134
4.3.9 Lifted Associative Commutative Operators . 137
4.3.10 basic elements . 138
4.3.11 Arithmetic, Algebra and Logic . 147
4.3.12 Relations . 167
4.3.13 Calculus and Vector Calculus . 176
4.3.14 Theory of Sets . 192
4.3.15 Sequences and Series . 203
4.3.16 Elementary classical functions . 212
4.3.17 Statistics . 215
4.3.18 Linear Algebra . 220
4.3.19 Constant and Symbol Elements . 227

4.4 Deprecated content Elements . 233
4.4.1 Declare (declare) . 233

4.5 Rendering of Content Elements . 233
4.5.1 Numbers . 233
4.5.2 Symbols and Identifiers . 233
4.5.3 Applications . 234
4.5.4 Binders . 234
4.5.5 Attributions . 234
4.5.6 Structure Sharing . 234
4.5.7 Rest . 234

5 Mixing Several Markups 235
5.1 Semantic Annotations . 235

5.1.1 Annotation elements . 235
5.1.2 Annotation references . 236
5.1.3 Alternate representations . 237
5.1.4 Flattening semantic annotations . 238

5.2 Elements for Semantic Annotations . 238
5.2.1 The semantics element . 238
5.2.2 The annotation element . 239
5.2.3 The annotation-xml element . 240

5.3 Combining Presentation and Content Markup . 241
5.3.1 Presentation Markup in Content Markup . 241
5.3.2 Content Markup in Presentation Markup . 242

5.4 Parallel Markup . 242
5.4.1 Top-level Parallel Markup . 242
5.4.2 Parallel Markup via Cross-References . 243

CONTENTS 7

6 Characters, Entities and Fonts 246
6.1 Introduction . 246
6.2 Unicode Character Data . 246
6.3 Entity Declarations . 247
6.4 Special Characters Not in Unicode . 248
6.5 Mathematical Alphanumeric Symbols . 248
6.6 Non-Marking Characters . 249

7 MathML interactions with the Wide World 250
7.1 Invoking MathML Processors: namespace, extensions, and mime-types 250

7.1.1 Recognizing MathML in an XML Model . 250
7.1.2 Resource Types for MathML Documents . 250
7.1.3 Names of MathML Encodings . 251

7.2 Transferring MathML in Desktop Environments . 251
7.2.1 Basic Transfer Flavors’ Names and Contents . 251
7.2.2 Recommended Behaviors when Transferring . 252
7.2.3 Discussion . 252
7.2.4 Examples . 253

7.3 Combining MathML and Other Formats . 255
7.3.1 Mixing MathML and HTML . 255
7.3.2 Linking . 256
7.3.3 Images . 256
7.3.4 MathML and Graphical Markup . 256

7.4 Using CSS with MathML . 257

8 MathML3 Content Dictionaries 259

A Parsing MathML 260
A.1 Use of MathML as Well-Formed XML . 260
A.2 Using the RelaxNG Schema for MathML3 . 260

A.2.1 Full MathML . 261
A.2.2 The Grammar for Presentation MathML . 262
A.2.3 The Grammar for Strict Content MathML3 . 268
A.2.4 The Grammar for Pragmatic MathML . 270
A.2.5 Deprecated Features . 274
A.2.6 MathML as a module in a RelaxNG Schema . 275

A.3 Using the MathML DTD . 275
A.4 Using the MathML XML Schema . 275

B Operator Dictionary (Non-Normative) 276
B.1 Format of operator dictionary entries . 276
B.2 Indexing of operator dictionary . 277
B.3 Choice of entity names . 277
B.4 Notes on lspace and rspace attributes . 277
B.5 Operator dictionary entries . 277

C Sample CSS Style Sheet for MathML (Non-Normative) 289

D Glossary (Non-Normative) 296

E Working Group Membership and Acknowledgments (Non-Normative) 300

8 CONTENTS

E.1 The Math Working Group Membership . 300
E.2 Acknowledgments . 302

F Changes (Non-Normative) 304
F.1 Changes between MathML 2.0 Second Edition and MathML 3.0 304

G References (Non-Normative) 305

H Index (Non-Normative) 309
H.1 MathML Elements . 309
H.2 MathML Attributes . 314

Open Issues

fund: MathML Fundamentals, presm: Presentation Markup, contm: Content Markup, world-interactions: MathML
interactions with the Wide World, mcds: MathML3 Content Dictionaries, parsing: Parsing MathML, oper-dict:
Operator Dictionary, changes: Changes

Chapter 1

Introduction

1.1 Mathematics and its Notation

A distinguishing feature of mathematics is the use of a complex and highly evolved system of two-dimensional
symbolic notations. As J. R. Pierce has written in his book on communication theory, mathematics and its notations
should not be viewed as one and the same thing [Pierce1961]. Mathematical ideas can exist independently of the
notations that represent them. However, the relation between meaning and notation is subtle, and part of the power
of mathematics to describe and analyze derives from its ability to represent and manipulate ideas in symbolic form.
The challenge before a Mathematics Markup Language (MathML) in enabling mathematics on the World Wide
Web is to capture both notation and content (that is, its meaning) in such a way that documents can utilize the
highly evolved notational forms of written and printed mathematics, and the new potential for interconnectivity in
electronic media.

Mathematical notations evolve constantly as people continue to innovate in ways of approaching and expressing
ideas. Even the commonplace notations of arithmetic have gone through an amazing variety of styles, including
many defunct ones advocated by leading mathematical figures of their day [Cajori1928]. Modern mathematical
notation is the product of centuries of refinement, and the notational conventions for high-quality typesetting are
quite complicated. For example, variables and letters which stand for numbers are usually typeset today in a special
mathematical italic font subtly distinct from the usual text italic; this seems to have been introduced in Europe in
the late 1500 CE. Spacing around symbols for operations such as +, -, × and / is slightly different from that of
text, to reflect conventions about operator precedence that have evolved over centuries. Entire books have been
devoted to the conventions of mathematical typesetting, from the alignment of superscripts and subscripts, to rules
for choosing parenthesis sizes, and on to specialized notational practices for subfields of mathematics. The manuals
describing the nuances of present-day computer typesetting and composition systems can run to hundreds of pages.

Notational conventions in mathematics, and in printed text in general, guide the eye and make printed expressions
much easier to read and understand. Though we usually take them for granted, we, as modern readers, rely on a
numerous conventions such as paragraphs, capital letters, font families and cases, and even the device of decimal-
like numbering of sections such as we are using in this document. Such notational conventions are perhaps even
more important for electronic media, where one must contend with the difficulties of on-screen reading.

It is remarkable how widespread the current conventions of mathematical notations have become. The general two-
dimensional layout, and most of the same symbols, are used in all modern mathematical communications, whether
the participants are European, writing left-to-right, or Middle-Eastern, writing right-to-left. Of course, conventions
for the symbols used, particularly those naming functions and variables, may tend to favor a local language and
script. The largest variation from the most common is a form used in some Arabic-speaking communities which
lays out the entire mathematical notation from right-to-left, roughly in mirror image of the European tradition.

However, there is more to putting mathematics on the Web than merely finding ways of displaying traditional
mathematical notation in a Web browser. The Web represents a fundamental change in the underlying metaphor
for knowledge storage, a change in which interconnection plays a central role. It has become important to find

9

10 Chapter 1. Introduction

ways of communicating mathematics which facilitate automatic processing, searching and indexing, and reuse
in other mathematical applications and contexts. With this advance in communication technology, there is an
opportunity to expand our ability to represent, encode, and ultimately to communicate our mathematical insights
and understanding with each other. We believe that MathML as specified below is an important step in developing
mathematics on the Web.

1.2 Origins and Goals
1.2.1 Design Goals of MathML

In order to meet the diverse needs of the scientific community, MathML has been designed from the beginning
with the following ultimate goals in mind.

MathML should ideally:
• Encode mathematical material suitable for teaching and scientific communication at all levels.
• Encode both mathematical notation and mathematical meaning.
• Facilitate conversion to and from other mathematical formats, both presentational and semantic. Output

formats should include:
– graphical displays
– speech synthesizers
– input for computer algebra systems
– other mathematics typesetting languages, such as TEX
– plain text displays, e.g. VT100 emulators
– iternational print media, including braille
Recognized that conversion to and from other notational systems or media may entail loss of information
in the process.

• Allow the passing of information intended for specific renderers and applications.
• Support efficient browsing of lengthy expressions.
• Provide for extensibility.
• Be well suited to templates and other common techniques for editing formulas.
• Be legible to humans, and simple for software to generate and process.
No matter how successfully MathML achieves its goals as a markup language, it is clear that MathML is only
useful if it is implemented well. The W3C Math Working Group identified long ago a short list of additional
implementation goals. These goals attempt to describe concisely the minimal functionality MathML rendering and
processing software should try to provide.
• MathML expressions in HTML (and XHTML) pages should render properly in popular Web browsers,

in accordance with reader and author viewing preferences, and at the highest quality possible given the
capabilities of the platform.

• HTML (and XHTML) documents containing MathML expressions should print properly and at high-
quality printer resolutions.

• MathML expressions in Web pages should be able to react to user gestures, such those as with a mouse,
and to coordinate communication with other applications through the browser.

• Mathematical expression editors and converters should be developed to facilitate the creation of Web
pages containing MathML expressions.

The extent to which these goals are ultimately met depends on the cooperation and support of browser vendors,
and other software developers. The W3C Math Working Group has continued to work with other working groups
of the W3C, and outside the W3C, to ensure that the needs of the scientific community will be met in the future.
MathML 2 and it implementations showed considerable progress in this area over the situation that obtained at
the time of the MathML 1.0 Recommendation (April 1998) [MathML1]. MathML3 and the developing Web are
expected to allow much more.

1.3. A First Example 11

1.3 A First Example

As a simple but instructive illustration of what the markup of MathML has become let us consider the quadratic
formula.

MathML offers two flavors of markup of this formula. The first is the style which emphasizes the actual presentation
of a formula, the two-dimensional layout in which the symbols are arranged. So for this case we have the following.

Consider the superscript 2 in this formula. It is a commonplace that this represents the squaring operation here, but
this actually depends on the context. A letter with a superscript can be used to signify a particular component of a
vector or maybe the superscript just labels a different type of some structure. Similarly two letters written one just
after the other could signify two variables multiplied together, as they do in the quadratic formula, or they could
be two letters making up the name of a single variable. What is called Content Markup in MathML allows closer
specification of the mathematical meaning of many common formulas. The quadratic formula given in this style of
markup is as follows.

Chapter 2

MathML Fundamentals

Issue ():The current chapter remains based largely from MathML2 since the language MathML has not been
drastically changed. The contents have been settled upon but there are still details still being considered by the
Working Group.

Resolution: The chapter has been reformulated and much shortened. Almost all that devolves from its role as an
XML vocabulary is now considered to be adequately described by mentining that fact. An attempt has been made
to keep the text drier than before. In order to provide a concrete example of a snippet of actual MathML early a
treatmet of the quadratic formula has been added to the previous chapter.

2.1 MathML Syntax and Grammar

2.1.1 General Considerations

MathML is an application of [XML], Extensible Markup Language, and as such it is governed by the rules of XML
syntax. XML syntax is a notation for rooted labeled planar trees. Planarity means that the children of a node may
be viewed as given a natural order and MathML depends on this.

As an XML vocabulary, MathML’s character set must be consist of legal characters as specified by the XML rec-
ommendation. XML mentions [Unicode]. The subject of Unicode characters as used for mathematics is discussed
in Chapter 6.

MathML specifies some syntactical and grammatical rules in addition to the general rules it inherits as an XML
application. The grammar of MathML3 is specified by using a RelaxNG Schema. In other words, the generalities of
using tags, attributes, entity references and the like are defined in the XML language specification, and the details
about MathML elements and attribute names, which elements can be nested inside each other, and their possible
relationships are specified in the MathML Schema. This is in Appendix A.

The grammatical aspects of MathML2 were specified by a DTD, or Document Type Definition, and alternatively
by an XML Schema, as specified by the W3C [XMLSchemas]. In an attempt to maintain continuity as MathML is
revised a new MathML3 XML Schema is provided in Appendix A, but the normative schema for MathML3 is that
in Relax_NG form [RELAX-NG].

A special aspect of the MathML specification is that there are two main strains of markup, in Chapter 3 and
Chapter 4, which address, separately, the presentational and semantic aspects of formulas. Content markup is
specified in particular detail. This specification makes use of a format called Content Dictionaries, which is also
an application of XML. This new type of format has been developed in collaboration with the OpenMath Society,
and is given in Chapter 8.

There are two kinds of grammar and syntax rules added by MathML to those inherited from XML. One kind
involves placing additional constraints on attribute values. For example, it is not possible in pure XML to require

12

2.1. MathML Syntax and Grammar 13

that an attribute value be a positive integer. The second kind of rule specifies more detailed restrictions on the child
elements (for example on ordering) than are given in the DTD or even a schema. For example, it is not possible in
pure XML to specify that the first child be interpreted one way, and the second in another.

The following sections discuss features both of XML syntax and grammar in general, and of MathML in particular.
Throughout the remainder of the MathML specification, we will usually take care to distinguish between usage
required by XML syntax and the MathML Schema and usage required by MathML specific rules. However, we
will often allude to ‘MathML errors’ without identifying which part of the specification is being violated.

2.1.2 Children versus Arguments

Many MathML elements require a specific number of children or attach additional meanings to child elements
in certain positions. As noted above, these kinds of requirements are specific to MathML, and cannot be given
entirely using XML syntax and grammar. When the children of a given MathML element are subject to these
kinds of additional conditions, we will often refer to them as arguments instead of merely as children, in order to
emphasize their MathML specific usage. Note that, especially in Chapter 3, the term ‘argument’ is usually used in
this technical sense, unless otherwise noted, and therefore refers to a child element.

In the detailed discussions of element syntax given with each element throughout the MathML specification, the
number of arguments required and their order are implicitly indicated by giving names for the arguments at var-
ious positions. This information is also given for presentation elements in the table of argument requirements in
Section 3.1.3.

A few elements have other requirements on the number or type of arguments. These additional requirements are
described together with the individual elements.

2.1.3 MathML Attribute Values

An MathML attribute’s value, as the value of an XML attribute must be a string of legal characters as specified by
the XML recommendation. Attribute names are generally shown in a monospaced font within descriptive text in
this specification, just as the monospaced font is used for examples.

MathML uses a more complicated syntax for attribute values than the generic XML syntax. These additional rules
are intended for use by MathML applications, and it is a MathML error to violate them, though they cannot be
enforced by processing that employs only what is needed to comply with XML’s recommendations. The MathML
syntax of each attribute value is specified in the table of attributes provided with the description of each element,
using a notation described below. Attribute values may contain any MathML characters as specified in Chapter 6
also permitted by the syntax restrictions for an attribute. Character data can be included directly in attribute values,
or by using entity references as described in Section 6.2 which is dependent on the list of named character entities
for XML as specified in [Entities]. However, modern practice suggest that it is preferable to use numeric character
references rather than XML entities to avoid the need for the presence of a DTD with the entity definitions. After
the initial parsing, the character entities are all resolved to Unicode character codes in any case.

In particular, the characters " (U+0022), ’ (U+0027), & (U+0026) and < (U+003C) can be included in MathML
attribute values (when permitted by the attribute value syntax) using the entity references ", ', &
and <, respectively. These characters have special roles in XML, and for that reason are usable in character
entity form without resorting to Unicode character codes, which are, of course, valid too.

When MathML applications process attribute values, whitespace (as defined by Unicode character classes and
made explicit below Section 2.1.5) should be ignored except to separate letter and digit sequences into individual
words or numbers. But note that this normalisation was not implemented in early MathML processors so, for
backwards compatibility, it is advisable not to add extra whitespace within attribute values.

14 Chapter 2. MathML Fundamentals

Editor’s note:Robert Miner and Chris and GeorgeHenri Sivonen notes that trimming of whitespace around
ennumerated attributes is not widely implemented. For example, movablelimits="false" and movablelimits=" false
" are not treated in the same way in Firefox. http://lists.w3.org/Archives/Public/www-math/2007Dec/0008.html

2.1.3.1 Syntax notations used in the MathML specification

To describe the MathML-specific syntax of permissible attribute values, the following conventions and notations
are used for most attributes in the present document.

Notation What it matches
number a decimal integer or rational number (a string of decimal digits from the range U+0030 to

U+0039, with up to one decimal point represented by U+002E), optionally starting with
’-’ (U+002D)

unsigned-number a decimal integer or real number, no sign
integer a decimal integer, optionally starting with ’-’ (U+002D)
positive-integer a decimal integer, unsigned, not 0 (U+0030)
string an arbitrary character string (always the entire attribute value)
character a single non-whitespace character, or MathML entity reference; whitespace separation is

optional
#rrggbb RGB color value; the three pairs of hexadecimal digits in the example #5599dd define

proportions of red, green and blue on a scale of x00 through xFF, which gives a strong sky
blue.

h-unit a unit of horizontal length (allowable units are listed below)
v-unit a unit of vertical length (allowable units are listed below)
css-fontfamily explained in the CSS subsection below, Section 2.1.3.3
css-color-name explained in the CSS subsection below, Section 2.1.3.3
other italicized words explained in the text for each attribute
form + one or more instances of ’form’
form * zero or more instances of ’form’
f1 f2 ... fn one instance of each form, in sequence, perhaps separated by whitespace
f1 | f2 | ... | fn any one of the specified forms
[form] an optional instance of ’form’
(form) same as form
word in plain text that same word, literally present in the attribute value
quoted symbol that same symbol, literally present in the attribute value (e.g. "+" or ’+’)

The order of precedence of the syntax notation operators is, from highest to lowest precedence:
• form + or form *
• f1 f2 ... fn (sequence of forms)
• f1 | f2 | ... | fn (alternative forms)
A string can contain arbitrary characters which are specifiable within XML CDATA attribute values. See Chapter 6
for a full discussion of MathML characters. No syntax rule in MathML includes a string as only part of an attribute
value; a string can only be the entire value.
Editor’s note:P. IonIt is no longer clear to me why we go to the trouble of formulating repeatedly this distiction
between full and substrings. The reason should perhaps be given or the phrasing, which can trouble someone
naive like me, removed.
Adjacent keywords and numbers must be separated by whitespace from other parts in the actual attribute values,
except for unit identifiers (denoted by h-unit or v-unit syntax symbols) which immediately follow numbers.
Whitespace is not otherwise required, but is permitted between any of the tokens listed above, except (for com-
patibility with CSS) immediately before unit identifiers, between the ’-’ signs and digits of negative numbers, or
between # and "rrggbb" or "rgb".

http://www.w3.org/TR/CSS21/text.html#white-space-model
http://www.w3.org/TR/CSS21/text.html#white-space-model

2.1. MathML Syntax and Grammar 15

Numerical attribute values for dimensions that should depend upon the current font can be given in font-related
units, or in named absolute units (described in a separate subsection below). Horizontal dimensions are conven-
tionally given in em units, and vertical dimensions in ex units, by immediately following a number by one of the
unit identifiers "em" or "ex". For example, the horizontal spacing around an operator such as ‘+’ is conventionally
given in "em"s, though other units can be used. Using font-related units is usually preferable to using absolute
units, since it allows renderings to grow or shrink in proportion to the current font size.

For most numerical attributes, only those in a subset of the expressible values are sensible; values outside this subset
are not errors, unless otherwise specified, but rather are rounded up or down (at the discretion of the renderer) to the
closest value within the allowed subset. The set of allowed values may depend on the renderer, and is not specified
by MathML.

If a numerical value within an attribute value syntax description is declared to allow a minus sign (’-’), e.g. number
or integer, it is not a syntax error when one is provided in cases where a negative value is not sensible. Instead,
the value should be handled by the processing application as described in the preceding paragraph. An explicit plus
sign (’+’) is not allowed as part of a numerical value except when it is specifically listed in the syntax (as a quoted
’+’ or "+"), and its presence can change the meaning of the attribute value (as documented with each attribute
which permits it).

Editor’s note:P. IonThe presence or not of an explicit + in attribute values is a palce we should be in accord with
HTML’s conventions, in particular HTML5’s, if at all possible.

The symbols h-unit, v-unit, css-fontfamily, and css-color-name are explained in the following subsec-
tions.

2.1.3.2 Attributes with units

Some attributes accept horizontal or vertical lengths as numbers followed by a ‘unit identifier’ (often just called
a ‘unit’). The syntax symbols h-unit and v-unit refer to a unit for horizontal or vertical length, respectively.
The possible units and the lengths they refer to are shown in the table below; they are the same for horizontal and
vertical lengths, but the syntax symbols are distinguished in attribute syntaxes as a reminder of the direction each
is used in.

The unit identifiers and meanings are taken from CSS. However, the syntax of numbers followed by unit identifiers
in MathML is not identical to the syntax of length values with units in CSS style sheets, since numbers in CSS
cannot end with decimal points, and are allowed to start with ’+’ signs.

The possible horizontal or vertical units in MathML are:

Unit identifier Unit description
em em (font-relative unit traditionally used for horizontal lengths)
ex ex (font-relative unit traditionally used for vertical lengths)
px pixels, or size of a pixel in the current display
in inches (1 inch = 2.54 centimeters)
cm centimeters
mm millimeters
pt points (1 point = 1/72 inch)
pc picas (1 pica = 12 points)
% percentage of the default value

The typesetting units "em" and "ex" are defined in Appendix D, and discussed further under ‘Additional notes’
below.

% is a ‘relative unit’; when an attribute value is given as "n%" (for any numerical value "n"), the value being
specified is the default value for the property being controlled multiplied by "n" divided by 100. The default value

16 Chapter 2. MathML Fundamentals

(or the way in which it is obtained, when it is not constant) is listed in the table of attributes for each element, and
its meaning is described in the subsequent documentation about that attribute. (The mpadded element has its own
syntax for % and does not allow it as a unit identifier.)

For consistency with lengths in CSS, length units in MathML are rarely optional. When they are, the unit symbol
is enclosed in square brackets in the attribute syntax, following the number to which it applies, e.g. number [
h-unit]. The meaning of specifying no unit is given in the description for each attribute; in general it is that
the number given is a multiplier for the default value of the attribute. (In such cases, specifying the number
"nnn" without a unit is equivalent to specifying the number "nnn" times 100 followed by %. For example, <mo
maxsize="2"> (</mo> is equivalent to <mo maxsize="200%"> (</mo>.)

As a special exception (also consistent with CSS), a numerical value equal to 0 need not be followed by a unit
identifier even if the syntax specified here requires one. In such cases, the unit identifier (or lack of one) would not
matter, since 0 times any unit is 0.

For most attributes, the typical unit which would be used to describe them in typesetting is chosen as the one used
in that attribute’s default value in this specification; when a specific default value is not given, the typical unit is
usually mentioned in the syntax table or in the documentation for that attribute. The most common units are em or
ex. However, any unit can be used, unless otherwise specified for a specific attribute.

Additional notes about units

Note that some attributes, e.g. framespacing on a <mtable>, can contain more than one numerical value, each
followed by its own unit.

It is conventional to use the font-relative unit ex mainly for vertical lengths, and em mainly for horizontal lengths,
but this is not required. These units are relative to the font and font size which would be used for rendering the
element in whose attribute value they are specified, which means they should be interpreted after attributes such as
fontfamily and fontsize are processed, if those occur on the same element, since changing the current font or
font size can change the length of one of these units.

The definition of the length of each unit, but not the MathML syntax for length values, is as specified in CSS,
except that if a font provides specific values for em and ex which differ from the values defined by CSS (the font
size and ‘x’-height respectively), those values should be used.

2.1.3.3 CSS-compatible attributes

Several MathML attributes, listed below, correspond closely to text rendering properties defined originally in
[CSS1]. In MathML 1.01, the names and values of these attributes were aligned with the CSS Recommenda-
tion where possible. This was done so that renderers in CSS environments could query the environment for the
corresponding property when determining the default values for the attributes.

Allowing style properties to be set both via MathML attributes and CSS style sheets has drawbacks. At a mini-
mum, duplication is confusing, and at worst, it leads to the meaning of equations being inadvertently changed by
document-wide CSS changes. For these reasons, these attributes have been deprecated. In their place, MathML 2.0
introduced four new mathematical style attributes. These attributes use logical values to better capture the abstract
categories of letter-like symbols used in math, and afford a much cleaner separation between MathML and CSS.
See Section 3.2.2 for more details.

For reference, a table showing the correspondence of the deprecated MathML 1.01 style attributes with their CSS
counterparts is given below:

http://www.w3.org/TR/CSS21/syndata.html#value-def-length

2.1. MathML Syntax and Grammar 17

MathML attribute CSS property syntax symbol MathML elements refer to
fontsize font-size - presentation tokens; mstyle Section 3.2.2
fontweight font-weight - presentation tokens; mstyle Section 3.2.2
fontstyle font-style - presentation tokens; mstyle Section 3.2.2
fontfamily font-family css-fontfamily presentation tokens; mstyle Section 3.2.2
color color css-color-name presentation tokens; mstyle Section 3.3.4
background background css-color-name mstyle Section 3.3.4

See also Section 2.1.4 below for a discussion of the class, style and xml:id attributes for use with style sheets.

Order of processing attributes versus style sheets

CSS or analogous style sheets can specify changes to rendering properties of selected MathML elements. Since
rendering properties can also be changed by attributes on an element, or be changed automatically by the render-
er, it is necessary to specify the order in which changes requested by various sources should occur. An example
of automatic adjustment is what happens for fontsize, as explained in the discussion on scriptlevel in Sec-
tion 3.3.4. In the case of ‘absolute’ changes, i.e., setting a new property value independent of the old value (as
opposed to ‘relative’ changes, such as increments or multiplications by a factor), the absolute change performed
last will be the only absolute change which is effective, so the sources of changes which should have the highest
priority must be processed last.

In the case of CSS, the order of processing of changes from various sources which affect one MathML element’s
rendering properties should be as follows:
(first changes; lowest priority)
• Automatic changes to properties or attributes based on the type of the parent element, and this element’s

position in the parent, as for the changes to fontsize in relation to scriptlevel mentioned above;
such changes will usually be implemented by the parent element itself before it passes a set of rendering
properties to this element

• From a style sheet from the reader: styles which are not declared ‘important’
• Explicit attribute settings on this MathML element
• From a style sheet from the author: styles which are not declared ‘important’
• From a style sheet from the author: styles which are declared ‘important’
• From a style sheet from the reader: styles which are declared ‘important’
(last changes; highest priority)
Note that the order of the changes derived from CSS style sheets is specified by CSS itself (this is the order specified
by CSS2). The following rationale is related only to the issue of where in this pre-existing order the changes caused
by explicit MathML attribute settings should be inserted.

Rationale: MathML rendering attributes are analogous to HTML rendering attributes such as align, which the CSS
section on cascading order specifies should be processed with the same priority. Furthermore, this choice of priority
permits readers, by declaring certain CSS styles as ‘important’, to decide which of their style preferences should
override explicit attribute settings in MathML. Since MathML expressions, whether composed of ‘presentation’ or
‘content’ elements, are primarily intended to convey meaning, with their ‘graphic design’ (if any) intended mainly
to aid in that purpose but not to be essential in it, it is likely that readers will often want their own style preferences
to have priority; the main exception will be when a rendering attribute is intended to alter the meaning conveyed
by an expression, which is generally discouraged in the presentation attributes of MathML.

2.1.3.4 Default values of attributes

Default values for MathML attributes are in general given along with the detailed descriptions of specific elements
in the text. Default values shown in plain text in the tables of attributes for an element are literal (unless they are
obviously explanatory phrases), but when italicized are descriptions of how default values can be computed.

18 Chapter 2. MathML Fundamentals

Default values described as inherited are taken from the rendering environment, as described under mstyle, or in
some cases (described individually) from the values of other attributes of surrounding elements, or from certain
parts of those values. The value used will always be one which could have been specified explicitly, had it been
known; it will never depend on the content or attributes of the same element, only on its environment. (What it
means when used may, however, depend on those attributes or the content.)

Default values described as automatic should be computed by a MathML renderer in a way which will produce a
high-quality rendering; how to do this is not usually specified by the MathML specification. The value computed
will always be one which could have been specified explicitly, had it been known, but it will usually depend on the
element content and possibly on the rendering environment.

Other italicized descriptions of default values which appear in the tables of attributes are explained for each attribute
individually.

The single or double quotes which are required around attribute values in an XML start tag are not shown in the
tables of attribute value syntax for each element, but are shown around example attribute values in the text.

Note that, in general, there is no value which can be given explicitly for a MathML attribute which will simulate
the effect of not specifying the attribute at all for attributes which are inherited or automatic. Giving the words
‘inherited’ or ‘automatic’ explicitly will not work, and is not generally allowed. Furthermore, even for presentation
attributes for which a specific default value is documented here, the mstyle element (Section 3.3.4) can be used to
change this for the elements it contains. Therefore, the MathML DTD declares most presentation attribute default
values as #IMPLIED, which prevents XML preprocessors from adding them with any specific default value. This
point of view is carried through to the MathML schema.

2.1.3.5 Attribute values in the MathML DTD

In an XML DTD, allowed attribute values can be declared as general strings, or they can be constrained in various
ways, either by enumerating the possible values, or by declaring them to be certain special data types. The choice
of an XML attribute type affects the extent to which validity checks can be performed using a DTD.

The MathML DTD specifies formal XML attribute types for all MathML attributes, including enumerations of le-
gitimate values in some cases. In general, however, the MathML DTD is relatively permissive, frequently declaring
attribute values as strings; this is done to provide for interoperability with SGML parsers while allowing multiple
attributes on one MathML element to accept the same values (such as "true" and "false"), and also to allow
extension to the lists of predefined values.

At the same time, even though an attribute value may be declared as a string in the DTD, only certain values
are legitimate in MathML, as described above and in the rest of this specification. For example, many attributes
expect numerical values. In the sections which follow, the allowed attribute values are described for each element.
To determine when these constraints are actually enforced in the MathML DTD, consult Appendix A. However,
lack of enforcement of a requirement in the DTD does not imply that the requirement is not part of the MathML
language itself, or that it will not be enforced by a particular MathML renderer. (See Section 2.3.2 for a description
of how MathML renderers should respond to MathML errors.)

Furthermore, the MathML DTD is provided for convenience; although it is intended to be fully compatible with the
text of the specification, the text should be taken as definitive if there is a contradiction. (Any contradictions which
may exist between various chapters of the text should be resolved by favoring Chapter 6 first, then Chapter 3,
Chapter 4, then Section 2.1, and then other parts of the text.) For the MathML schema the situation will be the
same: the published Recommendation text takes precedence. Though this is what is intended to happen, there is a
practical difficulty. If the system processing the MathML uses a validating parser, whether it be based on a DTD or
on a schema, the process will probably simply stop when it hits something held to be incorrect syntax, whether or
not further MathML processing in full harmony with the specification would have processed the piece correctly.

2.1. MathML Syntax and Grammar 19

2.1.4 Attributes Shared by all MathML Elements

In order to facilitate use with style sheet mechanisms such as [XSLT] and [CSS2] all MathML elements accept
class, style, and xml:id attributes in addition to the attributes described specifically for each element. MathML
renderers not supporting CSS may ignore these attributes. MathML specifies these attribute values as general
strings, even if style sheet mechanisms have more restrictive syntaxes for them. That is, any value for them is valid
in MathML.

In order to facilitate compatibility with linking mechanisms, all MathML elements accept the xlink:href at-
tribute.

All MathML elements also accept the xref attribute for use in parallel markup (Section 5.4). The xml:id is also
used in this context.

Every MathML element, because of a legacy from MathML 1.0, also accepts the deprecated attribute other (Sec-
tion 2.3.3) which was conceived for passing non-standard attributes without violating the MathML DTD. MathML
renderers are only required to process this attribute if they respond to any attributes which are not standard in
MathML. However, the use of other is strongly discouraged when there are already other ways within MathML
of passing specific information.

See also Section 3.2.2 for a list of MathML attributes which can be used on most presentation token elements.

2.1.5 Collapsing Whitespace in Input

In MathML, as in XML, ‘whitespace’ means simple spaces, tabs, newlines, or carriage returns, i.e., characters with
hexadecimal Unicode codes U+0020, U+0009, U+000A, or U+000D, respectively.

MathML ignores whitespace occurring outside token elements. Non-whitespace characters are not allowed there.
Whitespace occurring within the content of token elements is ‘trimmed’ from the ends, i.e., all whitespace at the
beginning and end of the content is removed. Whitespace internal to content of MathML elements is ‘collapsed’
canonically, i.e., each sequence of 1 or more whitespace characters is replaced with one space character (U+0020,
sometimes called a blank character).

For example, <mo> (</mo> is equivalent to <mo>(</mo>, and

<mtext>
Theorem
1:

</mtext>

is equivalent to <mtext>Theorem 1:</mtext>.

Authors wishing to encode whitespace characters at the start or end of the content of a token, or in sequences other
than a single space, without having them ignored, must use or other ‘whitespace’ non-marking entities as
described in Section 6.6. For example, compare

<mtext>
Theorem
1:

</mtext>

with

<mtext>
 Theorem 1:
</mtext>

20 Chapter 2. MathML Fundamentals

When the first example is rendered, there is no whitespace before ‘Theorem’, one space between ‘Theorem’ and
‘1:’, and no whitespace after ‘1:’. In the second example, a single space is rendered before ‘Theorem’, two spaces
are rendered before ‘1:’, and there is no whitespace after the ‘1:’.

Note that the xml:space attribute does not apply in this situation since XML processors pass whitespace in tokens
to a MathML processor; it is the MathML processing rules which specify that whitespace is trimmed and collapsed.

For whitespace occurring outside the content of the token elements mi, mn, mo, ms, mtext, ci, cn and annotation,
an mspace element should be used, as opposed to an mtext element containing only ‘whitespace’ entities.

2.2 Interfacing MathML with other contexts
Issue ():The current section needs continuing and updating further in later drafts.
To be effective, MathML must work well with a wide variety of renderers, processors, translators and editors. This
section raises some of the interface issues involved in generating and rendering MathML. Since MathML exists
primarily to encode mathematics in Web documents, perhaps the most important interface issues are related to
embedding MathML in [HTML4] and [XHTML], and in any newer HTML when it appears.

There are three kinds of interface issues that arise in embedding MathML in other XML documents. First, MathML
must be semantically integrated. MathML markup must be recognized as valid embedded XML content, and not
as an error. This could be seen as primarily a question of managing namespaces in XML [Namespaces]. However,
the implementation of XML namespaces and their management has not been well supported by recent commercial
software. So there have grown up other ways of dealing with ’foreign content’ in an XML document which is
viewed as of a particular type. The Compound Document Formats Working Group (CDF WG) of the W3C has
grappled with the questions of putting together XML vocabularies and has defined ways to do so for particular
combinations of vocabularies. Their initial success has been with specifying profiles for combining XHTML and
SVG, with special attention paid to the needs of mobile phone technology. The W3C Math WG continues to work
toward defining profiles for full scientific documents involving XHTML for text, MathML for equations and SVG
for diagrams and images.

Second, in the case of HTML/XHTML, MathML rendering must be integrated with browser software. Some
browsers already implement MathML rendering natively, and one can expect more browsers will do so in the
future. At the same time, other browsers have developed infrastructure to facilitate the rendering of MathML
and other embedded XML content by third-party software or other built-in technology. Examples of this built-in
technology are the sophisticated CSS rendering engines now available, and the powerful implementations of EC-
MAscript (or JavaScript) that are becoming common. Using these browser-specific mechanisms generally requires
additional interface markup of some sort to activate them. In the case of CSS, there is a special restricted form of
MathML3 tailored for use with present-day CSS, up to CSS2.1, which is specified in "A MathML for CSS pro-
file" [MathMLforCSS]. This does not offer the full expressiveness afforded by MathML3 but provides a portable
simpler form that can be rendered acceptably on the screen by modern CSS engines.

Third, other tools for generating and processing MathML must be able to communicate. A number of MathML
tools have been or are being developed, including editors, translators, computer algebra systems, and other scientific
software. However, since MathML expressions tend to be lengthy, and prone to error when entered by hand, special
emphasis must be given to ensuring that MathML can be easily generated by user-friendly conversion and authoring
tools, and that these tools work together in a dependable, platform and vendor independent way. This specification
can do no more than utter the above fairly obvious suggestion at this point.

2.3 Conformance
Information is nowadays commonly generated, processed and rendered by software tools. The exponential growth
of the Web is fueling the development of advanced systems for automatically searching, categorizing, and intercon-

2.3. Conformance 21

necting information. In addition, there are increasing numbers of Web services, some of which offer technically
based materials and activities. Thus, although MathML can be written by hand and read by humans, whether
machine-aided or just with much concentration, the future of MathML is largely tied to the ability to process it
with software tools.

There are many different kinds of MathML processors: editors for authoring MathML expressions, translators for
converting to and from other encodings, validators for checking MathML expressions, computation engines that
evaluate, manipulate or compare MathML expressions, and rendering engines that produce visual, aural or tactile
representations of mathematical notation. What it means to support MathML varies widely between applications.
For example, the issues that arise with a validating parser are very different from those for an equation editor.

In this section, guidelines are given for describing different types of MathML support, and for making clear the
extent of MathML support in a given application. Developers, users and reviewers are encouraged to use these
guidelines in characterizing products. The intention behind these guidelines is to facilitate reuse by and interoper-
ability of MathML applications by accurately setting out their capabilities in quantifiable terms.

The W3C Math Working Group maintains MathML Conformance Guidelines. Consult this document for future
updates on conformance activities and resources.

Editor’s note:P. IonThe Conformance Document mentioned above is still that for MathML2 and requires
updating.

2.3.1 MathML Conformance

A valid MathML expression is an XML construct determined by the MathML Relax_NG Schema together with
the additional requirements given in this specification.

Editor’s note:P. IonThe Relax_NG Schema is dominant now, not the DTD or the XML Schema.

We shall use the phrase ‘a MathML processor’ to mean any application that can accept, produce, or ‘roundtrip’
a valid MathML expression. Perhaps the simplest example of an application that might round-trip a MathML
expression might be an editor that writes a new file even though no modifications are made.

Three forms of MathML conformance are specified:

1. A MathML-input-conformant processor must accept all valid MathML expressions, and faithfully trans-
late all MathML expressions into application-specific form allowing native application operations to be
performed.

2. A MathML-output-conformant processor must generate valid MathML, faithfully representing all ap-
plication-specific data.

3. A MathML-roundtrip-conformant processor must preserve MathML equivalence. Two MathML expres-
sions are ‘equivalent’ if and only if both expressions have the same interpretation (as stated by the
MathML Schema and specification) under any circumstances, by any MathML processor. Equivalence
on an element-by-element basis is discussed elsewhere in this document.

Beyond the above definitions, the MathML specification makes no demands of individual processors. In order to
guide developers, the MathML specification includes advisory material; for example, there are many suggested
rendering rules throughout Chapter 3. However, in general, developers are given wide latitude in interpreting what
kind of MathML implementation is meaningful for their own particular application.

To clarify the difference between conformance and interpretation of what is meaningful, consider some examples:

1. In order to be MathML-input-conformant, a validating parser needs only to accept expressions, and
return ‘true’ for expressions that are valid MathML. In particular, it need not render or interpret the
MathML expressions at all.

2. A MathML computer-algebra interface based on content markup might choose to ignore all presenta-
tion markup. Provided the interface accepts all valid MathML expressions including those containing

http://www.w3.org/Math/iandi/compliance

22 Chapter 2. MathML Fundamentals

presentation markup, it would be technically correct to characterize the application as MathML-input-
conformant.

3. An equation editor might have an internal data representation that makes it easy to export some equations
as MathML but not others. If the editor exports the simple equations as valid MathML, and merely
displays an error message to the effect that conversion failed for the others, it is still technically MathML-
output-conformant.

2.3.1.1 MathML Test Suite and Validator

As the previous examples show, to be useful, the concept of MathML conformance frequently involves a judgment
about what parts of the language are meaningfully implemented, as opposed to parts that are merely processed in
a technically correct way with respect to the definitions of conformance. This requires some mechanism for giving
a quantitative statement about which parts of MathML are meaningfully implemented by a given application. To
this end, the W3C Math Working Group has provided a test suite.

The test suite consists of a large number of MathML expressions categorized by markup category and dominant
MathML element being tested. The existence of this test suite makes it possible, for example, to characterize
quantitatively the hypothetical computer algebra interface mentioned above by saying that it is a MathML-input-
conformant processor which meaningfully implements MathML content markup, including all of the expressions
in the content markup section of the test suite.

Developers who choose not to implement parts of the MathML specification in a meaningful way are encouraged
to itemize the parts they leave out by referring to specific categories in the test suite.

For MathML-output-conformant processors, there is also a MathML validator accessible over the Web. Developers
of MathML-output-conformant processors are encouraged to verify their output using this validator.

Customers of MathML applications who wish to verify claims as to which parts of the MathML specification are
implemented by an application are encouraged to use the test suites as a part of their decision processes.

2.3.1.2 Deprecated MathML 1.x and MathML 2.x Features

MathML 2.0 contains a number of features of earlier MathML which are now deprecated. The following points
define what it means for a feature to be deprecated, and clarify the relation between deprecated features and current
MathML conformance.
1. In order to be MathML-output-conformant, authoring tools may not generate MathML markup contain-

ing deprecated features.
2. In order to be MathML-input-conformant, rendering/reading tools must support deprecated features if

they are to be in conformance with MathML 1.x or MathML 2.x. They do not have to support depre-
cated features to be considered in conformance with MathML 3.0. However, all tools are encouraged to
support the old forms as much as possible.

3. In order to be MathML-roundtrip-conformant, a processor need only preserve MathML equivalence on
expressions containing no deprecated features.

2.3.1.3 MathML Extension Mechanisms and Conformance

MathML 2.0 defined three basic extension mechanisms: The mglyph element provides a way of displaying glyphs
for non-Unicode characters, and glyph variants for existing Unicode characters; the maction element uses at-
tributes from other namespaces to obtain implementation-specific parameters; and content markup makes use of
the definitionURL attribute to point to external definitions of mathematical semantics.

These extension mechanisms are important because they provide a way of encoding concepts that are beyond the
scope of MathML, which allows MathML to be used for exploring new ideas not yet susceptible to standardization.

http://www.w3.org/Math/testsuite/
http://www.w3.org/Math/validator/

2.3. Conformance 23

However, as new ideas take hold, they may become part of future standards. For example, an emerging character
that must be represented by an mglyph element today may be assigned a Unicode codepoint in the future. At that
time, representing the character directly by its Unicode codepoint would be preferable. This transition into Unicode
already taken place for hundreds of characters used for mathematics.

Because the possibility of future obsolescence is inherent in the use of extension mechanisms to facilitate the dis-
cussion of new ideas, MathML can reasonably make no conformance requirements concerning the use of extension
mechanisms, even when alternative standard markup is available. For example, using an mglyph element to rep-
resent an ’x’ is permitted. However, authors and implementors are strongly encouraged to use standard markup
whenever possible. Similarly, maintainers of documents employing MathML 3.0 extension mechanisms are en-
couraged to monitor relevant standards activity (e.g. Unicode, OpenMath, etc) and update documents as more
standardized markup becomes available.

2.3.2 Handling of Errors

If a MathML-input-conformant application receives input containing one or more elements with an illegal number
or type of attributes or child schemata, it should nonetheless attempt to render all the input in an intelligible way,
i.e. to render normally those parts of the input that were valid, and to render error messages (rendered as if enclosed
in an merror element) in place of invalid expressions.

MathML-output-conformant applications such as editors and translators may choose to generate merror expres-
sions to signal errors in their input. This is usually preferable to generating valid, but possibly erroneous, MathML.

2.3.3 Attributes for unspecified data

The MathML attributes described in the MathML specification are necessary for presentation and content markup.
Ideally, the MathML attributes should be an open-ended list so that users can add specific attributes for specific
renderers. However, this cannot be done within the confines of a single XML DTD or in a Schema. Although it can
be done using extensions of the standard DTD, say, some authors will wish to use non-standard attributes to take
advantage of renderer-specific capabilities while remaining strictly in conformance with the standard DTD.

To allow this, the MathML 1.0 specification [MathML1] allowed the attribute other on all elements, for use as a
hook to pass on renderer-specific information. In particular, it was intended as a hook for passing information to
audio renderers, computer algebra systems, and for pattern matching in future macro/extension mechanisms. The
motivation for this approach to the problem was historical, looking to PostScript, for example, where comments
are widely used to pass information that is not part of PostScript.

In the next period of evolution of MathML the development of a general XML namespace mechanism seemed to
make the use of the other attribute obsolete. In MathML 2.0, the other attribute is deprecated in favor of the use
of namespace prefixes to identify non-MathML attributes. The other attribute remains deprecated in MathML 3.0.

For example, in MathML 1.0, it was recommended that if additional information was used in a renderer-specific
implementation for the maction element (Section 3.6.1), that information should be passed in using the other
attribute:

<maction actiontype="highlight" other="color=’#ff0000’"> expression </maction>

From MathML 2.0 onwards, a color attribute from another namespace would be used:

<body xmlns:my="http://www.example.com/MathML/extensions">
...
<maction actiontype="highlight" my:color="#ff0000"> expression </maction>
...
</body>

24 Chapter 2. MathML Fundamentals

Note that the intent of allowing non-standard attributes is not to encourage software developers to use this as a
loophole for circumventing the core conventions for MathML markup. Authors and applications should use non-
standard attributes judiciously.

2.4 Future Extensions

If MathML is to remain useful in the future, it is to be expected that MathML will need to be extended and revised
in various ways. Some of these extensions can be easily foreseen; for example, as work on behavioral extensions
to CSS proceeds, MathML will likely need to be extended as well, or a description of new possible interaction
provided.

Similarly, there are several kinds of functionality that are fairly obvious candidates for future MathML extensions.
These include macros, style sheets, and perhaps a general facility for ‘labeled diagrams’ and equation numbering.
However, there will no doubt be other desirable extensions to MathML that will only emerge as MathML is widely
used. For these extensions, the W3C Math Working Group relies on the extensible architecture of XML, and the
common sense of the larger Web community.

2.4.1 Style Sheets

In the previous version, MathML 2.0, there was discussion of the use of XSLT and macro capabilities. In the
interim this sort of extension seems to have become less interesting, so for such concerns one should look there.

2.4.1.1 XSL and FO

2.4.1.2 CSS3

The CSS working group continues to extend and refine the mechanism of cascading style sheets. As that happens
what CSS there is to use with MathML changes. In this revision cycle the Math WG has prepared, to accompany
MathML 3.0, a special profile to document how one should use best MathML with CSS 2.1 [MathMLforCSS].
This naturally does not cover all the possible deployments of MathML 3.0.

2.4.2 XML Extensions to MathML

The elements and attributes specified in the MathML specification are necessary for rendering common mathe-
matical expressions. It is recognized that not all mathematical notation is covered by this set of elements, that new
notations are continually invented, and that sub-communities within mathematics often have specialized notations;
and furthermore that the explicit extension of a standard is a necessarily slow and conservative process. This implies
that the MathML specification can never explicitly cover all the presentational forms used by every sub-community
of authors and readers of mathematics, much less encode all mathematical content and its semantics.

In order to facilitate the use of MathML by the widest possible audience, and to enable its smooth evolution to en-
compass more notational forms and more mathematical content (perhaps eventually covered by explicit extensions
to the standard), the set of tags and attributes is open-ended, in the sense described in this section.

2.4.2.1 OpenMath

A very important mechanism for extending the reach of MathML, as will be necessary, beyond what can be reached
as specified in this version 3.0 results from the collaboration the Math WG has had with the OpenMath Society.
The Content Markup aspect of MathML is now specified using the device of Content Dictionaries as demonstrated
in Chapter 4 of this document and specified in Chapter 8. Thus, in addition to the extensibility that is built in with
the semantics and annotation elements, there is the possibility open now of defining a new content dictionary in
the format just adopted in this specification and by the OpenMath Society.

2.5. Embedding MathML in other Documents 25

2.4.3 Scientific Documents

2.4.3.1 HTML

2.4.4 XML Extensions to MathML

MathML is described by an XML DTD, which necessarily limits the elements and attributes to those occurring in
the DTD. Renderers desiring to accept non-standard elements or attributes, and authors desiring to include these
in documents, should accept or produce documents that conform to an appropriately extended XML DTD that has
the standard MathML DTD as a subset.

MathML renderers are allowed, but not required, to accept non-standard elements and attributes, and to render
them in any way. If a renderer does not accept some or all non-standard tags, it is encouraged either to handle them
as errors as described above for elements with the wrong number of arguments, or to render their arguments as if
they were arguments to an mrow, in either case rendering all standard parts of the input in the normal way.

2.5 Embedding MathML in other Documents

While MathML can be used in isolation as a language for exchanging mathematical expressions between MathML-
aware applications, the primary anticipated use of MathML is to encode mathematical expression within larger
documents. MathML is ideal for embedding math expressions in other applications of XML.

In particular, the focus here is on the mechanics of embedding MathML in [XHTML]. XHTML is a W3C Rec-
ommendation formulating a family of current and future XML-based document types and modules that reproduce,
subset, and extend HTML. While [HTML4] is the dominant language of the Web at the time of this writing, one
may anticipate a shift from HTML to XHTML. Indeed, XHTML can already be made to render properly in most
HTML user agents.

Since MathML and XHTML share a common XML framework, namespaces provide a standard mechanism for
embedding MathML in XHTML. While some popular user agents also support inclusion of MathML directly
in HTML as "XML data islands," this is a transitional strategy. Consult user agent documentation for specific
information on its support for embedding XML in HTML.

2.5.1 MathML and Namespaces

Embedding MathML in XML-based documents in general, and XHTML in particular, is a matter of managing
namespaces. See the W3C Recommendation "Namespaces in XML" [Namespaces] for full details.

An XML namespace is a collection of names identified by a URI. The URI for the MathML namespace is:

http://www.w3.org/1998/Math/MathML

Using namespaces, embedding a MathML expression in a larger XML document is merely a matter of identifying
the MathML markup as residing in the MathML namespace. This can be accomplished by either explicitly iden-
tifying each MathML element name by attaching a namespace prefix, or by declaring a default namespace on an
enclosing element.

To declare a namespace, one uses an xmlns attribute, or an attribute with an xmlns prefix. When the xmlns attribute
is used alone, it sets the default namespace for the element on which it appears, and for any children elements.

Example:

<math xmlns="http://www.w3.org/1998/Math/MathML">
<mrow>...</mrow>
</math>

26 Chapter 2. MathML Fundamentals

When the xmlns attribute is used as a prefix, it declares a prefix which can then be used to explicitly associate
other elements and attributes with a particular namespace.

Example:

<body xmlns:m="http://www.w3.org/1998/Math/MathML">
...
<m:math><m:mrow>...</m:mrow></m:math>
...
</body>

These two methods of namespace declaration can be used together. For example, by using both an explicit document-
wide namespace prefix, and default namespace declarations on individual mathematical elements, it is possible to
localize namespace related markup to the top-level math element.

Example:

<body xmlns:m="http://www.w3.org/1998/Math/MathML">
...
<m:math xmlns="http://www.w3.org/1998/Math/MathML">
<mrow>...<mrow>
</m:math>
...
</body>

2.5.1.1 Document Validation Issues

The use of namespace prefixes creates an issue for DTD validation of documents embedding MathML. DTD
validation requires knowing the literal (possibly prefixed) element names used in the document. However, the
Namespaces in XML Recommendation [Namespaces] allows the prefix to be changed at arbitrary points in the
document, since namespace prefixes may be declared on any element.

The ’historical’ method of bridging this gap was to write a DTD with a fixed prefix, or in the case of XHTML and
MathML, with no prefix, and mandate that the specified form must be used throughout the document. However,
this is somewhat restricting for a modular DTD that is intended for use in conjunction with another DTD, which is
exactly the situation with MathML in XHTML. In essence, the MathML DTD would have to allocate a prefix for
itself and hope no other module uses the same prefix to avoid name clashes, thus losing one of the main benefits of
XML namespaces.

One strategy for addressing this problem is to make every element name in the DTD be accessed by an entity
reference. This means that by declaring a couple of entities to specify the prefix before the DTD is loaded, the prefix
can be chosen by a document author, and compound DTDs that include several modules can, without changing the
module DTDs, specify unique prefixes for each module to avoid clashes. The MathML DTD has been designed in
this fashion. See Section A.3 and [Modularization] for details.

An extra issue arises in the case where explicit prefixes are used on the top-level math element, but a default
namespace is used for other MathML elements. In this case, one wants the MathML module to be included into
XHTML with the prefix set to empty. However, the ’driver’ DTD file that sets up the inclusion of the MathML
module would then need to define a new element called m:math. This would allow the top-level math element to
use an explicit prefix, for attaching rendering behaviors in current browsers, while the contents would not need an
explicit prefix, for ease of interoperability between authoring tools, etc.

2.5. Embedding MathML in other Documents 27

2.5.1.2 Compatibility Suggestions

While the use of namespaces to embed MathML in other XML applications is completely described by the relevant
W3C Recommendations, a certain degree of pragmatism is still called for at present. Support for XML, namespaces
and rendering behaviors in popular user agents is not always fully in alignment with W3C Recommendations. In
some cases, the software predates the relevant standards, and in other cases, the relevant standards are not yet
complete.

During the transitional period, in which some software may not be fully namespace-aware, a few conventional
practices will ease compatibility problems:

1. When using namespace prefixes with MathML markup, use m: as a conventional prefix for the MathML
namespace. Using an explicit prefix is probably safer for compatibility in current user agents.

2. When using namespace prefixes, pick one and use it consistently within a document.
3. Explicitly declare the MathML namespace on all math elements.

Examples.

<body>
...
<m:math xmlns:m="http://www.w3.org/1998/Math/MathML">
<m:mrow>...<m:mrow>
</m:math>
...
</body>

Or

<body>
...
<math xmlns="http://www.w3.org/1998/Math/MathML">
<mrow>...<mrow>
</math>
...
</body>

Note that these suggestions alone may not be sufficient for creating functional Web pages containing MathML
markup. It will generally be the case that some additional document-wide markup will be required. Additional work
may also be required to make all MathML instances in a document compatible with document-wide declarations.
This is particularly true when documents are created by cutting and pasting MathML expressions, since current
tools will probably not be able to query global namespace information.

Consult the W3C Math Working Group home page for compatibility and implementation suggestions for current
browsers and other MathML-aware tools.

2.5.2 The Top-Level math Element

MathML specifies a single top-level or root math element, which encapsulates each instance of MathML markup
within a document. All other MathML content must be contained in a math element; equivalently, every valid,
complete MathML expression must be contained in <math> tags. The math element must always be the outermost
element in a MathML expression; it is an error for one math element to contain another.

Applications that return sub-expressions of other MathML expressions, for example, as the result of a cut-and-paste
operation, should always wrap them in <math> tags. Ideally, the presence of enclosing <math> tags should be a

http://www.w3.org/Math/

28 Chapter 2. MathML Fundamentals

very good heuristic test for MathML material. Similarly, applications which insert MathML expressions in other
MathML expressions must take care to remove the <math> tags from the inner expressions.

The math element can contain an arbitrary number of children schemata. The children schemata render by default
as if they were contained in an mrow element.

The attributes of the math element are:

class, id, style Provided for use with stylesheets.
xref Provided along with xml:id for use in parallel markup (Section 5.4)
macros This attribute provides a way of pointing to external macro definition files. Macros are not part of the

MathML specification, and much of the functionality provided by macros in MathML can be accom-
modated by XSL transformations [XSLT]. However, the macros attribute is provided to make possible
future development of more streamlined, MathML-specific macro mechanisms. The value of this at-
tribute is a sequence of URLs or URIs, separated by whitespace

mode The mode attribute specifies whether the enclosed MathML expression should be rendered in a display style
or an in-line style. Allowed values are "display" and "inline" (default). This attribute is deprecated
in favor of the new display attribute, or the CSS2 ’display’ property with the analogous block and
inline values.

display The display attribute replaces the deprecated mode attribute. It specifies whether the enclosed MathML
expression should be rendered in a display style or an in-line style. Allowed values are "block" and
"inline" (default).

dir The dir attribute specifies the overall directionality of layout. Allowed values are "ltr"(default) or "rtl".
This attribute, in addition to the directionality of the text content of token elements, is used for presen-
tation of mathematics in Right-to-Left scripts. See Section 3.1.5 for further discussion.

The attributes of the math element affect the entire enclosed expression. They are, in a sense, ‘inward looking’.
However, to render MathML properly in a browser, and to integrate it properly into an XHTML document, a second
collection of ‘outward looking’ attributes are also useful.

While general mechanisms for attaching rendering behaviors to elements in XML documents are under devel-
opment, wide variations in strategy and level of implementation remain between various existing user agents.
Consequently, the remainder of this section describes attributes and functionality that are desirable for integrating
third-party rendering modules with user agents:

linebreak (default) The expression will be broken across several lines. The line breaking algorithm is not speci-
fied, although one is suggested. All automatic linebreaking algorithms should make use of the attributes
and values that are related to linebreaking and indentation following a linebreak.

maxwidth This attribute specifies the maximum width to be used for linebreaking. The value of attribute is an
h-unit. If a percentage is used, it is a percentage of maximum width available in the surrounding envi-
ronment. If that value can not be determined, the renderer should assume an infinite rendering width.

overflow In cases where size negotiation is not possible or fails (for example in the case of an expression that
is too long to fit in the allowed width), this attribute is provided to suggest a processing method to the
renderer. Allowed values are:
linebreak (Default) The expression will be broken across several lines. The line breaking algorithm is

not specified, but it is recommended that line breaking should try to keep meaningful subexpres-
sions together and indent lines in a manner that aids in understanding the expression.

scroll The window provides a viewport into the larger complete display of the mathematical expression.
Horizontal or vertical scrollbars are added to the window as necessary to allow the viewport to be
moved to a different position.

elide The display is abbreviated by removing enough of it so that the remainder fits into the window.
For example, a large polynomial might have the first and last terms displayed with ‘+ ... +’ between
them. Advanced renderers may provide a facility to zoom in on elided areas.

http://www.w3.org/TR/CSS2/visuren.html#propdef-display

2.5. Embedding MathML in other Documents 29

truncate The display is abbreviated by simply truncating it at the right and bottom borders. It is recom-
mended that some indication of truncation is made to the viewer.

scale The fonts used to display the mathematical expression are chosen so that the full expression fits
in the window. Note that this only happens if the expression is too large. In the case of a window
larger than necessary, the expression is shown at its normal size within the larger window.

altimg This attribute provides a graceful fall-back for browsers that do not support embedded elements. The value
of the attribute is an URL.

alttext This attribute provides a graceful fall-back for browsers that do not support embedded elements or images.
The value of the attribute is a text string.

altimg-width This attribute provides a width for the altimg (if any). The value of attribute is an h-unit. This
value is useful for high resolution images which, if displayed at their full resolution, would be too large.
If neither altimg-width nor altimg-height is given, then for those renderers that use an image, they
should use the image’s natural size. If only the width is given, the renderer should scale the height so as
to preserve the aspect ration of the image.

altimg-height This attribute provides a total height for the altimg (if any). The value of attribute is a v-unit.
This value is useful for high resolution images which, if displayed at their full resolution, would be
too large. If neither altimg-width nor altimg-height is given, then for those renderers that use an
image, they should use the image’s natural size. If only the width is given, the renderer should scale the
width so as to preserve the aspect ration of the image.

altimg-valign By default, the bottom of the image aligns to the current baseline. The valign attribute specifies
the alignment point within the image. The value of attribute is a v-unit. A positive value of valign
shifts the bottom of the image below the current baseline, while a negative value will raise it above the
baseline.

Issue (control):Should there be a way to specify some sort of control over how line breaks are chosen (e.g.,
before or after an infix operator, or if the infix operator is duplicated)?

Issue (control):Should there be a way to specify some sort of indenting style?

Chapter 3

Presentation Markup

3.1 Introduction

This chapter specifies the ‘presentation’ elements of MathML, which can be used to describe the layout structure
of mathematical notation.

3.1.1 What Presentation Elements Represent

Presentation elements correspond to the ‘constructors’ of traditional mathematical notation — that is, to the basic
kinds of symbols and expression-building structures out of which any particular piece of traditional mathemati-
cal notation is built. Because of the importance of traditional visual notation, the descriptions of the notational
constructs the elements represent are usually given here in visual terms. However, the elements are medium-
independent in the sense that they have been designed to contain enough information for good spoken renderings
as well. Some attributes of these elements may make sense only for visual media, but most attributes can be treated
in an analogous way in audio as well (for example, by a correspondence between time duration and horizontal
extent).

MathML presentation elements only suggest (i.e. do not require) specific ways of rendering in order to allow for
medium-dependent rendering and for individual preferences of style. This specification describes suggested visual
rendering rules in some detail, but a particular MathML renderer is free to use its own rules as long as its renderings
are intelligible.

The presentation elements are meant to express the syntactic structure of mathematical notation in much the same
way as titles, sections, and paragraphs capture the higher-level syntactic structure of a textual document. Because
of this, for example, a single row of identifiers and operators, such as ‘x + a / b’, will often be represented not just
by one mrow element (which renders as a horizontal row of its arguments), but by multiple nested mrow elements
corresponding to the nested sub-expressions of which one mathematical expression is composed — in this case,

<mrow>
<mi> x </mi>
<mo> + </mo>
<mrow>
<mi> a </mi>
<mo> / </mo>
<mi> b </mi>

</mrow>
</mrow>

Similarly, superscripts are attached not just to the preceding character, but to the full expression constituting their
base. This structure allows for better-quality rendering of mathematics, especially when details of the rendering

30

3.1. Introduction 31

environment such as display widths are not known to the document author; it also greatly eases automatic interpre-
tation of the mathematical structures being represented.

Certain MathML characters are used to name operators or identifiers that in traditional notation render the same as
other symbols, such as ⅆ, ⅇ, or ⅈ, or operators that usually render
invisibly, such as ⁢, &InvisiblePlus;, ⁡, or ⁣. These
are distinct notational symbols or objects, as evidenced by their distinct spoken renderings and in some cases by
their effects on linebreaking and spacing in visual rendering, and as such should be represented by the appropriate
specific entity references. For example, the expression represented visually as ‘ f (x)’ would usually be spoken in
English as ‘ f of x’ rather than just ‘ f x’; this is expressible in MathML by the use of the ⁡
operator after the ‘ f ’, which (in this case) can be aurally rendered as ‘of’.

The complete list of MathML entities is described in Chapter 6.

3.1.2 Terminology Used In This Chapter

It is strongly recommended that, before reading the present chapter, one read Section 2.1 on MathML syntax
and grammar, which contains important information on MathML notations and conventions. In particular, in this
chapter it is assumed that the reader has an understanding of basic XML terminology described in Section 2.1.2,
and the attribute value notations and conventions described in Section 2.1.3.

The remainder of this section introduces MathML-specific terminology and conventions used in this chapter.

3.1.2.1 Types of presentation elements

The presentation elements are divided into two classes. Token elements represent individual symbols, names,
numbers, labels, etc. In general, tokens can have only characters as content. The only exceptions are the vertical
alignment element malignmark, mglyph, and entity references. Layout schemata build expressions out of parts,
and can have only elements as content (except for whitespace, which they ignore). There are also a few empty
elements used only in conjunction with certain layout schemata.

All individual ‘symbols’ in a mathematical expression should be represented by MathML token elements. The
primary MathML token element types are identifiers (e.g. variables or function names), numbers, and operators
(including fences, such as parentheses, and separators, such as commas). There are also token elements for rep-
resenting text or whitespace that has more aesthetic than mathematical significance, and for representing ‘string
literals’ for compatibility with computer algebra systems. Note that although a token element represents a single
meaningful ‘symbol’ (name, number, label, mathematical symbol, etc.), such symbols may be comprised of more
than one character. For example sin and 24 are represented by the single tokens <mi>sin</mi> and <mn>24</mn>
respectively.

In traditional mathematical notation, expressions are recursively constructed out of smaller expressions, and ulti-
mately out of single symbols, with the parts grouped and positioned using one of a small set of notational structures,
which can be thought of as ‘expression constructors’. In MathML, expressions are constructed in the same way,
with the layout schemata playing the role of the expression constructors. The layout schemata specify the way in
which sub-expressions are built into larger expressions. The terminology derives from the fact that each layout
schema corresponds to a different way of ‘laying out’ its sub-expressions to form a larger expression in traditional
mathematical typesetting.

3.1.2.2 Terminology for other classes of elements and their relationships

The terminology used in this chapter for special classes of elements, and for relationships between elements, is as
follows: The presentation elements are the MathML elements defined in this chapter. These elements are listed in
Section 3.1.7. The content elements are the MathML elements defined in Chapter 4.

32 Chapter 3. Presentation Markup

A MathML expression is a single instance of any of the presentation elements with the exception of the empty
elements none or mprescripts, or is a single instance of any of the content elements which are allowed as
content of presentation elements (described in Section 5.3.2). A sub-expression of an expression E is any MathML
expression that is part of the content of E, whether directly or indirectly, i.e. whether it is a ‘child’ of E or not.

Since layout schemata attach special meaning to the number and/or positions of their children, a child of a layout
schema is also called an argument of that element. As a consequence of the above definitions, the content of a
layout schema consists exactly of a sequence of zero or more elements that are its arguments.

3.1.3 Required Arguments

Many of the elements described herein require a specific number of arguments (always 1, 2, or 3). In the detailed
descriptions of element syntax given below, the number of required arguments is implicitly indicated by giving
names for the arguments at various positions. A few elements have additional requirements on the number or type
of arguments, which are described with the individual element. For example, some elements accept sequences of
zero or more arguments — that is, they are allowed to occur with no arguments at all.

Note that MathML elements encoding rendered space do count as arguments of the elements in which they appear.
See Section 3.2.7 for a discussion of the proper use of such space-like elements.

3.1.3.1 Inferred mrows

The elements listed in the following table as requiring 1* argument (msqrt, mstyle, merror, menclose, mpadded,
mphantom, mtd, and math) actually accept any number of arguments. However, if the number of arguments is 0,
or is more than 1, they treat their contents as a single inferred mrow formed from all their arguments. Although the
math element is not a presentation element, it is listed below for completeness.

For example,

<mtd>
</mtd>

is treated as if it were

<mtd>
<mrow>
</mrow>

</mtd>

and

<msqrt>
<mo> - </mo>
<mn> 1 </mn>

</msqrt>

is treated as if it were

<msqrt>
<mrow>
<mo> - </mo>
<mn> 1 </mn>

</mrow>
</msqrt>

3.1. Introduction 33

This feature allows MathML data not to contain (and its authors to leave out) many mrow elements that would
otherwise be necessary.

In the descriptions in this chapter of the above-listed elements’ rendering behaviors, their content can be assumed
to consist of exactly one expression, which may be an mrow element formed from their arguments in this manner.
However, their argument counts are shown in the following table as 1*, since they are most naturally understood
as acting on a single expression.

3.1.3.2 Table of argument requirements

For convenience, here is a table of each element’s argument count requirements, and the roles of individual argu-
ments when these are distinguished. An argument count of 1* indicates an inferred mrow as described above.

Element Required argument count Argument roles (when these differ by position)
mrow 0 or more
mfrac 2 numerator denominator
msqrt 1*
mroot 2 base index
mstyle 1*
merror 1*
mpadded 1*
mphantom 1*
mfenced 0 or more
menclose 1*
msub 2 base subscript
msup 2 base superscript
msubsup 3 base subscript superscript
munder 2 base underscript
mover 2 base overscript
munderover 3 base underscript overscript
mmultiscripts 1 or more base (subscript superscript)* [<mprescripts/> (presubscript

presuperscript)*]
mtable 0 or more rows 0 or more mtr or mlabeledtr elements
mlabeledtr 1 or more a label and 0 or more mtd elements
mtr 0 or more 0 or more mtd elements
mtd 1*
mcolumn 0 or more
maction 1 or more depend on actiontype attribute
math 1*

3.1.4 Elements with Special Behaviors

Certain MathML presentation elements exhibit special behaviors in certain contexts. Such special behaviors are
discussed in the detailed element descriptions below. However, for convenience, some of the most important classes
of special behavior are listed here.

Certain elements are considered space-like; these are defined in Section 3.2.7. This definition affects some of the
suggested rendering rules for mo elements (Section 3.2.5).

Certain elements, e.g. msup, are able to embellish operators that are their first argument. These elements are listed
in Section 3.2.5, which precisely defines an ‘embellished operator’ and explains how this affects the suggested
rendering rules for stretchy operators.

34 Chapter 3. Presentation Markup

Certain elements treat their arguments as the arguments of an ‘inferred mrow’ if they are not given exactly one
argument, as explained in Section 3.1.3.

3.1.5 Directionality

In the notations familiar to most readers, both the overall layout and the textual symbols are arranged from left to
right (LTR). Yet, as alluded to in the introduction, mathematics written in Hebrew, or in locales such as Morocco
or Persia, the overall layout is used unchanged, but the embedded symbols (often Hebrew or Arabic) are written
right to left (RTL). Moreover, in most of the Arabic speaking world, the notation is arranged entirely RTL; thus a
superscript is still raised, but it follows the base on the left, rather than the right.

MathML 3.0 therefore recognizes two distinct directionalities: the directionality of the text and symbols within
token elements, and the overall directionality represented by Layout Schemata. These two facets are dicussed
below.

3.1.5.1 Overall Directionality of Mathematics Formulas

The overall directionality for a formula, basically the direction of the Layout Schemata, is specified by the dir
attribute on the containing math element (see Section 2.5.2). The default is ltr. When dir=’rtl’ is used, the
layout is simply the mirror image of the conventional European layout. That is, shifts up or down are unchanged,
but the progression in laying out is from right to left. Sub- and superscripts appear to the left of the base; the surd
for a root appears at the right, with the bar continuing over the base to the left.

The overall directionality may also be switched for individual subformula by using the dir attribute on mrow
elements. When not specified, all mrow elements inherit the directionality of the container.

3.1.5.2 Bidirectional Layout in Token Elements

The text directionality comes into play for the MathML token elements that can contain text (mtext, mo, mi, mn
and ms), and is determined by the Unicode properties of that text. A token element containing exclusively LTR
or RTL characters is displayed straightforwardly in the given direction. When a mixture of directions is involved
used, such as RTL Arabic and LTR numbers, the Unicode bidirectional algorithm [Bidi] is applied. This algorithm
specifies how runs of characters with the same direction are processed and how the runs are (re)ordered. The base,
or initial, direction is given by the overall directionality described above (Section 3.1.5.1), and affects how weakly
directional characters are treated and how runs are nested.

The important thing to notice is that the Bidi algorithm is applied independently to the contents of each token
element; each token element is an independent run of characters. This is in contrast to the application of Bidi to
HTML, where the algorithm applies to the entire sequence of characters within each block level element.

Other features of Unicode and scripts that should be respected are ‘mirroring’ and ‘glyph shaping’. Some Unicode
characters are marked as being mirrored when presented in a RTL context, that is, the character is drawn as if it
were mirrored, or replaced by a corresponding character. Thus an opening parenthesis, ‘(’, in RTL will display as
’)’. Conversely, the solidus (/ U+002F), is not marked as mirrored. Thus, an Arabic author that desires the slash
to be reversed in an inline division should explicitly use reverse solidus (\ U+005C), or an alternative such as the
mirroring DIVISION SLASH (U+2215).

Additionally, caligraphic scripts such as Arabic blend, or connect, sequences of characters together, changing their
appearance. As this can have an significant impact on readability, as well as aesthetics, it is important to apply such
shaping if possible. Glyph shaping, like directionality, applies to each token element’s contents individually.

Issue (unicode-properties):We need to check on the status of various characters added to support Arabic, and
also check that the directionality and mirroring properties are correct. (eg summation and similar)

3.1. Introduction 35

Please note that for the transfinite cardinals represented by Hebrew characters, the codepoints U+2135-U+2138
(ALEF SYMBOL, BET SYMBOL, GIMEL SYMBOL, DALET SYMBOL) should be used. These are strong
left-to-right.

3.1.6 Linebreaking of Expressions

3.1.6.1 Control of Linebreaks

MathML provides support for both automatic and manual (forced) linebreaking of expressions, to break exces-
sively long expressions into several lines. All such linebreaks take place within mrow (including inferred mrow;
See Section 3.1.3.1), or mfenced. The breaks themselves take place at operators (mo), and also, for backwards
compatibility, at mspace.

Automatic linebreaking occurs when the containing math element has overflow="linebreak" and the display
engine determines that there is not enough space available to display the entire formula. The available width must
therefore be known to the renderer. Like font properties, one is assumed to be inherited from the environment in
which the MathML element lives. If no width can be determined, an infinite width should be assumed. Inside of a
mtable, each column has some width. This width may be specified as an attribute or determined by the contents.
This width should be used as the linewrapping width for linebreaking, and each entry in an mtable is linewrapped
as needed.

Forced linebreaks are specified by using linebreak="newline" on a mo or mspace element. Both automatic and
manual linebreaking can occur within the same formula.

Automatic linebreaking of subexpressions of mfrac, msqrt, mroot and menclose and the various script elements
is not required. Renderers are free to ignore forced breaks within those elements if they choose.

Attributes on mo and possibily on mspace elements control linebreaking and indentation of the following line. The
aspects of linebreaking that can be controlled are:

• Where — attributes determine the desirability of a linebreak at a specific operator or space, in particular
whether a break is required or inhibited. These can only be set on mo and mspace elements

• Operator Display/Position — when a linebreak occurs, determines whether the operator will appear at
the end of the line, at the beginning of the next line, or in both positions; and how much vertical space
should be added after the linebreak. These attributes can be set on mo elements or inherited from mstyle
or math elements.

• Indentation — determines the indentation of the line following a linebreak, including indenting so that
the next line aligns with some point in a previous line. These attributes can be set on mo and mspace
elements or inherited from mstyle or math elements.

The details about the attributes are given in Section 3.2.5.8.

3.1.6.2 Automatic Linebreaking Algorithm (Informative)

One method of linebreaking that works reasonably well is sometimes referred to as a "best-fit" algorithm. It works
by computing a "penalty" for each potential break point on a line. The break point with the smallest penalty is
chosen and the algorithm then works on the next line. Three useful factors in a penalty calculation are:

1. How much of the line width (after subtracting of the indent) is unused? The more unused, the higher the
penalty.

2. How deeply nested is the breakpoint in the expression tree? The expression tree’s depth is roughly
similar to the nesting depth of mrows. The more deeply nested the break point, the higher the penalty.

3. If the next line is not the last line, and if the indentingstyle uses information about the linebreak point
to determine how much to indent, then the amount of room left for linebreaking on the next line (ie,
linebreaks that leave very little room to draw the next line result in a higher penalty).

36 Chapter 3. Presentation Markup

4. Whether "linebreak" has been specified: "nobreak" effectively sets the penalty to infinity,
"badbreak" increases the penalty, "goodbreak" decreases the penalty, and "newline" effectively
sets the penalty to 0.

This algorithm takes time proportional to the number of tokens elements times the number of lines.

3.1.7 Summary of Presentation Elements

3.1.7.1 Token Elements

mi identifier
mn number
mo operator, fence, or separator
mtext text
mspace space
ms string literal
mglyph accessing glyphs for characters from MathML
mline horizontal line

3.1.7.2 General Layout Schemata

mrow group any number of sub-expressions horizontally
mfrac form a fraction from two sub-expressions
msqrt form a square root (radical without an index)
mroot form a radical with specified index
mstyle style change
merror enclose a syntax error message from a preprocessor
mpadded adjust space around content
mphantom make content invisible but preserve its size
mfenced surround content with a pair of fences
menclose enclose content with a stretching symbol such as a long division sign.

3.1.7.3 Script and Limit Schemata

msub attach a subscript to a base
msup attach a superscript to a base
msubsup attach a subscript-superscript pair to a base
munder attach an underscript to a base
mover attach an overscript to a base
munderover attach an underscript-overscript pair to a base
mmultiscripts attach prescripts and tensor indices to a base

3.1.7.4 Tables and Matrices

mtable table or matrix
mlabeledtr row in a table or matrix with a label or equation number
mtr row in a table or matrix
mtd one entry in a table or matrix
maligngroup and malignmark alignment markers
mcolumn columns of aligned digits

3.2. Token Elements 37

3.1.7.5 Enlivening Expressions

maction bind actions to a sub-expression

3.2 Token Elements

Token elements in presentation markup are broadly intended to represent the smallest units of mathematical no-
tation which carry meaning. Tokens are roughly analogous to words in text. However, because of the precise,
symbolic nature of mathematical notation, the various categories and properties of token elements figure promi-
nently in MathML markup. By contrast, in textual data, individual words rarely need to be marked up or styled
specially.

Frequently tokens consist of a single character denoting a mathematical symbol. Other cases, e.g. function names,
involve multi-character tokens. Further, because traditional mathematical notation makes wide use of symbols dis-
tinguished by their typographical properties (e.g. a Fraktur ’g’ for a Lie algebra, or a bold ’x’ for a vector), care must
be taken to insure that styling mechanisms respect typographical properties which carry meaning. Consequently,
characters, tokens, and typographical properties of symbols are closely related to one another in MathML.

3.2.1 MathML characters in token elements

Character data in MathML markup is only allowed to occur as part of the content of token elements. The only
exception is whitespace between elements, which is ignored. Token elements can contain any sequence of zero
or more Unicode characters. In particular, tokens with empty content are allowed, and should typically render
invisibly, with no width except for the normal extra spacing for that kind of token element. The exceptions to this
are the empty elements mspace, mglyph and mline. The width of these elemnts depend upon their attribute values.

MathML characters can be either represented directly as Unicode character data, or indirectly via numeric or
character entity references. See Chapter 6 for a discussion of the advantages and disadvantages of numeric character
references versus entity references, and [Entities] for a full list of the entity names available.

New mathematical "characters" that arise, or non-standard glyphs for existing MathML characters, may be repre-
sented by means of the mglyph element.

Apart from the mglyph element, the malignmark element is the only other element allowed in the content of
tokens. See Section 3.5.5 for details.

Token elements (other than mspace, mglyph and mline) should be rendered as their content (i.e. in the visual case,
as a closely-spaced horizontal row of standard glyphs for the characters in their content). Rendering algorithms
should also take into account the mathematics style attributes as described below, and modify surrounding spacing
by rules or attributes specific to each type of token element.

3.2.1.1 Alphanumeric symbol characters

A large class of mathematical symbols are single letter identifiers typically used as variable names in formulas.
Different font variants of a letter are treated as separate symbols. For example, a Fraktur ’g’ might denote a Lie
algebra, while a Roman ’g’ denotes the corresponding Lie group. These letter-like symbols are traditionally typeset
differently than the same characters appearing in text, using different spacing and ligature conventions. These
characters must also be treated specially by style mechanisms, since arbitrary style transformations can change
meaning in an expression.

For these reasons, Unicode contains more than nine hundred Math Alphanumeric Symbol characters corresponding
to letter-like symbols. These characters are in the Secondary Multilingual Plane (SMP). See [Entities] for more

38 Chapter 3. Presentation Markup

information. As valid Unicode data, these characters are permitted in MathML, and as tools and fonts for them
become widely available, we anticipate they will be the predominant way of denoting letter-like symbols.

MathML also provides an alternative encoding for these characters using only Basic Multilingual Plane (BMP)
characters together with markup. MathML defines a correspondence between token elements with certain combi-
nations of BMP character data and the mathvariant attribute and tokens containing SMP Math Alphanumeric
Symbol characters. Processing applications that accept SMP characters are required to treat the corresponding
BMP and attribute combinations identically. This is particularly important for applications that support searching
and/or equality testing.

The next section discusses the mathvariant attribute in more detail, and a complete technical description of the
corresponding characters is given in Section 6.5.

3.2.2 Mathematics style attributes common to token elements

MathML includes four mathematics style attributes. These attributes are valid on all presentation token elements ,
and on no other elements except mstyle. The attributes are:

Name values default
mathvariant normal | bold | italic | bold-italic | double-struck | bold-fraktur |

script | bold-script | fraktur | sans-serif | bold-sans-serif | sans-serif-
italic | sans-serif-bold-italic | monospace | initial | tailed | looped |
stretched

normal (except on <mi>)

mathsize small | normal | big | number v-unit inherited
mathcolor #rgb | #rrggbb | html-color-name inherited
mathbackground #rgb | #rrggbb | html-color-name transparent

(See Section 2.1.3 for terminology and notation used in attribute value descriptions.)

The mathematics style attributes define logical classes of token elements. Each class is intended to correspond to
a collection of typographically-related symbolic tokens that have a meaning within a given math expression, and
therefore need to be visually distinguished and protected from inadvertent document-wide style changes which
might change their meanings.

When MathML rendering takes place in an environment where CSS is available, the mathematics style attributes
can be viewed as predefined selectors for CSS style rules. See Section 7.4 and Appendix C for further discussion
and a sample CSS style sheet. When CSS is not available, it is up to the internal style mechanism of the rendering
application to visually distinguish the different logical classes.

Renderers have complete freedom in mapping mathematics style attributes to specific rendering properties. How-
ever, in practice, the mathematics style attribute names and values suggest obvious typographical properties, and
renderers should attempt to respect these natural interpretations as far as possible. For example, it is reasonable to
render a token with the mathvariant attribute set to "sans-serif" in Helvetica or Arial. However, rendering
the token in a Times Roman font could be seriously misleading and should be avoided.

It is important to note that only certain combinations of character data and mathvariant attribute values make
sense. For example, there is no clear cut rendering for a ’fraktur’ alpha, or a ’bold italic’ Kanji character. By
design, the only cases that have an unambiguous interpretation are exactly the ones that correspond to SMP Math
Alphanumeric Symbol characters, which are enumerated in Section 6.5. The mathvariant values "initial",
"tailed", "looped" and "stretched" are expected to apply only to Arabic characters. In all other cases, it is
suggested that renderers ignore the value of the mathvariant attribute if it is present. Similarly, authors should
refrain from using the mathvariant attribute with characters that do not have SMP counterparts, since renderings
may not be useful or predictable. In the very rare case that it is necessary to specify a font variant for other
characters or symbols within an equation, external styling mechanisms such as CSS are generally preferable, or in
the last resort, the deprecated style attributes of MathML 1 could be used.

3.2. Token Elements 39

Token elements also permit id, xref, class and style attributes for compatibility with style sheet mechanisms,
as described in Section 2.1.4. However, some care must be taken when using CSS generally. Using CSS to produce
visual effects that alter the meaning of an equation should be especially avoided, since MathML is used in many
non-CSS environments. Similarly, care should be taken to insure arbitrary document-wide style transformations do
not affect mathematics expressions in such a way that meaning is altered.

Since MathML expressions are often embedded in a textual data format such as XHTML, the surrounding text and
the MathML must share rendering attributes such as font size, so that the renderings will be compatible in style.
For this reason, most attribute values affecting text rendering are inherited from the rendering environment, as
shown in the ‘default’ column in the table above. (In cases where the surrounding text and the MathML are being
rendered by separate software, e.g. a browser and a plug-in, it is also important for the rendering environment to
provide the MathML renderer with additional information, such as the baseline position of surrounding text, which
is not specified by any MathML attributes.) Note, however, that MathML doesn’t specify the mechanism by which
style information is inherited from the rendering environment. For example, one browser plug-in might choose to
rely completely on the CSS inheritance mechanism and use the fully resolved CSS properties for rendering, while
another application might only consult a style environment at the root node, and then use its own internal style
inheritance rules.

Most MathML renderers will probably want to rely on some degree to additional, internal style processing algo-
rithms. In particular, inheritance of the mathvariant attribute does not follow the CSS model. The default value
for this attribute is "normal" (non-slanted) for all tokens except mi. For mi tokens, the default depends on the num-
ber of characters in tokens’ content. (The deprecated fontslant attribute also behaves this way.) See Section 3.2.3
for details.

3.2.2.1 Deprecated style attributes on token elements

The MathML 1.01 style attributes listed below are deprecated in MathML 2 and 3. In rendering environments
that support CSS, it is preferable to use CSS to control the rendering properties corresponding to these attributes.
However as explained above, direct manipulation of these rendering properties by whatever means should usually
be avoided.

If both a new mathematics style attribute and conflicting deprecated attributes are given, the new math style attribute
value should be used. For example

<mi fontweight=’bold’ mathvariant=’normal’> a </mi>

should render in a normal weight font, and

<mi fontweight=’bold’ mathvariant=’sans-serif’> a </mi>

should render in a normal weight sans serif font. In the example

<mi fontweight=’bold’ mathvariant=’fraktur’> a1 </mi>

the mathvariant attribute still overrides fontweight attribute, even though "fraktur" generally shouldn’t be
applied to a ’1’ since there is no corresponding SMP Math Alphanumeric Symbol character. In the absence of fonts
containing Fraktur digits, this would probably render as a Fraktur ’a’ followed by a Roman ’1’ in most renderers.

The new mathematics style attributes also override deprecated 1.01 style attribute values that are inherited. Thus

<mstyle fontstyle=’italic’>
<mi mathvariant=’bold’> a </mi>

</mstyle>

40 Chapter 3. Presentation Markup

renders in a bold upright font, not a bold italic font.

At the same time, the MathML 1.01 attributes still serve a purpose. Since they correspond directly to rendering
properties needed for mathematics layout, they are very useful for describing MathML layout rules and algorithms.
For this reason, and for backward compatibility, the MathML rendering rules suggested in this chapter continue to
be described in terms of the rendering properties described by these MathML 1.01 style attributes.

The deprecated attributes are:

Name values default
fontsize number v-unit inherited
fontweight normal | bold inherited
fontstyle normal | italic normal (except on <mi>)
fontfamily string | css-fontfamily inherited
color #rgb | #rrggbb | html-color-name inherited

The fontsize attribute specifies the desired font size. v-unit represents a unit of vertical length (see Sec-
tion 2.1.3.3). The most common unit for specifying font sizes in typesetting is pt (points).

If the requested size of the current font is not available, the renderer should approximate it in the manner likely to
lead to the most intelligible, highest quality rendering.

Many MathML elements automatically change fontsize in some of their children; see the discussion of
scriptlevel in the section on mstyle, Section 3.3.4.

The value of the fontfamily attribute should be the name of a font that may be available to a MathML renderer,
or information that permits the renderer to select a font in some manner; acceptable values and their meanings are
dependent on the specific renderer and rendering environment in use, and are not specified by MathML (but see
the note about css-fontfamily below). (Note that the renderer’s mechanism for finding fonts by name may be
case-sensitive.)

If the value of fontfamily is not recognized by a particular MathML renderer, this should never be interpreted
as a MathML error; rather, the renderer should either use a font that it considers to be a suitable substitute for the
requested font, or ignore the attribute and act as if no value had been given.

Note that any use of the fontfamily attribute is unlikely to be portable across all MathML renderers. In particular,
it should never be used to try to achieve the effect of a reference to a non-ASCII MathML character (for example,
by using a reference to a character in some symbol font that maps ordinary characters to glyphs for non-ASCII
characters). As a corollary to this principle, MathML renderers should attempt to always produce intelligible ren-
derings for the MathML characters listed in Chapter 6, even when these characters are not available in the font
family indicated. Such a rendering is always possible — as a last resort, a character can be rendered to appear as
an XML-style entity reference using one of the entity names given for the same character in Chapter 6.

The symbol css-fontfamily refers to a legal value for the font-family property in CSS, which is a comma-
separated list of alternative font family names or generic font types in order of preference, as documented in more
detail in CSS[CSS2]. MathML renderers are encouraged to make use of the CSS syntax for specifying fonts when
this is practical in their rendering environment, even if they do not otherwise support CSS. (See also the subsection
CSS-compatible attributes within Section 2.1.3.3).

3.2.2.2 Color-related attributes

The mathcolor (and deprecated color) attribute controls the color in which the content of tokens is rendered.
Additionally, when inherited from mstyle or from a MathML expression’s rendering environment, it controls the
color of all other drawing by MathML elements, including the lines or radical signs that can be drawn by mfrac,
mtable, or msqrt.

3.2. Token Elements 41

The values of mathcolor, color, mathbackground, and background can be specified as a string consisting
of ‘#’ followed without intervening whitespace by either 1-digit or 2-digit hexadecimal values for the red, green,
and blue components, respectively, of the desired color. The same number of digits must be used for each com-
ponent. No whitespace is allowed between the ’#’ and the hexadecimal values. The hexadecimal digits are not
case-sensitive. The possible 1-digit values range from 0 (component not present) to F (component fully present),
and the possible 2-digit values range from 00 (component not present) to FF (component fully present), with the
1-digit value x being equivalent to the 2-digit value xx (rather than x0).

These attributes can also be specified as an html-color-name, which is defined below. Additionally, the keyword
"transparent" may be used for the background attribute.

The color syntax described above is a subset of the syntax of the color and background-color properties of
CSS. The background-color syntax is in turn a subset of the full CSS background property syntax, which
also permits specification of (for example) background images with optional repeats. The more general attribute
name background is used in MathML to facilitate possible extensions to the attribute’s scope in future versions of
MathML.

Color values on either attribute can also be specified as an html-color-name, that is, as one of the color-name
keywords defined in [HTML4] ("aqua", "black", "blue", "fuchsia", "gray", "green", "lime", "maroon",
"navy", "olive", "purple", "red", "silver", "teal", "white", and "yellow"). Note that the color name
keywords are not case-sensitive, unlike most keywords in MathML attribute values for compatibility with CSS and
HTML.

The suggested MathML visual rendering rules do not define the precise extent of the region whose background is
affected by using the background attribute on mstyle, except that, when mstyle’s content does not have negative
dimensions and its drawing region is not overlapped by other drawing due to surrounding negative spacing, this
region should lie behind all the drawing done to render the content of the mstyle, but should not lie behind any of
the drawing done to render surrounding expressions. The effect of overlap of drawing regions caused by negative
spacing on the extent of the region affected by the background attribute is not defined by these rules.

3.2.3 Identifier (mi)

3.2.3.1 Description

An mi element represents a symbolic name or arbitrary text that should be rendered as an identifier. Identifiers can
include variables, function names, and symbolic constants.

Not all ‘mathematical identifiers’ are represented by mi elements — for example, subscripted or primed variables
should be represented using msub or msup respectively. Conversely, arbitrary text playing the role of a ‘term’
(such as an ellipsis in a summed series) can be represented using an mi element, as shown in an example in
Section 3.2.6.4.

It should be stressed that mi is a presentation element, and as such, it only indicates that its content should be
rendered as an identifier. In the majority of cases, the contents of an mi will actually represent a mathematical
identifier such as a variable or function name. However, as the preceding paragraph indicates, the correspondence
between notations that should render like identifiers and notations that are actually intended to represent mathe-
matical identifiers is not perfect. For an element whose semantics is guaranteed to be that of an identifier, see the
description of ci in Chapter 4.

3.2.3.2 Attributes

mi elements accept the attributes listed in Section 3.2.2, but in one case with a different default value:

42 Chapter 3. Presentation Markup

Name values default
mathvariant normal | bold | italic | bold-italic | double-struck

| bold-fraktur | script | bold-script | fraktur | sans-
serif | bold-sans-serif | sans-serif-italic | sans-
serif-bold-italic | monospace | initial | tailed |
looped | stretched

(depends on content; described below)

fontstyle (deprecated) normal | italic (depends on content; described below)

A typical graphical renderer would render an mi element as the characters in its content, with no extra spacing
around the characters (except spacing associated with neighboring elements). The default mathvariant and
fontstyle would (typically) be "normal" (non-slanted) unless the content is a single character, in which case it
would be "italic". Note that this rule for mathvariant and fontstyle attributes is specific to mi elements; the
default value for the mathvariant and fontstyle attributes on other MathML token elements is "normal".

Note that for purposes of determining equivalences of Math Alphanumeric Symbol characters (See Section 6.5 and
Section 3.2.1.1) the value of the mathvariant attribute should be resolved first, including the special defaulting
behavior described above.

3.2.3.3 Examples

<mi> x </mi>
<mi> D </mi>
<mi> sin </mi>
<mi mathvariant=’script’> L </mi>
<mi></mi>

An mi element with no content is allowed; <mi></mi> might, for example, be used by an ‘expression editor’
to represent a location in a MathML expression which requires a ‘term’ (according to conventional syntax for
mathematics) but does not yet contain one.

Identifiers include function names such as ‘sin’. Expressions such as ‘sin x’ should be written using the
⁡ operator (which also has the short name ⁡) as shown below; see also the discussion of
invisible operators in Section 3.2.5.

<mrow>
<mi> sin </mi>
<mo> ⁡ </mo>
<mi> x </mi>

</mrow>

Miscellaneous text that should be treated as a ‘term’ can also be represented by an mi element, as in:

<mrow>
<mn> 1 </mn>
<mo> + </mo>
<mi> ... </mi>
<mo> + </mo>
<mi> n </mi>

</mrow>

When an mi is used in such exceptional situations, explicitly setting the fontstyle attribute may give better results
than the default behavior of some renderers.

3.2. Token Elements 43

The names of symbolic constants should be represented as mi elements:

<mi> π </mi>
<mi> ⅈ </mi>
<mi> ⅇ </mi>

Use of special entity references for such constants can simplify the interpretation of MathML presentation ele-
ments. See Chapter 6 for a complete list of character entity references in MathML.

3.2.4 Number (mn)

3.2.4.1 Description

An mn element represents a ‘numeric literal’ or other data that should be rendered as a numeric literal. Generally
speaking, a numeric literal is a sequence of digits, perhaps including a decimal point, representing an unsigned
integer or real number.

The mathematical concept of a ‘number’ can be quite subtle and involved, depending on the context. As a con-
sequence, not all mathematical numbers should be represented using mn; examples of mathematical numbers that
should be represented differently are shown below, and include complex numbers, ratios of numbers shown as
fractions, and names of numeric constants.

Conversely, since mn is a presentation element, there are a few situations where it may desirable to include arbitrary
text in the content of an mn that should merely render as a numeric literal, even though that content may not be
unambiguously interpretable as a number according to any particular standard encoding of numbers as character
sequences. As a general rule, however, the mn element should be reserved for situations where its content is actually
intended to represent a numeric quantity in some fashion. For an element whose semantics are guaranteed to be
that of a particular kind of mathematical number, see the description of cn in Chapter 4.

3.2.4.2 Attributes

mn elements accept the attributes listed in Section 3.2.2.

A typical graphical renderer would render an mn element as the characters of its content, with no extra spacing
around them (except spacing from neighboring elements such as mo). Unlike mi, mn elements are (typically) ren-
dered in an unslanted font by default, regardless of their content.

3.2.4.3 Examples

<mn> 2 </mn>
<mn> 0.123 </mn>
<mn> 1,000,000 </mn>
<mn> 2.1e10 </mn>
<mn> 0xFFEF </mn>
<mn> MCMLXIX </mn>
<mn> twenty one </mn>

3.2.4.4 Numbers that should not be written using mn alone

Many mathematical numbers should be represented using presentation elements other than mn alone; this includes
complex numbers, ratios of numbers shown as fractions, and names of numeric constants. Examples of MathML
representations of such numbers include:

44 Chapter 3. Presentation Markup

<mrow>
<mn> 2 </mn>
<mo> + </mo>
<mrow>
<mn> 3 </mn>
<mo> ⁢ </mo>
<mi> ⅈ </mi>

</mrow>
</mrow>
<mfrac> <mn> 1 </mn> <mn> 2 </mn> </mfrac>
<mi> π </mi>
<mi> ⅇ </mi>

3.2.5 Operator, Fence, Separator or Accent (mo)

3.2.5.1 Description

An mo element represents an operator or anything that should be rendered as an operator. In general, the notational
conventions for mathematical operators are quite complicated, and therefore MathML provides a relatively sophis-
ticated mechanism for specifying the rendering behavior of an mo element. As a consequence, in MathML the list
of things that should ‘render as an operator’ includes a number of notations that are not mathematical operators in
the ordinary sense. Besides ordinary operators with infix, prefix, or postfix forms, these include fence characters
such as braces, parentheses, and ‘absolute value’ bars, separators such as comma and semicolon, and mathematical
accents such as a bar or tilde over a symbol.

The term ‘operator’ as used in the present chapter means any symbol or notation that should render as an operator,
and that is therefore representable by an mo element. That is, the term ‘operator’ includes any ordinary operator,
fence, separator, or accent unless otherwise specified or clear from the context.

All such symbols are represented in MathML with mo elements since they are subject to essentially the same
rendering attributes and rules; subtle distinctions in the rendering of these classes of symbols, when they exist,
are supported using the boolean attributes fence, separator and accent, which can be used to distinguish these
cases.

A key feature of the mo element is that its default attribute values are set on a case-by-case basis from an ‘operator
dictionary’ as explained below. In particular, default values for fence, separator and accent can usually be
found in the operator dictionary and therefore need not be specified on each mo element.

Note that some mathematical operators are represented not by mo elements alone, but by mo elements ‘embellished’
with (for example) surrounding superscripts; this is further described below. Conversely, as presentation elements,
mo elements can contain arbitrary text, even when that text has no standard interpretation as an operator; for an
example, see the discussion ‘Mixing text and mathematics’ in Section 3.2.6. See also Chapter 4 for definitions of
MathML content elements that are guaranteed to have the semantics of specific mathematical operators.

Note also that linebreaking, as discussed in Section 3.1.6, usually takes place at operators (either before or after,
depending on local conventions). Thus, mo accepts attributes to encode the desirability of breaking at a particular
operator, as well as attributes describing the treatment of the operator and indentation in case the a linebreak is
made at that operator.

3.2.5.2 Attributes

mo elements accept the attributes listed in Section 3.2.2 and the additional attributes listed here. Because of the
large number of operators allowed on mo elements, the listing is broken into the three subsections below.

3.2. Token Elements 45

Most attributes get their default values from an enclosing mstyle element, math element, or from the Sec-
tion 3.2.5.7, as described later in this section. When a value that is listed as "inherited" is not explicitly given
on an mo, mstyle element, math element, or found in the operator dictionary for a given mo element, the default
value shown in parentheses is used. The attributes may also appear on any ancestor of the math element, if permit-
ted by the containing document, to provide defaults for all contained math elements. In such cases, the attributes
would be in the MathML namespace.

Dictionary-based attributes

Name values default
form prefix | infix | postfix set by position of operator in an mrow (rule

given below); used with mo content to in-
dex operator dictionary

fence true | false set by dictionary (false)
separator true | false set by dictionary (false)
lspace number h-unit | namedspace set by dictionary (thickmathspace)
rspace number h-unit | namedspace set by dictionary (thickmathspace)
stretchy true | false set by dictionary (false)
symmetric true | false set by dictionary (true)
maxsize number [v-unit | h-unit] | namedspace | infinity set by dictionary (infinity)
minsize number [v-unit | h-unit] | namedspace set by dictionary (1)
largeop true | false set by dictionary (false)
movablelimits true | false set by dictionary (false)
accent true | false set by dictionary (false)
linebreakstyle before | after | duplicate | namedbreakstyle set by dictionary (lbbinary)
linebreakmultchar string inhertied (⁢)

h-unit represents a unit of horizontal length, and v-unit represents a unit of vertical length (see Section 2.1.3.2).
namedspace is one of "veryverythinmathspace", "verythinmathspace", "thinmathspace",
"mediummathspace", "thickmathspace", "verythickmathspace", or "veryverythickmathspace". Sim-
ilarly, namedbreakstyle is one of "lbprefix", "lbpostfix", "lbopen", "lbclose", "lbseparator", or
"lbbinary". These values can be set by using the mstyle element as is further discussed in Section 3.3.4.

If no unit is given with maxsize or minsize, the number is a multiplier of the normal size of the operator in the
direction (or directions) in which it stretches. These attributes are further explained below.

Typical graphical renderers show all mo elements as the characters of their content, with additional spacing around
the element determined from the attributes listed above. Detailed rules for determining operator spacing in visual
renderings are described in a subsection below. As always, MathML does not require a specific rendering, and
these rules are provided as suggestions for the convenience of implementors.

Renderers without access to complete fonts for the MathML character set may choose not to render an mo element
as precisely the characters in its content in some cases. For example, <mo> ≤ </mo> might be rendered as <=
to a terminal. However, as a general rule, renderers should attempt to render the content of an mo element as literally
as possible. That is, <mo> ≤ </mo> and <mo> <= </mo> should render differently. The first one should
render as a single character representing a less-than-or-equal-to sign, and the second one as the two-character
sequence <=.

Issue (op):Line breaks typically occur before or after operators (including fences and separators). We could add
an attribute linebreakstyle to specify information to the automatic linebreaking algorithm about the preferred
method of linebreaking around an operator. The potential values are: before, after, duplicateThe default for these
values could be specified in the operator dictionary. As with other mo attributes, this value can be set by using the
mstyle element. To be useful, there needs to be a level of indirection so the general behavior could be changed

46 Chapter 3. Presentation Markup

easily without having to list a new value for all operators. One such possibility is to define three additional
attributes: operatorlinebreakstyle, separatorlinebreakstyle, and fencelinebreakstyle. The problem with this idea is
it breaks the simple model used to find default values for mo attributes.

Linebreaking attributes

The following attributes affect when a linebreak does or does not occur, and the amount of vertical space used
before the next line when a linebreak does occur.

Name values default
linebreak auto | newline | nobreak | goodbreak | badbreak auto
lineleading number v-unit inherited (100%)

The meanings of these attributes are given in Section 3.2.5.8.

Indentation attributes

The following attributes affect indentation of the new line following a linebreak, whether automatic or manual.
When they appear on mo or mspace they apply if a linebreak occurs at that point. When the appear on mstyle or
math elements, they determine defaults for the style to be used for any linebreaks occuring within.

Name values default
indentstyle left | center | right | auto | id inherited (auto)
indentstylefirst left | center | right | auto | id | indentstyle inherited (indentstyle)
indentstylelast left | center | right | auto | id | indentstyle inherited (indentstyle)
indenttarget id inherited (none)
indentoffset number h-unit | namedspace inherited (0)
indentoffsetfirst number h-unit | namedspace | indentoffset inherited (indentoffset)
indentoffsetlast number h-unit | namedspace | indentoffset inherited (indentoffset)

The meanings of these attributes are given in Section 3.2.5.8.

3.2.5.3 Examples with ordinary operators

<mo> + </mo>
<mo> < </mo>
<mo> ≤ </mo>
<mo> <= </mo>
<mo> ++ </mo>
<mo> ∑ </mo>
<mo> .NOT. </mo>
<mo> and </mo>
<mo> ⁢ </mo>
<mo mathvariant=’bold’> + </mo>

3.2.5.4 Examples with fences and separators

Note that the mo elements in these examples don’t need explicit fence or separator attributes, since these can be
found using the operator dictionary as described below. Some of these examples could also be encoded using the
mfenced element described in Section 3.3.8.

(a+b)

3.2. Token Elements 47

<mrow>
<mo> (</mo>
<mrow>
<mi> a </mi>
<mo> + </mo>
<mi> b </mi>

</mrow>
<mo>) </mo>

</mrow>

[0,1)

<mrow>
<mo> [</mo>
<mrow>
<mn> 0 </mn>
<mo> , </mo>
<mn> 1 </mn>

</mrow>
<mo>) </mo>

</mrow>

f (x,y)

<mrow>
<mi> f </mi>
<mo> ⁡ </mo>
<mrow>
<mo> (</mo>
<mrow>
<mi> x </mi>
<mo> , </mo>
<mi> y </mi>

</mrow>
<mo>) </mo>

</mrow>
</mrow>

3.2.5.5 Invisible operators

Certain operators that are ‘invisible’ in traditional mathematical notation should be represented using specific
entity references within mo elements, rather than simply by nothing. The entity references used for these ‘invisible
operators’ are:

Full name Short name Examples of use
⁢ ⁢ xy
&InvisiblePlus; &ip; 2 3

4
⁡ ⁡ f (x) sin x
⁣ ⁣ m12

The MathML representations of the examples in the above table are:

48 Chapter 3. Presentation Markup

<mrow>
<mi> x </mi>
<mo> ⁢ </mo>
<mi> y </mi>

</mrow>

<mrow>
<mn> 2 </mn>
<mo> ⁤ </mo>
<mfrac>
<mn> 3 </mn>
<mn> 4 </mn>

</mfrac>
</mrow>

<mrow>
<mi> f </mi>
<mo> ⁡ </mo>
<mrow>
<mo> (</mo>
<mi> x </mi>
<mo>) </mo>

</mrow>
</mrow>

<mrow>
<mi> sin </mi>
<mo> ⁡ </mo>
<mi> x </mi>

</mrow>

<msub>
<mi> m </mi>
<mrow>
<mn> 1 </mn>
<mo> ⁣ </mo>
<mn> 2 </mn>

</mrow>
</msub>

The reasons for using specific mo elements for invisible operators include:

• such operators should often have specific effects on visual rendering (particularly spacing and linebreak-
ing rules) that are not the same as either the lack of any operator, or spacing represented by mspace or
mtext elements;

• these operators should often have specific audio renderings different than that of the lack of any operator;
• automatic semantic interpretation of MathML presentation elements is made easier by the explicit spec-

ification of such operators.

For example, an audio renderer might render f (x) (represented as in the above examples) by speaking ‘f of x’, but
use the word ‘times’ in its rendering of xy. Although its rendering must still be different depending on the structure

3.2. Token Elements 49

of neighboring elements (sometimes leaving out ‘of’ or ‘times’ entirely), its task is made much easier by the use
of a different mo element for each invisible operator.

3.2.5.6 Names for other special operators

MathML also includes ⅆ for use in an mo element representing the differential operator symbol
usually denoted by ‘d’. The reasons for explicitly using this special entity are similar to those for using the special
entities for invisible operators described in the preceding section.

3.2.5.7 Detailed rendering rules for mo elements

Typical visual rendering behaviors for mo elements are more complex than for the other MathML token elements,
so the rules for rendering them are described in this separate subsection.

Note that, like all rendering rules in MathML, these rules are suggestions rather than requirements. Furthermore,
no attempt is made to specify the rendering completely; rather, enough information is given to make the intended
effect of the various rendering attributes as clear as possible.

The operator dictionary

Many mathematical symbols, such as an integral sign, a plus sign, or a parenthesis, have a well-established, pre-
dictable, traditional notational usage. Typically, this usage amounts to certain default attribute values for mo el-
ements with specific contents and a specific form attribute. Since these defaults vary from symbol to symbol,
MathML anticipates that renderers will have an ‘operator dictionary’ of default attributes for mo elements (see Ap-
pendix B) indexed by each mo element’s content and form attribute. If an mo element is not listed in the dictionary,
the default values shown in parentheses in the table of attributes for mo should be used, since these values are
typically acceptable for a generic operator.

Some operators are ‘overloaded’, in the sense that they can occur in more than one form (prefix, infix, or postfix),
with possibly different rendering properties for each form. For example, ‘+’ can be either a prefix or an infix
operator. Typically, a visual renderer would add space around both sides of an infix operator, while only in front
of a prefix operator. The form attribute allows specification of which form to use, in case more than one form is
possible according to the operator dictionary and the default value described below is not suitable.

Default value of the form attribute

The form attribute does not usually have to be specified explicitly, since there are effective heuristic rules for
inferring the value of the form attribute from the context. If it is not specified, and there is more than one possible
form in the dictionary for an mo element with given content, the renderer should choose which form to use as
follows (but see the exception for embellished operators, described later):
• If the operator is the first argument in an mrow of length (i.e. number of arguments) greater than one

(ignoring all space-like arguments (see Section 3.2.7) in the determination of both the length and the
first argument), the prefix form is used;

• if it is the last argument in an mrow of length greater than one (ignoring all space-like arguments), the
postfix form is used;

• in all other cases, including when the operator is not part of an mrow, the infix form is used.
Note that these rules make reference to the mrow in which the mo element lies. In some situations, this mrow might
be an inferred mrow implicitly present around the arguments of an element such as msqrt or mtd.

Opening fences should have form="prefix", and closing fences should have form="postfix"; separators are
usually ‘infix’, but not always, depending on their surroundings. As with ordinary operators, these values do not
usually need to be specified explicitly.

50 Chapter 3. Presentation Markup

If the operator does not occur in the dictionary with the specified form, the renderer should use one of the forms
that is available there, in the order of preference: infix, postfix, prefix; if no forms are available for the given mo
element content, the renderer should use the defaults given in parentheses in the table of attributes for mo.

Exception for embellished operators

There is one exception to the above rules for choosing an mo element’s default form attribute. An mo element that
is ‘embellished’ by one or more nested subscripts, superscripts, surrounding text or whitespace, or style changes
behaves differently. It is the embellished operator as a whole (this is defined precisely, below) whose position in an
mrow is examined by the above rules and whose surrounding spacing is affected by its form, not the mo element at
its core; however, the attributes influencing this surrounding spacing are taken from the mo element at the core (or
from that element’s dictionary entry).

For example, the ‘+4’ in a+4b should be considered an infix operator as a whole, due to its position in the middle
of an mrow, but its rendering attributes should be taken from the mo element representing the ‘+’, or when those
are not specified explicitly, from the operator dictionary entry for <mo form="infix"> + </mo>. The precise
definition of an ‘embellished operator’ is:

• an mo element;
• or one of the elements msub, msup, msubsup, munder, mover, munderover, mmultiscripts, mfrac,

or semantics (Section 5.1), whose first argument exists and is an embellished operator;
• or one of the elements mstyle, mphantom, or mpadded, such that an mrow containing the same argu-

ments would be an embellished operator;
• or an maction element whose selected sub-expression exists and is an embellished operator;
• or an mrow whose arguments consist (in any order) of one embellished operator and zero or more space-

like elements.

Note that this definition permits nested embellishment only when there are no intervening enclosing elements not
in the above list.

The above rules for choosing operator forms and defining embellished operators are chosen so that in all ordinary
cases it will not be necessary for the author to specify a form attribute.

Rationale for definition of embellished operators

The following notes are included as a rationale for certain aspects of the above definitions, but should not be
important for most users of MathML.

An mfrac is included as an ‘embellisher’ because of the common notation for a differential operator:

<mfrac>
<mo> ⅆ </mo>
<mrow>
<mo> ⅆ </mo>
<mi> x </mi>

</mrow>
</mfrac>

Since the definition of embellished operator affects the use of the attributes related to stretching, it is important that
it includes embellished fences as well as ordinary operators; thus it applies to any mo element.

Note that an mrow containing a single argument is an embellished operator if and only if its argument is an embel-
lished operator. This is because an mrow with a single argument must be equivalent in all respects to that argument
alone (as discussed in Section 3.3.1). This means that an mo element that is the sole argument of an mrow will

3.2. Token Elements 51

determine its default form attribute based on that mrow’s position in a surrounding, perhaps inferred, mrow (if there
is one), rather than based on its own position in the mrow in which it is the sole argument.

Note that the above definition defines every mo element to be ‘embellished’ — that is, ‘embellished operator’ can
be considered (and implemented in renderers) as a special class of MathML expressions, of which mo is a specific
case.

Spacing around an operator

The amount of horizontal space added around an operator (or embellished operator), when it occurs in an mrow,
can be directly specified by the lspace and rspace attributes. Note that lspace and rspace should be interpreted
as leading and trailing space, in the case of RTL direction. By convention, operators that tend to bind tightly to
their arguments have smaller values for spacing than operators that tend to bind less tightly. This convention should
be followed in the operator dictionary included with a MathML renderer. In TEX, these values can only be one of
three values; typically they are 3/18em, 4/18em, and 5/18em. MathML does not impose this limit.

Some renderers may choose to use no space around most operators appearing within subscripts or superscripts, as
is done in TEX.

Non-graphical renderers should treat spacing attributes, and other rendering attributes described here, in analo-
gous ways for their rendering medium. For example, more space might translate into a longer pause in an audio
rendering.

3.2.5.8 Rendering Rules for Linebreaking

Linebreaking Attributes

The linebreak attribute is used to give a linebreaking hint to a visual renderer. The default value is "auto",
which indicates that a renderer should use its default linebreaking algorithm to determine whether to break or not
break at this operator. The value "newline" is used to force a linebreak. The others values only affect automatic
linebreaking. For automatic linebreaking, "nobreak" forbids a break, "goodbreak" suggests a good position for
a break, while "goodbreak" suggests a poor position for a break.

Note that values on adjacent mo and mspace elements do not interact; a "nobreak" on an mspace will not, in
itself, inhibit a break on an adjacent mo element.

The lineleading attribute specifies the amount of vertical space to use after the linebreak. This can be a fixed
amount of space such as 2pt. If a percentage is given, the renderer is free choose the amount of the space it uses
for leading. For tall lines, it is often clearer to use more leading around them than if the lines are not tall. A value
of "100%" means to use the renderer’s default amount of space; a value of "200%" means that twice the defalt
amount should be used and "50%" means to use half of the space. The default amount of space to use is left to the
renderer to decide.

Dictionary-based linebreaking attributes

The linebreakstyle attribute specifies whether to break before or after certain operators:

• "before" means to break before the operator, placing it at the beginning of the new line;
• "after" means to break after the operator, placing it at the end of the broken line;
• "duplicate" means to duplicate the operator, placing it both at the end of the broken line and at the

beginning of the new line.

linebreakstyle may also be a namedbreakstyle, which is one of "lbprefix", "lbpostfix", "lbopen",
"lbclose", "lbseparator", or "lbbinary". Ultimately, these values are one of "before", "after", or

52 Chapter 3. Presentation Markup

"duplicate". namedbreakstyle values can be set by using the mstyle or math element as is further discussed
in Section 3.3.4. By setting a namedbreakstyle value in an mstyle element, all operators that occur within that
element and have that break style will break relative to the operator identically. "lbbinary" is likely to be the
most commonly changed value.

The linebreakmultchar specifies what to display when a break occurs at an ⁢ operator. For
example, to display a center dot if a linebreak occurs at this point, the following could be used:

<mo linebreakmultchar ="·"> ⁢ </mo>

Note: the only use case for displaying a different character when linebreaking that was found was to make an
invisible times operator visible. If other uses cases are found, subsequent versions of MathML may generalize this
attribute to be a characteristic of the operator that is looked up in the operator dictionary.

Linebreaking Indentation Attributes

There are several attributes that affect indentation of the new line following a linebreak, whether automatic or
manual. When they appear on mo or mspace they apply if a linebreak occurs at that point. When the appear on
mstyle or math elements, they determine defaults for the style to be used for any linebreaks occuring within that
element. They may also appear on any ancestor of the math element, if permitted by the containing document, to
provide defaults for all contained math elements. In such cases, the attributes would be in the MathML namespace.

The attributes indentstyle and indentoffset work together to determine the amount of indentation to use on
the new line after a linebreak. The indentoffset attribute is applied after indentstyle to alter the indentation
(either to the left or to the right) by a fixed amount. These two attributes apply to all lines, possibly excepting
the first and last lines. The pair indentstylefirst and indentoffsetfirst applies to the first line. The pair
indentstylelast and indentoffsetlast applies to the last line, if there is more than one line.
"indentstyle" and "indentoffset" are the defaults for the first and last variants, so that they inherit the
current values used for the center lines.

The legal values of indentstyle are:

Value Meaning
left Align the left side of the next line to the left side of the line wrapping width
center Align the center of the next line to the center of the line wrapping width
right Align the right side of the next line to the right side of the line wrapping width
auto (default) indent using the renderer’s default indenting style; this may be a fixed amount or one that varies with the depth of the element in the mrow nesting or some other similar method.
id Align the left side of the next line to the left side of the element referenced by an id (given by indenttarget); if the id given by indenttarget doesn’t exist, use "auto" as the indentstyle value

The value used for indenting is determined at the point of the linebreak. For the first line, the value used for
indentation is the value of indentstylefirst inherited by first element that is rendered. This means that for
indentstylefirst to be used, it must be set on an mstyle element or other legal element that encloses the first
element that is rendered. With the exception of "center" and "right", all of the above values result in a zero
width indent for the first line.

Note that for indentoffset, indentoffsetfirst and indentoffsetlast, font relative values such as 3em
refer to the font in effect at the point of use, not at the point of declaration. For example, if indentoffset=’2em’
is specified on the math element, the indentation will be 2 ems from the font in effect at the linebreak, rather than
the font in effect at the math element. In practice, however, these will almost always be the same.

A render may ignore the values of the indentstyle and indentoffset attributes if they result in a line in which
the remaining width is too small to usefully display the expression or if they result in a line in which the remaining
width exceeds the available linewrapping width.

If indentstyle, indentstylefirst, or indentstylelast is "id", then the value of indenttarget is used
to find the ID value to use for alignment. If the value of indenttarget is not a valid ID, or if the ID is not

3.2. Token Elements 53

present, then "auto" is used to determine indenting. The values of id must be unique within the scope of the
entire document. MathML generators that create id values should take care to create unique values.

"id"s can occur in any MathML element, including invisible elements inside of an mphantom. However, the "id"
must occur in the expression or document before it is referenced. It is permissible for the "id" value may be inside
another math element prior to the current point of reference. This allows for inter-expression alignment. However,
the "id" may not be visible to or usable by MathML renderers; in those cases, renderers should treat it as not being
present and "auto" should be used to determine linebreaking.

Note that there is only one indenttarget attribute; its value is shared by indentstyle and indentstylelast.
This means that it is not possible to use different values for "id" for the first and last line for automatic linebreaking
without using the indenttarget attribute on all possible break points. However, because you can specify its value
at a forced break, it is possible to use different values for manual linebreaking.

3.2.5.9 Examples with linebreaking and IDs

The following example demonstrates forced linebreaks and forced alignment:

<mrow>
<mrow> <mi>f</mi> <mo>⁡</mo> <mo>(</mo> <mi>x</mi> <mo>)</mo> </mrow>

<mo id=’eq1-equals’>=</mo>
<mrow>
<msup>
<mrow> <mo>(</mo> <mrow> <mi>x</mi> <mo>+</mo> <mn>1</mn> </mrow> <mo>)</mo> </mrow>
<mn>4</mn>
</msup>
<mo linebreak=’newline’ linebreakstyle=’before’ indentstyle=’id’ indenttarget=’eq1-equals’>=</mo>
<mrow>
<msup> <mi>x</mi> <mn>4</mn> </msup>
<mo id=’eq1-plus’>+</mo>
<mrow> <mn>4</mn> <mo>⁢</mo> <msup> <mi>x</mi> <mn>3</mn> </msup> </mrow>
<mo>+</mo>
<mrow> <mn>6</mn> <mo>⁢</mo> <msup> <mi>x</mi> <mn>2</mn> </msup> </mrow>

<mo linebreak=’newline’ linebreakstyle=’before’ indentstylelast=’id’ indenttarget=’eq1-plus’>+</mo>
<mrow> <mn>4</mn> <mo>⁢</mo> <mi>x</mi> </mrow>
<mo>+</mo>
<mn>1</mn>
</mrow>
</mrow>
</mrow>

This displays as

Note that because indentstylelast defaults to "indentstyle", in the above example indentstyle could
have been used in place of indentstylelast. Also, the specifying linebreakstyle=’before’ is not needed

54 Chapter 3. Presentation Markup

because that is the default value.

3.2.5.10 Stretching of operators, fences and accents

Four attributes govern whether and how an operator (perhaps embellished) stretches so that it matches the size
of other elements: stretchy, symmetric, maxsize, and minsize. If an operator has the attribute stretchy=
"true", then it (that is, each character in its content) obeys the stretching rules listed below, given the constraints
imposed by the fonts and font rendering system. In practice, typical renderers will only be able to stretch a small
set of characters, and quite possibly will only be able to generate a discrete set of character sizes.

There is no provision in MathML for specifying in which direction (horizontal or vertical) to stretch a specific
character or operator; rather, when stretchy="true" it should be stretched in each direction for which stretching
is possible. It is up to the renderer to know in which directions it is able to stretch each character. (Most characters
can be stretched in at most one direction by typical renderers, but some renderers may be able to stretch certain
characters, such as diagonal arrows, in both directions independently.)

The minsize and maxsize attributes limit the amount of stretching (in either direction). These two attributes are
given as multipliers of the operator’s normal size in the direction or directions of stretching, or as absolute sizes
using units. For example, if a character has maxsize="3", then it can grow to be no more than three times its
normal (unstretched) size.

The symmetric attribute governs whether the height and depth above and below the axis of the character are forced
to be equal (by forcing both height and depth to become the maximum of the two). An example of a situation
where one might set symmetric="false" arises with parentheses around a matrix not aligned on the axis, which
frequently occurs when multiplying non-square matrices. In this case, one wants the parentheses to stretch to cover
the matrix, whereas stretching the parentheses symmetrically would cause them to protrude beyond one edge of
the matrix. The symmetric attribute only applies to characters that stretch vertically (otherwise it is ignored).

If a stretchy mo element is embellished (as defined earlier in this section), the mo element at its core is stretched to a
size based on the context of the embellished operator as a whole, i.e. to the same size as if the embellishments were
not present. For example, the parentheses in the following example (which would typically be set to be stretchy by
the operator dictionary) will be stretched to the same size as each other, and the same size they would have if they
were not underlined and overlined, and furthermore will cover the same vertical interval:

<mrow>
<munder>
<mo> (</mo>
<mo> _ </mo>

</munder>
<mfrac>
<mi> a </mi>
<mi> b </mi>

</mfrac>
<mover>
<mo>) </mo>
<mo> ‾ </mo>

</mover>
</mrow>

Note that this means that the stretching rules given below must refer to the context of the embellished operator as
a whole, not just to the mo element itself.

3.2. Token Elements 55

Example of stretchy attributes

This shows one way to set the maximum size of a parenthesis so that it does not grow, even though its default value
is stretchy="true".

<mrow>
<mo maxsize="1"> (</mo>
<mfrac>
<mi> a </mi> <mi> b </mi>

</mfrac>
<mo maxsize="1">) </mo>

</mrow>

The above should render as (a
b) as opposed to the default rendering

(a
b

)
.

Note that each parenthesis is sized independently; if only one of them had maxsize="1", they would render with
different sizes.

Vertical Stretching Rules

• If a stretchy operator is a direct sub-expression of an mrow element, or is the sole direct sub-expression
of an mtd element in some row of a table, then it should stretch to cover the height and depth (above
and below the axis) of the non-stretchy direct sub-expressions in the mrow element or table row, unless
stretching is constrained by minsize or maxsize attributes.

• In the case of an embellished stretchy operator, the preceding rule applies to the stretchy operator at its
core.

• If symmetric="true", then the maximum of the height and depth is used to determine the size, before
application of the minsize or maxsize attributes.

• The preceding rules also apply in situations where the mrow element is inferred.

Most common opening and closing fences are defined in the operator dictionary to stretch by default; and they
stretch vertically. Also, operators such as ∑, ∫, /, and vertical arrows stretch vertically by default.

In the case of a stretchy operator in a table cell (i.e. within an mtd element), the above rules assume each cell of the
table row containing the stretchy operator covers exactly one row. (Equivalently, the value of the rowspan attribute
is assumed to be 1 for all the table cells in the table row, including the cell containing the operator.) When this
is not the case, the operator should only be stretched vertically to cover those table cells that are entirely within
the set of table rows that the operator’s cell covers. Table cells that extend into rows not covered by the stretchy
operator’s table cell should be ignored. See Section 3.5.4.2 for details about the rowspan attribute.

Horizontal Stretching Rules

• If a stretchy operator, or an embellished stretchy operator, is a direct sub-expression of an munder,
mover, or munderover element, or if it is the sole direct sub-expression of an mtd element in some
column of a table (see mtable), then it, or the mo element at its core, should stretch to cover the width of
the other direct sub-expressions in the given element (or in the same table column), given the constraints
mentioned above.

• If a stretchy operator is a direct sub-expression of an munder, mover, or munderover element, or if it
is the sole direct sub-expression of an mtd element in some column of a table, then it should stretch to
cover the width of the other direct sub-expressions in the given element (or in the same table column),
given the constraints mentioned above.

• In the case of an embellished stretchy operator, the preceding rule applies to the stretchy operator at its
core.

56 Chapter 3. Presentation Markup

By default, most horizontal arrows and some accents stretch horizontally.

In the case of a stretchy operator in a table cell (i.e. within an mtd element), the above rules assume each cell
of the table column containing the stretchy operator covers exactly one column. (Equivalently, the value of the
columnspan attribute is assumed to be 1 for all the table cells in the table row, including the cell containing the
operator.) When this is not the case, the operator should only be stretched horizontally to cover those table cells that
are entirely within the set of table columns that the operator’s cell covers. Table cells that extend into columns not
covered by the stretchy operator’s table cell should be ignored. See Section 3.5.4.2 for details about the rowspan
attribute.

The rules for horizontal stretching include mtd elements to allow arrows to stretch for use in commutative diagrams
laid out using mtable. The rules for the horizontal stretchiness include scripts to make examples such as the
following work:

<mrow>
<mi> x </mi>
<munder>
<mo> → </mo>
<mtext> maps to </mtext>

</munder>
<mi> y </mi>

</mrow>

This displays as x −−−−→
maps to

y.

Rules Common to both Vertical and Horizontal Stretching

If a stretchy operator is not required to stretch (i.e. if it is not in one of the locations mentioned above, or if there are
no other expressions whose size it should stretch to match), then it has the standard (unstretched) size determined
by the font and current fontsize.

If a stretchy operator is required to stretch, but all other expressions in the containing element (as described above)
are also stretchy, all elements that can stretch should grow to the maximum of the normal unstretched sizes of all
elements in the containing object, if they can grow that large. If the value of minsize or maxsize prevents this
then that (min or max) size is used.

For example, in an mrow containing nothing but vertically stretchy operators, each of the operators should stretch to
the maximum of all of their normal unstretched sizes, provided no other attributes are set that override this behavior.
Of course, limitations in fonts or font rendering may result in the final, stretched sizes being only approximately
the same.

3.2.5.11 Other attributes of mo

The largeop attribute specifies whether the operator should be drawn larger than normal if displaystyle=
"true" in the current rendering environment. This roughly corresponds to TEX’s \displaystyle style setting.
MathML uses two attributes, displaystyle and scriptlevel, to control orthogonal presentation features that
TEX encodes into one ‘style’ attribute with values \displaystyle, \textstyle, \scriptstyle, and
\scriptscriptstyle. These attributes are discussed further in Section 3.3.4 describing the mstyle element.
Note that these attributes can be specified directly on an mstyle element’s start tag, but not on most other elements.
Examples of large operators include ∫ and ∏.

The movablelimits attribute specifies whether underscripts and overscripts attached to this mo element should
be drawn as subscripts and superscripts when displaystyle="false". movablelimits="false" means that
underscripts and overscripts should never be drawn as subscripts and superscripts. In general, displaystyle is

3.2. Token Elements 57

"true" for displayed mathematics and "false" for inline mathematics. Also, displaystyle is "false" by
default within tables, scripts and fractions, and a few other exceptional situations detailed in Section 3.3.4. Thus,
operators with movablelimits="true" will display with limits (i.e. underscripts and overscripts) in displayed
mathematics, and with subscripts and superscripts in inline mathematics, tables, scripts and so on. Examples of
operators that typically have movablelimits="true" are ∑, ∏, and lim.

The accent attribute determines whether this operator should be treated by default as an accent (diacritical mark)
when used as an underscript or overscript; see munder, mover, and munderover (Section 3.4.4, Section 3.4.5 and
Section 3.4.6).

The separator attribute may affect automatic linebreaking in renderers that position ordinary infix operators at
the beginnings of broken lines rather than at the ends (that is, which avoid linebreaking just after such operators),
since linebreaking should be avoided just before separators, but is acceptable just after them.

The fence attribute has no effect in the suggested visual rendering rules given here; it is not needed for properly
rendering traditional notation using these rules. It is provided so that specific MathML renderers, especially non-
visual renderers, have the option of using this information.

3.2.6 Text (mtext)

3.2.6.1 Description

An mtext element is used to represent arbitrary text that should be rendered as itself. In general, the mtext element
is intended to denote commentary text.

Note that some text with a clearly defined notational role might be more appropriately marked up using mi or mo;
this is discussed further below.

An mtext element can be used to contain ‘renderable whitespace’, i.e. invisible characters that are intended to
alter the positioning of surrounding elements. In non-graphical media, such characters are intended to have an
analogous effect, such as introducing positive or negative time delays or affecting rhythm in an audio renderer. This
is not related to any whitespace in the source MathML consisting of blanks, newlines, tabs, or carriage returns;
whitespace present directly in the source is trimmed and collapsed, as described in Section 2.1.5. Whitespace that
is intended to be rendered as part of an element’s content must be represented by entity references or mspace
elements (unless it consists only of single blanks between non-whitespace characters).

3.2.6.2 Attributes

mtext elements accept the attributes listed in Section 3.2.2.

See also the warnings about the legal grouping of ‘space-like elements’ in Section 3.2.7, and about the use of such
elements for ‘tweaking’ or conveying meaning in Section 3.3.6.

3.2.6.3 Examples

<mtext> Theorem 1: </mtext>
<mtext>   </mtext>
<mtext>      </mtext>
<mtext> /* a comment */ </mtext>

58 Chapter 3. Presentation Markup

3.2.6.4 Mixing text and mathematics

In some cases, text embedded in mathematics could be more appropriately represented using mo or mi elements.
For example, the expression ’there exists δ > 0 such that f (x) <1’ is equivalent to ∃δ > 0 3 f (x) < 1 and could be
represented as:

<mrow>
<mo> there exists </mo>
<mrow>
<mrow>
<mi> δ </mi>
<mo> > </mo>
<mn> 0 </mn>

</mrow>
<mo> such that </mo>
<mrow>
<mrow>
<mi> f </mi>
<mo> ⁡ </mo>
<mrow>
<mo> (</mo>
<mi> x </mi>
<mo>) </mo>

</mrow>
</mrow>
<mo> < </mo>
<mn> 1 </mn>

</mrow>
</mrow>

</mrow>

An example involving an mi element is: x+x2+···+xn. In this example, ellipsis should be represented using an mi
element, since it takes the place of a term in the sum; (see Section 3.2.3).

On the other hand, expository text within MathML is best represented with an mtext element. An example of this
is:
Theorem 1: if x > 1, then x2 > x.
However, when MathML is embedded in HTML, or another document markup language, the example is probably
best rendered with only the two inequalities represented as MathML at all, letting the text be part of the surrounding
HTML.

Another factor to consider in deciding how to mark up text is the effect on rendering. Text enclosed in an mo
element is unlikely to be found in a renderer’s operator dictionary, so it will be rendered with the format and spacing
appropriate for an ‘unrecognized operator’, which may or may not be better than the format and spacing for ‘text’
obtained by using an mtext element. An ellipsis entity in an mi element is apt to be spaced more appropriately for
taking the place of a term within a series than if it appeared in an mtext element.

3.2.7 Space (mspace)

3.2.7.1 Description

An mspace empty element represents a blank space of any desired size, as set by its attributes. It can also be used
to make linebreaking suggestions to a visual renderer. Note that the default values for attributes have been chosen

3.2. Token Elements 59

so that they typically will have no effect on rendering. Thus, the mspace element is generally used with one or
more attribute values explicitly specified.

3.2.7.2 Attributes

mspace elements accept the attributes described in Section 3.2.2, but note that mathvariant and mathcolor have
no effect. mathsize only affects the interpretation of units in sizing attributes (see Section 2.1.3.2). Additionally,
it accepts the attributes described in Section 3.2.5.2 and the attributes listed below.

Name values default
spacing string ""
width number h-unit | namedspace 0em
height number v-unit 0ex
depth number v-unit 0ex
linebreak auto | newline | nobreak | goodbreak | badbreak auto

"h-unit" and "v-unit" represent units of horizontal or vertical length, respectively (see Section 2.1.3.2).

The "spacing" attribute is a string-valued variable whose default value is the empty string (""). The spacing
attribute specifies that the width of the space is the same as the length of the attribute value in the current font, as
if the text had been the content of and mtext element.

The total width of a mspace is given by the sum of both the "width" and "spacing" attributes. The "spacing"
attribute does not affect the height or depth of the mspace.

The linebreak attribute is used to give a linebreaking hint to a visual renderer. It behaves identically to the
linebreak of mo. The default value is "auto", which indicates that a renderer should use whatever default line-
breaking algorithm it would normally use. The meanings of the other values are described in Section 3.2.5.8.

The value "indentingnewline" was defined in MathML2 for mspace; it is now deprecated. Its meaning is the
same as newline, which is compatible with its earlier use when no other linebreaking attributes are specified.

The spacing that normally follows an operator is not used at the end of a line. Similarly, the space that normally
preceeds an operator is not used at the beginning of a line.

Value Meaning
left Align the left side of the next line to the left side of the first line
center Align the center of the next line to the center of the first line
right Align the right side of the next line to the right side of the first line
auto (default) Indent using the algorithm used by the automatic linebreaking algorithm.
number h-unit Indent the amount specified by the argument. If a percentage is given, this is the percentage of

the linewrapping width currently in effect.
Issue (char):There are two ways that a character value might not be present. The first is that it wasn’t part of the
MathML. The second is that it was inserted, but the line from the character to the line break was so long that it
wrapped and the character ended up on a line prior to the previous line. Is the "Indent" behavior appropriate?
Issue (count):Another possible value, which is similar to what Word uses, is specify a number and that number
means ’indent to the ith operator on the previous line’. The operator is not specified.
Issue (align):Another option is to add a new element (or reuse malignmark) and allow the value "AlignMark" as
an indent value. In this case, it would align to the mark in the previous line.
Issue (id):Yet another idea is to have indent=id and have an id specified on some element mean the point to be
indented to.
Note the warning about the legal grouping of ‘space-like elements’ given below, and the warning about the use of
such elements for ‘tweaking’ or conveying meaning in Section 3.3.6. See also the other elements that can render
as whitespace, namely mtext, mphantom, and maligngroup.

60 Chapter 3. Presentation Markup

3.2.7.3 Examples

<mspace spacing="00"/>
<mspace spacing="×000,00"/>
<mspace height="3ex" depth="2ex"/>

<mrow>
<mi>a</mi>
<mo id="firstop">+</mo>
<mi>b</mi>
<mspace linebreak="newline" indentto="firstop"/>
<mo>+</mo>
<mi>c</mi>

</mrow>

In the last example, mspace will cause the line to end after the "b" and the following line to be indented so that the
"+" that follows will align with the "+" with id="firstop".

3.2.7.4 Definition of space-like elements

A number of MathML presentation elements are ‘space-like’ in the sense that they typically render as whitespace,
and do not affect the mathematical meaning of the expressions in which they appear. As a consequence, these
elements often function in somewhat exceptional ways in other MathML expressions. For example, space-like ele-
ments are handled specially in the suggested rendering rules for mo given in Section 3.2.5. The following MathML
elements are defined to be ‘space-like’:

• an mtext, mspace, maligngroup, or malignmark element;
• an mstyle, mphantom, or mpadded element, all of whose direct sub-expressions are space-like;
• an maction element whose selected sub-expression exists and is space-like;
• an mrow all of whose direct sub-expressions are space-like.

Note that an mphantom is not automatically defined to be space-like, unless its content is space-like. This is
because operator spacing is affected by whether adjacent elements are space-like. Since the mphantom element is
primarily intended as an aid in aligning expressions, operators adjacent to an mphantom should behave as if they
were adjacent to the contents of the mphantom, rather than to an equivalently sized area of whitespace.

3.2.7.5 Legal grouping of space-like elements

Authors who insert space-like elements or mphantom elements into an existing MathML expression should note
that such elements are counted as arguments, in elements that require a specific number of arguments, or that
interpret different argument positions differently.

Therefore, space-like elements inserted into such a MathML element should be grouped with a neighboring argu-
ment of that element by introducing an mrow for that purpose. For example, to allow for vertical alignment on the
right edge of the base of a superscript, the expression

<msup>
<mi> x </mi>
<malignmark edge="right"/>
<mn> 2 </mn>

</msup>

is illegal, because msup must have exactly 2 arguments; the correct expression would be:

3.2. Token Elements 61

<msup>
<mrow>
<mi> x </mi>
<malignmark edge="right"/>

</mrow>
<mn> 2 </mn>

</msup>

See also the warning about ‘tweaking’ in Section 3.3.6.

3.2.8 String Literal (ms)

3.2.8.1 Description

The ms element is used to represent ‘string literals’ in expressions meant to be interpreted by computer algebra
systems or other systems containing ‘programming languages’. By default, string literals are displayed surrounded
by double quotes. As explained in Section 3.2.6, ordinary text embedded in a mathematical expression should be
marked up with mtext, or in some cases mo or mi, but never with ms.

Note that the string literals encoded by ms are made up of characters, mglyphs and malignmarks rather than
‘ASCII strings’. For example, <ms>&</ms> represents a string literal containing a single character, &, and
<ms>&amp;</ms> represents a string literal containing 5 characters, the first one of which is &.

Like all token elements, ms does trim and collapse whitespace in its content according to the rules of Section 2.1.5,
so whitespace intended to remain in the content should be encoded as described in that section.

3.2.8.2 Attributes

ms elements accept the attributes listed in Section 3.2.2, and additionally:

Name values default
lquote string "
rquote string "

In visual renderers, the content of an ms element is typically rendered with no extra spacing added around the string,
and the quote characters at the beginning and the end of the string. By default, the left and right quote characters
are both the standard double quote character ". However, these characters can be changed with the lquote
and rquote attributes respectively (which should be interpreted as opening and closing quotes, respectively).

The content of ms elements should be rendered with visible ‘escaping’ of certain characters in the content, including
at least the left and right quoting characters, and preferably whitespace other than individual space characters. The
intent is for the viewer to see that the expression is a string literal, and to see exactly which characters form its
content. For example, <ms>double quote is "</ms> might be rendered as "double quote is \"".

3.2.9 Using images to represent symbols (mglyph)

3.2.9.1 Description

The mglyph element provides a mechanism for displaying images to represent non-standard symbols. It is generally
used as the content of mi or mo elements where existing Unicode characters are not adequate.

Unicode defines a large number of characters used in mathematics, and in most cases, glyphs representing these
characters are widely available in a variety of fonts. Although these characters should meet almost all users needs,
MathML recognizes that mathematics is not static and that new characters and symbols are added when convenient.
Characters that become well accepted will likely be eventually incorporated by the Unicode Consortium or other
standards bodies, but that is often a lengthy process.

62 Chapter 3. Presentation Markup

3.2.9.2 Attributes

mglyph elements accept the attributes listed in Section 3.2.2, but note that mathvariant and mathcolor have no
effect. mathsize only affects the interpretation of units in sizing attributes (see Section 2.1.3.2). The background
color, mathbackground, should show through if the specified image has transparency.

mglyph also accepts the additional attributes listed here.

Name values default
alt string required
src URI required
width unsigned-number h-unit from image
height unsigned-number v-unit from image
valign number v-unit 0em

The alt attribute provides an alternate name for the glyph. If the specified image can’t be found or displayed, the
renderer may use this name in a warning message or some unknown glyph notation. The name might also be used
by an audio renderer or symbol processing system and should be chosen to be descriptive.

The src attribute specifies the location of the image resource; it may be a URI relative to the base-uri of the source
of the MathML, if any. Examples of widely recognized image formats include GIF, JPEG and PNG; However, it
may be advisable to omit the extension from the src uri, so that a user agent may use content-negotiation to choose
the most appropriate format. The src uniquely identifies the mglyph; two mglyphs with the same values for src
should be considered identical by applications that must determine whether two characters/glyphs are identical.
The alt attribute should not be part of the identity test.

The width and height attributes specify the desired size of the glyph. They are both optional. If neither are
given, the renderer should render the image at its natural size. If only one is given, the renderer should respect that
dimension and choose the other dimension so as to preserve the aspect ratio of the image.

By default, the bottom of the image aligns to the current baseline. The valign attribute specifies the alignment
point within the image. A positive value of valign shifts the bottom of the image below the current baseline, while
a negative value will raise it above the baseline.

3.2.9.3 Example

The following example illustrates how a researcher might use the mglyph construct with a set of images to work
with braid group notation.

<mrow>
<mi><mglyph src="my-braid-23" alt="23braid"/></mi>
<mo>+</mo>
<mi><mglyph src="my-braid-132" alt="132braid"/></mi>
<mo>=</mo>
<mi><mglyph src="my-braid-13" alt="13braid"/></mi>

</mrow>

This might render as:

3.3. General Layout Schemata 63

3.2.9.4 Deprecated Attributes

Originally, mglyph was designed to provide access to non-standard fonts. Since this functionality was seldom
implemented, nor were downloadable web fonts widely available, this use of mglyph has been deprecated. For
reference, the following attributes were previously defined. In MathML 1 and 2, they were required ttributes; they
are now optional attributes. If both a src and fontfamily attribute are present, the fontfamily attribute is
ignored.

Name values
fontfamily string | css-fontfamily
index integer

The fontfamily and index attributes named a font and position within that font.

3.2.10 Line mline

3.2.10.1 Description

mline draws a horizontal line. The length and width of the line are specified as attributes.

3.2.10.2 Attributes

mline elements accept the attributes listed in Section 3.2.2, but note that mathvariant has no effect. mathsize
only affects the interpretation of units in sizing attributes (see Section 2.1.3.2).

Name values default
linethickness number [v-unit] | thin | medium | thick 1 (rule thickness)
spacing string ""
length number h-unit | namedspace 0

The linethickness attribute specifies how thick the line should be drawn.

The spacing attribute specifies that the length of the line is the same as the length of the attribute value in the
current font.

The length attribute specifies the length of the line using a specification that is the same as the width attribute of
mspace .

3.2.10.3 Examples

Here are some examples:

<mline spacing="000,000"/>
<mline length="2.5in"/>

Issue (generalization):A further generalization of mline would be to an arbitrary rectangular shape, where a
height could also be specified instead of linethickness. With this generalization, mline would need to be renamed
as would the "length" attribute. A minor restriction of this would be to add an attribute direction with values
"horizontal" (default) and "vertical".

3.3 General Layout Schemata
Besides tokens there are several families of MathML presentation elements. One family of elements deals with
various ‘scripting’ notations, such as subscript and superscript. Another family is concerned with matrices and
tables. The remainder of the elements, discussed in this section, describe other basic notations such as fractions
and radicals, or deal with general functions such as setting style properties and error handling.

64 Chapter 3. Presentation Markup

3.3.1 Horizontally Group Sub-Expressions (mrow)

3.3.1.1 Description

An mrow element is used to group together any number of sub-expressions, usually consisting of one or more mo
elements acting as ‘operators’ on one or more other expressions that are their ‘operands’.

Several elements automatically treat their arguments as if they were contained in an mrow element. See the dis-
cussion of inferred mrows in Section 3.1.3. See also mfenced (Section 3.3.8), which can effectively form an mrow
containing its arguments separated by commas.

mrow elements are typically rendered visually as a horizontal row of their arguments, left to right in the order in
which the arguments occur, in a context with LTR directionality, or right to left. The dir attribute can be used
to specify the directionality for a specific mrow, otherwise it inherits the directionality from the context. For aural
agents, the arguments would be rendered audibly as a sequence of renderings of the arguments. The description in
Section 3.2.5 of suggested rendering rules for mo elements assumes that all horizontal spacing between operators
and their operands is added by the rendering of mo elements (or, more generally, embellished operators), not by the
rendering of the mrows they are contained in.

MathML provides support for both automatic and manual linebreaking of expressions (that is, to break excessively
long expressions into several lines). All such linebreaks take place within mrows, whether they are explicitly marked
up in the document, or inferred (See Section 3.1.3.1), although the control of linebreaking is effected through
attributes on other elements (See Section 3.1.6).

3.3.1.2 Attributes

mrow elements accept the attributes listed in Section 2.1.4 and the dir attribute as described in Section 3.1.5.1.

3.3.1.3 Proper grouping of sub-expressions using mrow

Sub-expressions should be grouped by the document author in the same way as they are grouped in the mathemati-
cal interpretation of the expression; that is, according to the underlying ‘syntax tree’ of the expression. Specifically,
operators and their mathematical arguments should occur in a single mrow; more than one operator should occur
directly in one mrow only when they can be considered (in a syntactic sense) to act together on the interleaved argu-
ments, e.g. for a single parenthesized term and its parentheses, for chains of relational operators, or for sequences
of terms separated by + and -. A precise rule is given below.

Proper grouping has several purposes: it improves display by possibly affecting spacing; it allows for more intel-
ligent linebreaking and indentation; and it simplifies possible semantic interpretation of presentation elements by
computer algebra systems, and audio renderers.

Although improper grouping will sometimes result in suboptimal renderings, and will often make interpretation
other than pure visual rendering difficult or impossible, any grouping of expressions using mrow is allowed in
MathML syntax; that is, renderers should not assume the rules for proper grouping will be followed.

mrow of one argument

MathML renderers are required to treat an mrow element containing exactly one argument as equivalent in all ways
to the single argument occurring alone, provided there are no attributes on the mrow element’s start tag. If there are
attributes on the mrow element’s start tag, no requirement of equivalence is imposed. This equivalence condition is
intended to simplify the implementation of MathML-generating software such as template-based authoring tools.
It directly affects the definitions of embellished operator and space-like element and the rules for determining the
default value of the form attribute of an mo element; see Section 3.2.5 and Section 3.2.7. See also the discussion of
equivalence of MathML expressions in Section 2.3.

3.3. General Layout Schemata 65

Precise rule for proper grouping

A precise rule for when and how to nest sub-expressions using mrow is especially desirable when generating
MathML automatically by conversion from other formats for displayed mathematics, such as TEX, which don’t
always specify how sub-expressions nest. When a precise rule for grouping is desired, the following rule should be
used:

Two adjacent operators (i.e. mo elements, possibly embellished), possibly separated by operands (i.e. anything
other than operators), should occur in the same mrow only when the leading operator has an infix or prefix form
(perhaps inferred), the following operator has an infix or postfix form, and the operators are listed in the same
group of entries in the operator dictionary provided in Appendix B. In all other cases, nested mrows should be used.

When forming a nested mrow (during generation of MathML) that includes just one of two successive operators
with the forms mentioned above (which mean that either operator could in principle act on the intervening operand
or operands), it is necessary to decide which operator acts on those operands directly (or would do so, if they
were present). Ideally, this should be determined from the original expression; for example, in conversion from
an operator-precedence-based format, it would be the operator with the higher precedence. If this cannot be de-
termined directly from the original expression, the operator that occurs later in the suggested operator dictionary
(Appendix B) can be assumed to have a higher precedence for this purpose.

Note that the above rule has no effect on whether any MathML expression is valid, only on the recommended way
of generating MathML from other formats for displayed mathematics or directly from written notation.

(Some of the terminology used in stating the above rule in defined in Section 3.2.5.)

3.3.1.4 Examples

As an example, 2x+y-z should be written as:

<mrow>
<mrow>
<mn> 2 </mn>
<mo> ⁢ </mo>
<mi> x </mi>

</mrow>
<mo> + </mo>
<mi> y </mi>
<mo> - </mo>
<mi> z </mi>

</mrow>

The proper encoding of (x, y) furnishes a less obvious example of nesting mrows:

<mrow>
<mo> (</mo>
<mrow>
<mi> x </mi>
<mo> , </mo>
<mi> y </mi>

</mrow>
<mo>) </mo>

</mrow>

66 Chapter 3. Presentation Markup

In this case, a nested mrow is required inside the parentheses, since parentheses and commas, thought of as fence
and separator ‘operators’, do not act together on their arguments.

3.3.2 Fractions (mfrac)

3.3.2.1 Description

The mfrac element is used for fractions. It can also be used to mark up fraction-like objects such as binomial
coefficients and Legendre symbols. The syntax for mfrac is

<mfrac> numerator denominator </mfrac>

3.3.2.2 Attributes

mfrac elements accept the attributes listed below in addition to those listed in Section 2.1.4.

Name values default
linethickness number [v-unit] | thin | medium | thick 1 (rule thickness)
numalign left | center | right center
denomalign left | center | right center
bevelled true | false false

The linethickness attribute indicates the thickness of the horizontal ‘fraction bar’, or ‘rule’, typically used to
render fractions. A fraction with linethickness="0" renders without the bar, and might be used within binomial
coefficients. A linethickness greater than one might be used with nested fractions. These cases are shown
below: (

a
b

)
a
b

c
d

In general, the value of linethickness can be a number, as a multiplier of the default thickness of the fraction bar
(the default thickness is not specified by MathML), or a number with a unit of vertical length (see Section 2.1.3.2),
or one of the keywords medium (same as 1), thin (thinner than 1, otherwise up to the renderer), or thick (thicker
than 1, otherwise up to the renderer).

The numalign and denomalign attributes control the horizontal alignment of the numerator and denominator
respectively. Typically, numerators and denominators are centered, but a very long numerator or denominator
might be displayed on several lines and a left alignment might be more appropriate for displaying them.

The bevelled attribute determines whether the fraction is displayed with the numerator above the denominator
separated by a horizontal line or whether a diagonal line is used to separate a slightly raised numerator from a
slightly lowered denominator. The latter form corresponds to the attribute value being "true" and provides for
a more compact form for simple numerator and denominators. An example illustrating the bevelled form is show
below:

1
x3 + x

3
= 1

/
x3 + x

3

Issue (arabic-bevelled-mfrac):Check with Azzeddine how a bevelled mfrac should be rendered.

In a RTL directionality context, the numerator leads (on the right) and the demonator follows (on the left). In this
case, the diagonal line slants upwards going from right to left. Although this format is an established convention,
it is not universally followed; for situations where a forward slash is desired in a RTL context, alternative markup,
such as an mo within an mrow should be used.

3.3. General Layout Schemata 67

The mfrac element sets displaystyle to "false", or if it was already false increments scriptlevel by 1,
within numerator and denominator. These attributes are inherited by every element from its rendering environment,
but can be set explicitly only on the mstyle and mtable elements. (See Section 3.3.4.)

3.3.2.3 Examples

The examples shown above can be represented in MathML as:

<mrow>
<mo> (</mo>
<mfrac linethickness="0">

<mi> a </mi>
<mi> b </mi>

</mfrac>
<mo>) </mo>

</mrow>
<mfrac linethickness="2">

<mfrac>
<mi> a </mi>
<mi> b </mi>

</mfrac>
<mfrac>

<mi> c </mi>
<mi> d </mi>

</mfrac>
</mfrac>

<mfrac>
<mn> 1 </mn>
<mrow>

<msup>
<mi> x </mi>
<mn> 3 </mn>

</msup>
<mo> + </mo>
<mfrac>
<mi> x </mi>
<mn> 3 </mn>

</mfrac>
</mrow>

</mfrac>
<mo> = </mo>
<mfrac bevelled="true">

<mn> 1 </mn>
<mrow>

<msup>
<mi> x </mi>
<mn> 3 </mn>

</msup>

68 Chapter 3. Presentation Markup

<mo> + </mo>
<mfrac>
<mi> x </mi>
<mn> 3 </mn>

</mfrac>
</mrow>

</mfrac>

A more generic example is:

<mfrac>
<mrow>

<mn> 1 </mn>
<mo> + </mo>
<msqrt>

<mn> 5 </mn>
</msqrt>

</mrow>
<mn> 2 </mn>

</mfrac>

3.3.3 Radicals (msqrt, mroot)

3.3.3.1 Description

These elements construct radicals. The msqrt element is used for square roots, while the mroot element is used to
draw radicals with indices, e.g. a cube root. The syntax for these elements is:

<msqrt> base </msqrt>
<mroot> base index </mroot>

The mroot element requires exactly 2 arguments. However, msqrt accepts any number of arguments; if this num-
ber is not 1, its contents are treated as a single ‘inferred mrow’ containing its arguments, as described in Sec-
tion 3.1.3.

3.3.3.2 Attributes

msqrt and mroot elements accept the attributes listed in Section 2.1.4.

The mroot element increments scriptlevel by 2, and sets displaystyle to "false", within index, but leaves
both attributes unchanged within base. The msqrt element leaves both attributes unchanged within all its argu-
ments. These attributes are inherited by every element from its rendering environment, but can be set explicitly
only on mstyle. (See Section 3.3.4.)

Note that in a RTL directionality, the surd begins on the right, rather than the left, along with the index in the case
of mroot.

3.3.4 Style Change (mstyle)

3.3.4.1 Description

The mstyle element is used to make style changes that affect the rendering of its contents. mstyle can be given
any attribute accepted by any MathML presentation element provided that the attribute value is inherited, computed

3.3. General Layout Schemata 69

or has a default value; presentation element attributes whose values are required are not accepted by the mstyle
element. In addition mstyle can also be given certain special attributes listed below.

The mstyle element accepts any number of arguments. If this number is not 1, its contents are treated as a single
‘inferred mrow’ formed from all its arguments, as described in Section 3.1.3.

Loosely speaking, the effect of the mstyle element is to change the default value of an attribute for the elements
it contains. Style changes work in one of several ways, depending on the way in which default values are specified
for an attribute. The cases are:
• Some attributes, such as displaystyle or scriptlevel (explained below), are inherited from the

surrounding context when they are not explicitly set. Specifying such an attribute on an mstyle element
sets the value that will be inherited by its child elements. Unless a child element overrides this inherited
value, it will pass it on to its children, and they will pass it to their children, and so on. But if a child
element does override it, either by an explicit attribute setting or automatically (as is common for
scriptlevel), the new (overriding) value will be passed on to that element’s children, and then to their
children, etc, until it is again overridden.

• Other attributes, such as linethickness on mfrac, have default values that are not normally inherited.
That is, if the linethickness attribute is not set on the start tag of an mfrac element, it will normally
use the default value of "1", even if it was contained in a larger mfrac element that set this attribute to
a different value. For attributes like this, specifying a value with an mstyle element has the effect of
changing the default value for all elements within its scope. The net effect is that setting the attribute
value with mstyle propagates the change to all the elements it contains directly or indirectly, except
for the individual elements on which the value is overridden. Unlike in the case of inherited attributes,
elements that explicitly override this attribute have no effect on this attribute’s value in their children.

• Another group of attributes, such as stretchy and form, are computed from operator dictionary infor-
mation, position in the enclosing mrow, and other similar data. For these attributes, a value specified by
an enclosing mstyle overrides the value that would normally be computed.

Note that attribute values inherited from an mstyle in any manner affect a given element in the mstyle’s content
only if that attribute is not given a value in that element’s start tag. On any element for which the attribute is set
explicitly, the value specified on the start tag overrides the inherited value. The only exception to this rule is when
the value given on the start tag is documented as specifying an incremental change to the value inherited from that
element’s context or rendering environment.

Note also that the difference between inherited and non-inherited attributes set by mstyle, explained above, only
matters when the attribute is set on some element within the mstyle’s contents that has children also setting it.
Thus it never matters for attributes, such as color, which can only be set on token elements (or on mstyle itself).

There are several exceptional elements, mpadded, mtable, mtr, mlabeledtr and mtd that have attributes which
cannot be set with mstyle. The mpadded and mtable elements share attribute names with the mspace element.
The mtable, mtr, mlabeledtr and mtd all share attribute names. Similarly, mpadded and mo elements also share
an attribute name. Since the syntax for the values these shared attributes accept differs between elements, MathML
specifies that when the attributes height, width or depth are specified on an mstyle element, they apply only
to mspace elements, and not the corresponding attributes of mpadded or mtable. Similarly, when rowalign,
columnalign or groupalign are specified on an mstyle element, the apply only to the mtable element, and not
the row and cell elements. Finally, when lspace is set with mstyle, it applies only to the mo element and not
mpadded.

3.3.4.2 Attributes

As stated above, mstyle accepts all attributes of all MathML presentation elements which do not have required
values. That is, all attributes which have an explicit default value or a default value which is inherited or computed
are accepted by the mstyle element.

70 Chapter 3. Presentation Markup

mstyle elements accept the attributes listed in Section 2.1.4.

Additionally, mstyle can be given the following special attributes that are implicitly inherited by every MathML
element as part of its rendering environment:

Name values default
scriptlevel [’+’ | ’-’] unsigned-integer inherited
displaystyle true | false inherited
scriptsizemultiplier number 0.71
scriptminsize number v-unit 8pt
background #rgb | #rrggbb | transparent | html-color-name transparent
veryverythinmathspace number h-unit 0.0555556em
verythinmathspace number h-unit 0.111111em
thinmathspace number h-unit 0.166667em
mediummathspace number h-unit 0.222222em
thickmathspace number h-unit 0.277778em
verythickmathspace number h-unit 0.333333em
veryverythickmathspace number h-unit 0.388889em
lbprefix before | after | duplicate before
lbpostfix before | after | duplicate after
lbopen before | after | duplicate before
lbclose before | after | duplicate after
lbseparator before | after | duplicate after
lbbinary before | after | duplicate before

scriptlevel and displaystyle

MathML uses two attributes, displaystyle and scriptlevel, to control orthogonal presentation features that
TEX encodes into one style attribute with values \displaystyle, \textstyle, \scriptstyle, and \scriptscriptstyle.
The corresponding values of displaystyle and scriptlevel for those TEX styles would be "true" and "0",
"false" and "0", "false" and "1", and "false" and "2", respectively.

The main effect of the displaystyle attribute is that it determines the effect of other attributes such as the
largeop and movablescripts attributes of mo. The main effect of the scriptlevel attribute is to control the
font size. Typically, the higher the scriptlevel, the smaller the font size. (Non-visual renderers can respond
to the font size in an analogous way for their medium.) More sophisticated renderers may also choose to use
these attributes in other ways, such as rendering expressions with displaystyle="false" in a more vertically
compressed manner.

These attributes are given initial values for the outermost expression of an instance of MathML based on its ren-
dering environment. A short list of layout schemata described below modify these values for some of their sub-
expressions. Otherwise, values are determined by inheritance whenever they are not directly specified on a given
element’s start tag.

For an instance of MathML embedded in a textual data format (such as HTML) in ‘display’ mode, i.e. in place of
a paragraph, displaystyle = "true" and scriptlevel = "0" for the outermost expression of the embedded
MathML; if the MathML is embedded in ‘inline’ mode, i.e. in place of a character, displaystyle = "false"
and scriptlevel = "0" for the outermost expression. See Section 2.5.2 for further discussion of the distinction
between ‘display’ and ‘inline’ embedding of MathML and how this can be specified in particular instances. In
general, a MathML renderer may determine these initial values in whatever manner is appropriate for the location
and context of the specific instance of MathML it is rendering, or if it has no way to determine this, based on the
way it is most likely to be used; as a last resort it is suggested that it use the most generic values displaystyle =
""true"" and scriptlevel = ""0"".

3.3. General Layout Schemata 71

The MathML layout schemata that typically display some of their arguments in smaller type or with less vertical
spacing, namely the elements for scripts, fractions, radicals, and tables or matrices, set displaystyle to "false",
and in some cases increase scriptlevel, for those arguments. The new values are inherited by all sub-expressions
within those arguments, unless they are overridden.

The specific rules by which each element modifies displaystyle and/or scriptlevel are given in the specifi-
cation for each element that does so; the complete list of elements that modify either attribute are: the ‘scripting’
elements msub, msup, msubsup, munder, mover, munderover, and mmultiscripts; and the elements mfrac,
mroot, and mtable.

When mstyle is given a scriptlevel attribute with no sign, it sets the value of scriptlevel within its contents
to the value given, which must be a nonnegative integer. When the attribute value consists of a sign followed
by an integer, the value of scriptlevel is incremented (for ’+’) or decremented (for ’-’) by the amount given.
The incremental syntax for this attribute is an exception to the general rules for setting inherited attributes using
mstyle, and is not allowed by any other attribute on mstyle.

Whenever the scriptlevel is changed, either automatically or by being explicitly incremented, decremented, or
set, the current font size is multiplied by the value of scriptsizemultiplier to the power of the change in
scriptlevel. For example, if scriptlevel is increased by 2, the font size is multiplied by
scriptsizemultiplier twice in succession; if scriptlevel is explicitly set to 2 when it had been 3, the font
size is divided by scriptsizemultiplier. References to fontsize in this section should be interpreted to mean
either the fontsize attribute or the mathsize attribute.

The default value of scriptsizemultiplier is less than one (in fact, it is approximately the square root of 1/2),
resulting in a smaller font size with increasing scriptlevel. To prevent scripts from becoming unreadably small,
the font size is never allowed to go below the value of scriptminsize as a result of a change to scriptlevel,
though it can be set to a lower value using the fontsize attribute (Section 3.2.2) on mstyle or on token elements.
If a change to scriptlevel would cause the font size to become lower than scriptminsize using the above
formula, the font size is instead set equal to scriptminsize within the sub-expression for which scriptlevel
was changed.

In the syntax for scriptminsize, v-unit represents a unit of vertical length (as described in Section 2.1.3.2).
The most common unit for specifying font sizes in typesetting is pt (points).

Explicit changes to the fontsize attribute have no effect on the value of scriptlevel.

Further details on scriptlevel for renderers

For MathML renderers that support CSS style sheets, or some other analogous style sheet mechanism, absolute
or relative changes to fontsize (or other attributes) may occur implicitly on any element in response to a style
sheet. Changes to fontsize of this kind also have no effect on scriptlevel. A style sheet-induced change to
fontsize overrides scriptminsize in the same way as for an explicit change to fontsize in the element’s start
tag (discussed above), whether it is specified in the style sheet as an absolute or a relative change. (However, any
subsequent scriptlevel-induced change to fontsize will still be affected by it.) As is required for inherited
attributes in CSS, the style sheet-modified fontsize is inherited by child elements.

If the same element is subject to both a style sheet-induced and an automatic (scriptlevel-related) change
to its own fontsize, the scriptlevel-related change is done first — in fact, in the simplest implementation
of the element-specific rules for scriptlevel, this change would be done by the element’s parent as part of
producing the rendering properties it passes to the given element, since it is the parent element that knows whether
scriptlevel should be changed for each of its child elements.

If the element’s own fontsize is changed by a style sheet and it also changes scriptlevel (and thus fontsize)
for one of its children, the style sheet-induced change is done first, followed by the change inherited by that child.

72 Chapter 3. Presentation Markup

If more than one child’s scriptlevel is changed, the change inherited by each child has no effect on the other
children. (As a mnemonic rule that applies to a ‘parse tree’ of elements and their children, style sheet-induced
changes to fontsize can be associated to nodes of the tree, i.e. to MathML elements, and scriptlevel-related
changes can be associated to the edges between parent and child elements; then the order of the associated changes
corresponds to the order of nodes and edges in each path down the tree.) For general information on the relative
order of processing of properties set by style sheets versus by attributes, see the appropriate subsection of CSS-
compatible attributes in Section 2.1.3.3.

If scriptlevel is changed incrementally by an mstyle element that also sets certain other attributes, the overall
effect of the changes may depend on the order in which they are processed. In such cases, the attributes in the
following list should be processed in the following order, regardless of the order in which they occur in the XML-
format attribute list of the mstyle start tag: scriptsizemultiplier, scriptminsize, scriptlevel,
fontsize.

Note that scriptlevel can, in principle, attain any integral value by being decremented sufficiently, even though
it can only be explicitly set to nonnegative values. Negative values of scriptlevel generated in this way are
legal and should work as described, generating font sizes larger than those of the surrounding expression. Since
scriptlevel is initially 0 and never decreases automatically, it will always be nonnegative unless it is decrement-
ed past 0 using mstyle.

Explicit decrements of scriptlevel after the font size has been limited by scriptminsize as described above
would produce undesirable results. This might occur, for example, in a representation of a continued fraction, in
which the scriptlevel was decremented for part of the denominator back to its value for the fraction as a whole,
if the continued fraction itself was located in a place that had a high scriptlevel. To prevent this problem,
MathML renderers should, when decrementing scriptlevel, use as the initial font size the value the font size
would have had if it had never been limited by scriptminsize. They should not, however, ignore the effects of
explicit settings of fontsize, even to values below scriptminsize.

Since MathML renderers may be unable to make use of arbitrary font sizes with good results, they may wish to
modify the mapping from scriptlevel to fontsize to produce better renderings in their judgment. In particular, if
fontsizes have to be rounded to available values, or limited to values within a range, the details of how this is done
are up to the renderer. Renderers should, however, ensure that a series of incremental changes to scriptlevel
resulting in its return to the same value for some sub-expression that it had in a surrounding expression results in
the same fontsize for that sub-expression as for the surrounding expression.

Color and background attributes

Color and background attributes are discussed in Section 3.2.2.2.

Precise background region not specified

The suggested MathML visual rendering rules do not define the precise extent of the region whose background is
affected by using the background attribute on mstyle, except that, when mstyle’s content does not have negative
dimensions and its drawing region is not overlapped by other drawing due to surrounding negative spacing, this
region should lie behind all the drawing done to render the content of the mstyle, but should not lie behind any of
the drawing done to render surrounding expressions. The effect of overlap of drawing regions caused by negative
spacing on the extent of the region affected by the background attribute is not defined by these rules.

Meaning of named mathspaces

The spacing between operators is often one of a small number of potential values. MathML names these values
and allows their values to be changed. Because the default values for spacing around operators that are given in the

3.3. General Layout Schemata 73

operator dictionary Appendix B are defined using these named spaces, changing their values will produce tighter
or looser spacing. These values can be used anywhere a h-unit or v-unit unit is allowed. See Section 2.1.3.2.

The predefined namedspaces are: "negativeveryverythinmathspace", "negativeverythinmathspace",
"negativethinmathspace", "negativemediummathspace", "negativethickmathspace",
"negativeverythickmathspace", "negativeveryverythickmathspace", "veryverythinmathspace",
"verythinmathspace", "thinmathspace", "mediummathspace", "thickmathspace",
"verythickmathspace", or "veryverythickmathspace". The default values of
"veryverythinmathspace"... "veryverythickmathspace" are 1/18em...7/18em, respectively.

Meaning of named breakstyles

When an expression is broken at an operator, the break will occur before or after the operator, or the operater will
be duplicated on both lines. The breaking is typically similar for classes of operators, such as separators and prefix
operators. MathML gives these classes a name so that the default behavior for each class can be easily changed. In
practice, it is likely that only "lbbinary" will be changed. See Section 2.1.3.2.

The predefined namedbreakstyles are: "lbprefix", "lbpostfix", "lbopen", "lbclose", "lbseparator",
or "lbbinary". The default values for these are given in the table in Section 3.3.4.2.

3.3.4.3 Examples

The example of limiting the stretchiness of a parenthesis shown in the section on <mo>,

<mrow>
<mo maxsize="1"> (</mo>
<mfrac> <mi> a </mi> <mi> b </mi> </mfrac>
<mo maxsize="1">) </mo>

</mrow>

can be rewritten using mstyle as:

<mstyle maxsize="1">
<mrow>

<mo> (</mo>
<mfrac> <mi> a </mi> <mi> b </mi> </mfrac>
<mo>) </mo>

</mrow>
</mstyle>

3.3.5 Error Message (merror)

3.3.5.1 Description

The merror element displays its contents as an ‘error message’. This might be done, for example, by displaying
the contents in red, flashing the contents, or changing the background color. The contents can be any expression or
expression sequence.

merror accepts any number of arguments; if this number is not 1, its contents are treated as a single ‘inferred
mrow’ as described in Section 3.1.3.

The intent of this element is to provide a standard way for programs that generate MathML from other input to
report syntax errors in their input. Since it is anticipated that preprocessors that parse input syntaxes designed for

74 Chapter 3. Presentation Markup

easy hand entry will be developed to generate MathML, it is important that they have the ability to indicate that a
syntax error occurred at a certain point. See Section 2.3.2.

The suggested use of merror for reporting syntax errors is for a preprocessor to replace the erroneous part of its
input with an merror element containing a description of the error, while processing the surrounding expressions
normally as far as possible. By this means, the error message will be rendered where the erroneous input would
have appeared, had it been correct; this makes it easier for an author to determine from the rendered output what
portion of the input was in error.

No specific error message format is suggested here, but as with error messages from any program, the format
should be designed to make as clear as possible (to a human viewer of the rendered error message) what was
wrong with the input and how it can be fixed. If the erroneous input contains correctly formatted subsections, it
may be useful for these to be preprocessed normally and included in the error message (within the contents of the
merror element), taking advantage of the ability of merror to contain arbitrary MathML expressions rather than
only text.

3.3.5.2 Attributes

mstyle>merror elements accept the attributes listed in Section 2.1.4.

3.3.5.3 Example

If a MathML syntax-checking preprocessor received the input

<mfraction>
<mrow> <mn> 1 </mn> <mo> + </mo> <msqrt> <mn> 5 </mn> </msqrt> </mrow>
<mn> 2 </mn>

</mfraction>

which contains the non-MathML element mfraction (presumably in place of the MathML element mfrac), it
might generate the error message

<merror>
<mtext> Unrecognized element: mfraction;

arguments were: </mtext>
<mrow> <mn> 1 </mn> <mo> + </mo> <msqrt> <mn> 5 </mn> </msqrt> </mrow>
<mtext> and </mtext>
<mn> 2 </mn>

</merror>

Note that the preprocessor’s input is not, in this case, valid MathML, but the error message it outputs is valid
MathML.

3.3.6 Adjust Space Around Content (mpadded)

3.3.6.1 Description

An mpadded element renders the same as its content, but with its overall size and other dimensions (such as
baseline position) modified according to its attributes. The mpadded element does not rescale (stretch or shrink) its
content; its only effect is to modify the apparent size and position of the ‘bounding box’ around its content, so as to
affect the relative position of the content with respect to the surrounding elements. While the name of the element
reflects the use of mpadded to add ‘padding’, or extra space, around its content, by adding negative ‘padding’ it is

3.3. General Layout Schemata 75

possible to cause the content of mpadded to be rendered outside the mpadded element’s bounding box; see below
for warnings about several potential pitfalls of this effect.

The mpadded element accepts any number of arguments; if this number is not 1, its contents are treated as a single
‘inferred mrow’ as described in Section 3.1.3.

It is suggested that audio renderers add (or shorten) time delays based on the attributes representing horizontal
space (width and lspace).

3.3.6.2 Attributes

mpadded elements accept the attributes listed below in addition to those specified in Section 2.1.4.

Name values default
width [+ | -] unsigned-number (% [pseudo-unit] | pseudo-unit | h-unit | namedspace) same as content
lspace [+ | -] unsigned-number (% [pseudo-unit] | pseudo-unit | h-unit | namedspace) same as content
height [+ | -] unsigned-number (% [pseudo-unit] | pseudo-unit | v-unit) same as content
depth [+ | -] unsigned-number (% [pseudo-unit] | pseudo-unit | v-unit) same as content

(The pseudo-unit syntax symbol is described below.)

These attributes modify the size and position of the ‘bounding box’ of the mpadded element. The typographical
layout parameters defined by these attributes are described in the next subsection. Depending on the format of
the attribute value, a dimension may be set to a new value, or to an incremented or decremented version of the
content’s corresponding dimension. Values may be specified as multiples or percentages of any of the dimensions
of the normal rendering of the element’s content (using so-called ‘pseudo-units’), or they can be set directly using
standard units Section 2.1.3.2.

If an attribute value begins with a + or - sign, it specifies an increment or decrement of the corresponding dimension
by the following length value (interpreted as explained below). Otherwise, the corresponding dimension is set
directly to the following length value. Note that the + and - do not mean that the following value is positive or
negative, even when an explicit length unit (h-unit or v-unit) is given.

Length values (after the optional sign, which is not part of the length value) can be specified in several formats. Each
format begins with an unsigned-number, which may be followed by a % sign and an optional ‘pseudo-unit’ (denoted
by pseudo-unit in the attribute syntaxes above), by a pseudo-unit alone, or by one of the length units (denoted by
h-unit or v-unit) specified in Section 2.1.3.2, not including %. The possible pseudo-units are the keywords width,
advancewidth, lspace, height, and depth; they each represent the length of the same-named dimension of the
mpadded element’s content (not of the mpadded element itself). The lengths represented by h-unit or v-unit are
described in Section 2.1.3.2.

In any of these formats, the length value specified is the product of the specified number and the length represented
by the unit or pseudo-unit. The result is multiplied by 0.01 if % is given. If no pseudo-unit is given after %, the one
with the same name as the attribute being specified is assumed.

Some examples of attribute formats using pseudo-units (explicit or default) are as follows: depth="100% height"
and depth="1.0 height" both set the depth of the mpadded element to the height of its content. depth="105%"
sets the depth to 1.05 times the content’s depth, and either depth="+100%" or depth="200%" sets the depth to
twice the content’s depth.

The rules given above imply that all of the following attribute settings have the same effect, which is to leave the
content’s dimensions unchanged:

<mpadded width="+0em"> ... </mpadded>
<mpadded width="+0%"> ... </mpadded>

76 Chapter 3. Presentation Markup

<mpadded width="-0em"> ... </mpadded>
<mpadded width="- 0 height"> ... </mpadded>
<mpadded width="100%"> ... </mpadded>
<mpadded width="100% width"> ... </mpadded>
<mpadded width="1 width"> ... </mpadded>
<mpadded width="1.0 width"> ... </mpadded>
<mpadded> ... </mpadded>

3.3.6.3 Meanings of size and position attributes

See Appendix D for further information about some of the typesetting terms used here.

The content of an mpadded element defines some mathematical notation (e.g. a character, a fraction, an expression,
etc.) that can be regarded as single typographical element with a positioning point at a fixed relative location to its
natural visual bounding box, and an advance width that determines the natural placement of the next typographical
element following it. The advance width, like the positioning point, is generally at a fixed location relative to the
visual bounding box.

The size of the bounding box and the relative location of the positioning point for the mpadded element are defined
by its size and positioning attributes. The child content of the mpadded element is always rendered with its natural
positioning point coinciding with the positioning point of the mpadded elements. Thus, by using the size and
position attributes of mpadded to expand or shrink its bounding box, the visual effect is to pad or clip the child
content.

Issue (clipping):Should the bounding box act as a clipping rectangle?

The width attribute refers to the horizontal width of the natural visual bounding box of the mpadded element’s
content. Note that decreasing the width will cause clipping to take place when rendering the child content. For
example, setting the width to 0 would entirely suppress the rendering of the child content. Decreasing the width
should generally be avoided.

The lspace attribute refers to the amount of space between the left edge of the bounding box and the positioning
poin of the mpadded element. This is sometimes called the left side bearing in typesetting. Increasing the lspace
increases the space between the preceding content and the child content, introducing padding at the left edge of
the child content rendering. Decreasing the lspace may cause overprinting of the preceding content, and should
generally be avoided.

The height attribute refers to the amount of vertical space between the baseline of the mpadded element’s child
content, and the top of the mpadded element’s bounding box. This is also known as the ascent in typography.
Increasing the height increases the space between the child content and any content above it, thus introducing
padding at the top of the child content rendering. Decreasing the height causes clipping of the rendering of child
content, and should generally be avoided.

The depth attribute refers to the amount of vertical space between the bottom of the mpadded’s bounding box
and the baseline of the child content. It is also know as the descent in typography. It functions analogously to the
height attribute above.

MathML renderers should ensure that, except for the effects of the attributes, relative spacing between the contents
of mpadded and surrounding MathML elements is not modified by replacing an mpadded element with an mrow
element with the same content. This holds even if linebreaking occurs within the mpadded element. However, if an
mpadded element with non-default attribute values is subjected to linebreaking, MathML does not define how its
attributes or rendering interact with the linebreaking algorithm.

Issue (examples):One or more illustrated examples should be included.

3.3. General Layout Schemata 77

3.3.6.4 Warning: nonportability of ‘tweaking’

A likely temptation for the use of the mpadded and mspace elements (and perhaps also mphantom and mtext)
will be for an author to improve the spacing generated by a specific renderer by slightly modifying it in specific
expressions, i.e. to ‘tweak’ the rendering.

Authors are strongly warned that different MathML renderers may use different spacing rules for computing the
relative positions of rendered symbols in expressions that have no explicit modifications to their spacing; if renderer
B improves upon renderer A’s spacing rules, explicit spacing added to improve the output quality of renderer A
may produce very poor results in renderer B, very likely worse than without any ‘tweaking’ at all.

Even when a specific choice of renderer can be assumed, its spacing rules may be improved in successive versions,
so that the effect of tweaking in a given MathML document may grow worse with time. Also, when style sheet
mechanisms are extended to MathML, even one version of a renderer may use different spacing rules for users
with different style sheets.

Therefore, it is suggested that MathML markup never use mpadded or mspace elements to tweak the rendering
of specific expressions, unless the MathML is generated solely to be viewed using one specific version of one
MathML renderer, using one specific style sheet (if style sheets are available in that renderer).

In cases where the temptation to improve spacing proves too strong, careful use of mpadded, mphantom, or the
alignment elements (Section 3.5.5) may give more portable results than the direct insertion of extra space using
mspace or mtext. Advice given to the implementors of MathML renderers might be still more productive, in the
long run.

3.3.6.5 Warning: spacing should not be used to convey meaning

MathML elements that permit ‘negative spacing’, namely mspace, mpadded, and mtext, could in theory be used to
simulate new notations or ‘overstruck’ characters by the visual overlap of the renderings of more than one MathML
sub-expression.

This practice is strongly discouraged in all situations, for the following reasons:

• it will give different results in different MathML renderers (so the warning about ‘tweaking’ applies),
especially if attempts are made to render glyphs outside the bounding box of the MathML expression;

• it is likely to appear much worse than a more standard construct supported by good renderers;
• such expressions are almost certain to be uninterpretable by audio renderers, computer algebra systems,

text searches for standard symbols, or other processors of MathML input.

More generally, any construct that uses spacing to convey mathematical meaning, rather than simply as an aid to
viewing expression structure, is discouraged. That is, the constructs that are discouraged are those that would be
interpreted differently by a human viewer of rendered MathML if all explicit spacing was removed.

If such constructs are used in spite of this warning, they should be enclosed in a semantics element that also
provides an additional MathML expression that can be interpreted in a standard way.

For example, the MathML expression

<mrow>
<mi> C </mi>
<mpadded lspace="+.5em" advancewidth="0em">
<mtext> | </mtext>

</mpadded>
</mrow>

78 Chapter 3. Presentation Markup

forms an overstruck symbol in violation of the policy stated above; it might be intended to represent the set of
complex numbers for a MathML renderer that lacks support for the standard symbol used for this purpose. This
kind of construct should always be avoided in MathML, for the reasons stated above; indeed, it should never be
necessary for standard symbols, since a MathML renderer with no better method of rendering them is free to use
overstriking internally, so that it can still support general MathML input.

However, if for whatever reason such a construct is used in MathML, it should always be enclosed in a semantics
element such as

<semantics>
<mrow>
<mi> C </mi>
<mpadded lspace="+.5em" advancewidth="0em">
<mtext> | </mtext>

</mpadded>
</mrow>

<annotation-xml encoding="MathML Presentation">
<mi> ℂ </mi>

</annotation-xml>
</semantics>

which provides an alternative, standard encoding for the desired symbol, which is much more easily interpreted
than the construct using negative spacing. The alternative encoding in this example uses MathML presentation
elements; the content elements described in Chapter 4 should also be considered.

The above warning also applies to most uses of rendering attributes to alter the meaning conveyed by an expression,
with the exception of attributes on mi (such as fontweight) used to distinguish one variable from another.

3.3.7 Making Sub-Expressions Invisible (mphantom)

3.3.7.1 Description

The mphantom element renders invisibly, but with the same size and other dimensions, including baseline position,
that its contents would have if they were rendered normally. mphantom can be used to align parts of an expression
by invisibly duplicating sub-expressions.

The mphantom element accepts any number of arguments; if this number is not 1, its contents are treated as a single
‘inferred mrow’ formed from all its arguments, as described in Section 3.1.3.

3.3.7.2 Attributes

mphantom elements accept the attributes listed in Section 2.1.4.

Note that it is possible to wrap both an mphantom and an mpadded element around one MathML expression, as in
<mphantom><mpadded attribute-settings> ... </mpadded></mphantom>, to change its size and make it
invisible at the same time.

MathML renderers should ensure that the relative spacing between the contents of an mphantom element and the
surrounding MathML elements is the same as it would be if the mphantom element were replaced by an mrow
element with the same content. This holds even if linebreaking occurs within the mphantom element.

For the above reason, mphantom is not considered space-like (Section 3.2.7) unless its content is space-like, since
the suggested rendering rules for operators are affected by whether nearby elements are space-like. Even so, the
warning about the legal grouping of space-like elements may apply to uses of mphantom.

3.3. General Layout Schemata 79

There is one situation where the preceding rule for rendering an mphantom may not give the desired effect. When
an mphantom is wrapped around a subsequence of the arguments of an mrow, the default determination of the
form attribute for an mo element within the subsequence can change. (See the default value of the form attribute
described in Section 3.2.5.) It may be necessary to add an explicit form attribute to such an mo in these cases. This
is illustrated in the following example.

3.3.7.3 Examples

In this example, mphantom is used to ensure alignment of corresponding parts of the numerator and denominator
of a fraction:

<mfrac>
<mrow>
<mi> x </mi>
<mo> + </mo>
<mi> y </mi>
<mo> + </mo>
<mi> z </mi>

</mrow>
<mrow>
<mi> x </mi>
<mphantom>
<mo form="infix"> + </mo>
<mi> y </mi>

</mphantom>
<mo> + </mo>
<mi> z </mi>

</mrow>
</mfrac>

This would render as something like

x+ y+ z
x + z

rather than as

x+ y+ z
x+ z

The explicit attribute setting form="infix" on the mo element inside the mphantom sets the form attribute to
what it would have been in the absence of the surrounding mphantom. This is necessary since otherwise, the + sign
would be interpreted as a prefix operator, which might have slightly different spacing.

Alternatively, this problem could be avoided without any explicit attribute settings, by wrapping each of the argu-
ments <mo>+</mo> and <mi>y</mi> in its own mphantom element, i.e.

<mfrac>
<mrow>

<mi> x </mi>
<mo> + </mo>
<mi> y </mi>

80 Chapter 3. Presentation Markup

<mo> + </mo>
<mi> z </mi>

</mrow>
<mrow>

<mi> x </mi>
<mphantom>

<mo> + </mo>
</mphantom>
<mphantom>

<mi> y </mi>
</mphantom>
<mo> + </mo>
<mi> z </mi>

</mrow>
</mfrac>

3.3.8 Expression Inside Pair of Fences (mfenced)

3.3.8.1 Description

The mfenced element provides a convenient form in which to express common constructs involving fences (i.e.
braces, brackets, and parentheses), possibly including separators (such as comma) between the arguments.

For example, <mfenced> <mi>x</mi> </mfenced> renders as ‘(x)’ and is equivalent to

<mrow> <mo> (</mo> <mi>x</mi> <mo>) </mo> </mrow>

and <mfenced> <mi>x</mi> <mi>y</mi> </mfenced> renders as ‘(x, y)’ and is equivalent to

<mrow>
<mo> (</mo>
<mrow> <mi>x</mi> <mo>,</mo> <mi>y</mi> </mrow>
<mo>) </mo>

</mrow>

Individual fences or separators are represented using mo elements, as described in Section 3.2.5. Thus, any mfenced
element is completely equivalent to an expanded form described below; either form can be used in MathML, at the
convenience of an author or of a MathML-generating program. A MathML renderer is required to render either of
these forms in exactly the same way.

In general, an mfenced element can contain zero or more arguments, and will enclose them between fences in an
mrow; if there is more than one argument, it will insert separators between adjacent arguments, using an additional
nested mrow around the arguments and separators for proper grouping (Section 3.3.1). The general expanded form
is shown below. The fences and separators will be parentheses and comma by default, but can be changed using
attributes, as shown in the following table.

3.3.8.2 Attributes

mfenced elements accept the attributes listed below in addition to those specified in Section 2.1.4.

Name values default
open string (
close string)
separators character * ,

3.3. General Layout Schemata 81

A generic mfenced element, with all attributes explicit, looks as follows:

<mfenced open="opening-fence"
close="closing-fence"
separators="sep#1 sep#2 ... sep#(n-1)" >

arg#1
...
arg#n

</mfenced>

The "opening-fence" and "closing-fence" are arbitrary strings. (Since they are used as the content of mo
elements, any whitespace they contain will be trimmed and collapsed as described in Section 2.1.5.)

In a RTL directionality context, since the initial text direction is RTL, characters in the open and close attributes
that have a mirroring counterpart will be rendered in that mirrored form. In particular, the default values will render
correctly as a parenthesized sequence in both LTR and RTL contexts.

The value of separators is a sequence of zero or more separator characters (or entity references), optionally
separated by whitespace. Each sep#i consists of exactly one character or entity reference. Thus,
separators=",;" is equivalent to separators=" , ; ".

The general mfenced element shown above is equivalent to the following expanded form:

<mrow>
<mo fence="true"> opening-fence </mo>
<mrow>

arg#1
<mo separator="true"> sep#1 </mo>
...
<mo separator="true"> sep#(n-1) </mo>
arg#n

</mrow>
<mo fence="true"> closing-fence </mo>

</mrow>

Each argument except the last is followed by a separator. The inner mrow is added for proper grouping, as described
in Section 3.3.1.

When there is only one argument, the above form has no separators; since <mrow> arg#1 </mrow> is equivalent
to arg#1 (as described in Section 3.3.1), this case is also equivalent to:

<mrow>
<mo fence="true"> opening-fence </mo>
arg#1
<mo fence="true"> closing-fence </mo>

</mrow>

If there are too many separator characters, the extra ones are ignored. If separator characters are given, but there
are too few, the last one is repeated as necessary. Thus, the default value of separators="," is equivalent to
separators="„", separators="„,", etc. If there are no separator characters provided but some are needed, for
example if separators=" " or "" and there is more than one argument, then no separator elements are inserted at
all — that is, the elements <mo separator="true"> sep#i </mo> are left out entirely. Note that this is different
from inserting separators consisting of mo elements with empty content.

82 Chapter 3. Presentation Markup

Finally, for the case with no arguments, i.e.

<mfenced open="opening-fence"
close="closing-fence"
separators="anything" >

</mfenced>

the equivalent expanded form is defined to include just the fences within an mrow:

<mrow>
<mo fence="true"> opening-fence </mo>
<mo fence="true"> closing-fence </mo>

</mrow>

Note that not all ‘fenced expressions’ can be encoded by an mfenced element. Such exceptional expressions in-
clude those with an ‘embellished’ separator or fence or one enclosed in an mstyle element, a missing or extra
separator or fence, or a separator with multiple content characters. In these cases, it is necessary to encode the
expression using an appropriately modified version of an expanded form. As discussed above, it is always permis-
sible to use the expanded form directly, even when it is not necessary. In particular, authors cannot be guaranteed
that MathML preprocessors won’t replace occurrences of mfenced with equivalent expanded forms.

Note that the equivalent expanded forms shown above include attributes on the mo elements that identify them
as fences or separators. Since the most common choices of fences and separators already occur in the operator
dictionary with those attributes, authors would not normally need to specify those attributes explicitly when using
the expanded form directly. Also, the rules for the default form attribute (Section 3.2.5) cause the opening and
closing fences to be effectively given the values form="prefix" and form="postfix" respectively, and the
separators to be given the value form="infix".

Note that it would be incorrect to use mfenced with a separator of, for instance, ‘+’, as an abbreviation for an
expression using ‘+’ as an ordinary operator, e.g.

<mrow>
<mi>x</mi> <mo>+</mo> <mi>y</mi> <mo>+</mo> <mi>z</mi>

</mrow>

This is because the + signs would be treated as separators, not infix operators. That is, it would render as if they
were marked up as <mo separator="true">+</mo>, which might therefore render inappropriately.

3.3.8.3 Examples

(a+b)

<mfenced>
<mrow>
<mi> a </mi>
<mo> + </mo>
<mi> b </mi>

</mrow>
</mfenced>

Note that the above mrow is necessary so that the mfenced has just one argument. Without it, this would render
incorrectly as ‘(a, +, b)’.

[0,1)

3.3. General Layout Schemata 83

<mfenced open="[">
<mn> 0 </mn>
<mn> 1 </mn>

</mfenced>

f (x,y)

<mrow>
<mi> f </mi>
<mo> ⁡ </mo>
<mfenced>
<mi> x </mi>
<mi> y </mi>

</mfenced>
</mrow>

3.3.9 Enclose Expression Inside Notation (menclose)

3.3.9.1 Description

The menclose element renders its content inside the enclosing notation specified by its notation attribute.
menclose accepts any number of arguments; if this number is not 1, its contents are treated as a single ‘inferred
mrow’ containing its arguments, as described in Section 3.1.3.

3.3.9.2 Attributes

menclose elements accept the attributes listed below in addition to those specified in Section 2.1.4.

The values allowed for notation are open-ended. Conforming renderers may ignore any value they do not handle,
although renderers are encouraged to render as many of the values listed below as possible.

Name values default
notation longdiv | actuarial | radical | box | roundedbox | circle | left | right | top | bottom |

updiagonalstrike | downdiagonalstrike | verticalstrike | horizontalstrike | madruwb
longdiv

Any number of values can be given for notation separated by whitespace; all of those given and understood by a
MathML renderer should be rendered. For example, notation="circle horizontalstrike" should result in
circle around the contents of menclose with a horizontal line through the contents.

When notation has the value "longdiv", the contents are drawn enclosed by a long division symbol. A complete
example of long division is accomplished by also using mtable and malign. When notation is specified as
"actuarial", the contents are drawn enclosed by an actuarial symbol. A similar result can be achieved with the
value "top right". The case of notation="radical" is equivalent to the msqrt schema.

The values "box", "roundedbox", and "circle" should enclose the contents as indicated by the values. The
amount of distance between the box, roundedbox, or circle, and the contents are not specified by MathML, and is
left to the renderer. In practice, paddings on each side of 0.4em in the horizontal direction and .5ex in the vertical
direction seem to work well.

The values "left", "right", "top" and "bottom" should result in lines drawn on those sides of the contents.
The values "updiagonalstrike", "downdiagonalstrike", "verticalstrike" and "horizontalstrike"
should result in the indicated strikeout lines being superimposed over the content of the menclose, e.g. a strikeout

84 Chapter 3. Presentation Markup

that extends from the lower left corner to the upper right corner of the menclose element for
"updiagonalstrike", etc.

The value "madruwb" should generate an enclosure representing an Arabic factorial (‘madruwb’ is the transliter-
ation of the Arabic [ARABIC LETTER MEEM][ARABIC LETTER DAD][ARABIC LETTER REH][ARABIC
LETTER WAW][ARABIC LETTER BEH] for factorial). For example

<menclose notation="madruwb">
<mn>12</mn>

</menclose>

should be rendered roughly as .

3.3.9.3 Examples

An example of using menclose for actuarial notation is

<msub>
<mi>a</mi>
<mrow>
<menclose notation=’actuarial’>
<mi>n</mi>

</menclose>
<mo>⁢</mo>
<mi>i</mi>

</mrow>
</msub>

which renders roughly as

a
n |i

3.4 Script and Limit Schemata

The elements described in this section position one or more scripts around a base. Attaching various kinds of scripts
and embellishments to symbols is a very common notational device in mathematics. For purely visual layout, a
single general-purpose element could suffice for positioning scripts and embellishments in any of the traditional
script locations around a given base. However, in order to capture the abstract structure of common notation better,
MathML provides several more specialized scripting elements.

In addition to sub/superscript elements, MathML has overscript and underscript elements that place scripts above
and below the base. These elements can be used to place limits on large operators, or for placing accents and lines
above or below the base. The rules for rendering accents differ from those for overscripts and underscripts, and this
difference can be controlled with the accent and accentunder attributes, as described in the appropriate sections
below.

Rendering of scripts is affected by the scriptlevel and displaystyle attributes, which are part of the envi-
ronment inherited by the rendering process of every MathML expression, and are described under mstyle (Sec-
tion 3.3.4). These attributes cannot be given explicitly on a scripting element, but can be specified on the start tag
of a surrounding mstyle element if desired.

3.4. Script and Limit Schemata 85

MathML also provides an element for attachment of tensor indices. Tensor indices are distinct from ordinary
subscripts and superscripts in that they must align in vertical columns. Tensor indices can also occur in prescript
positions. Note that ordinary scripts follow the base (on the right in LTR context, but on the left in RTL context);
prescripts precede the base (on the left (right) in LTR (RTL) context).

Because presentation elements should be used to describe the abstract notational structure of expressions, it is
important that the base expression in all ‘scripting’ elements (i.e. the first argument expression) should be the
entire expression that is being scripted, not just the trailing character. For example, (x+y)2 should be written as:

<msup>
<mrow>
<mo> (</mo>
<mrow>
<mi> x </mi>
<mo> + </mo>
<mi> y </mi>

</mrow>
<mo>) </mo>

</mrow>
<mn> 2 </mn>

</msup>

3.4.1 Subscript (msub)

3.4.1.1 Description

The syntax for the msub element is:

<msub> base subscript </msub>

3.4.1.2 Attributes

msub elements accept the attributes listed below in addition to those specified in Section 2.1.4.

Name values default
subscriptshift number v-unit automatic (typical unit is ex)

The subscriptshift attribute specifies the minimum amount to shift the baseline of subscript down.

v-unit represents a unit of vertical length (see Section 2.1.3.2).

The msub element increments scriptlevel by 1, and sets displaystyle to "false", within subscript, but
leaves both attributes unchanged within base. (These attributes are inherited by every element through its rendering
environment, but can be set explicitly only on mstyle; see Section 3.3.4.)

3.4.2 Superscript (msup)

3.4.2.1 Description

The syntax for the msup element is:

<msup> base superscript </msup>

86 Chapter 3. Presentation Markup

3.4.2.2 Attributes

msup elements accept the attributes listed below in addition to those specified in Section 2.1.4.

Name values default
superscriptshift number v-unit automatic (typical unit is ex)

The superscriptshift attribute specifies the minimum amount to shift the baseline of superscript up.

v-unit represents a unit of vertical length (see Section 2.1.3.2).

The msup element increments scriptlevel by 1, and sets displaystyle to "false", within superscript, but
leaves both attributes unchanged within base. (These attributes are inherited by every element through its rendering
environment, but can be set explicitly only on mstyle; see Section 3.3.4.)

3.4.3 Subscript-superscript Pair (msubsup)

3.4.3.1 Description

The msubsup element is used to attach both a subscript and superscript to a base expression. Note that both scripts
are positioned tight against the base as shown here x2

1 versus the staggered positioning of nested scripts as shown
here x1

2 .

The syntax for the msubsup element is:

<msubsup> base subscript superscript </msubsup>

3.4.3.2 Attributes

msubsup elements accept the attributes listed below in addition to those specified in Section 2.1.4.

Name values default
subscriptshift number v-unit automatic (typical unit is ex)
superscriptshift number v-unit automatic (typical unit is ex)

The subscriptshift attribute specifies the minimum amount to shift the baseline of subscript down. The
superscriptshift attribute specifies the minimum amount to shift the baseline of superscript up.

v-unit represents a unit of vertical length (see Section 2.1.3.2).

The msubsup element increments scriptlevel by 1, and sets displaystyle to "false", within subscript and
superscript, but leaves both attributes unchanged within base. (These attributes are inherited by every element
through its rendering environment, but can be set explicitly only on mstyle; see Section 3.3.4.)

3.4.3.3 Examples

The msubsup is most commonly used for adding sub/superscript pairs to identifiers as illustrated above. However,
another important use is placing limits on certain large operators whose limits are traditionally displayed in the
script positions even when rendered in display style. The most common of these is the integral. For example,

Z 1

0
ex dx

would be represented as

3.4. Script and Limit Schemata 87

<mrow>
<msubsup>
<mo> ∫ </mo>
<mn> 0 </mn>
<mn> 1 </mn>

</msubsup>
<mrow>
<msup>
<mi> ⅇ </mi>
<mi> x </mi>

</msup>
<mo> ⁢ </mo>
<mrow>
<mo> ⅆ </mo>
<mi> x </mi>

</mrow>
</mrow>

</mrow>

3.4.4 Underscript (munder)

3.4.4.1 Description

The syntax for the munder element is:

<munder> base underscript </munder>

3.4.4.2 Attributes

munder elements accept the attributes listed below in addition to those specified in Section 2.1.4.

Name values default
accentunder true | false automatic
align left | right | center center

The accentunder attribute controls whether underscript is drawn as an ‘accent’ or as a limit. The main difference
between an accent and a limit is that the limit is reduced in size whereas an accent is the same size as the base. A
second difference is that the accent is drawn closer to the base.

The default value of accentunder is false, unless underscript is an mo element or an embellished operator (see
Section 3.2.5). If underscript is an mo element, the value of its accent attribute is used as the default value of
accentunder. If underscript is an embellished operator, the accent attribute of the mo element at its core is used
as the default value. As with all attributes, an explicitly given value overrides the default.

Here is an example (accent versus underscript): x+ y+ z︸ ︷︷ ︸ versus x+ y+ z︸ ︷︷ ︸. The MathML representation for this

example is shown below.

If the base is an operator with movablelimits="true" (or an embellished operator whose mo element core has
movablelimits="true"), and displaystyle="false", then underscript is drawn in a subscript position. In
this case, the accentunder attribute is ignored. This is often used for limits on symbols such as ∑.

88 Chapter 3. Presentation Markup

Within underscript, munder always sets displaystyle to "false", but increments scriptlevel by 1 only when
accentunder is "false". Within base, it always leaves both attributes unchanged. (These attributes are inherited
by every element through its rendering environment, but can be set explicitly only on mstyle; see Section 3.3.4.)

The align attribute specifies whether the script is aligned left, center, or right under/over the base.

3.4.4.3 Examples

The MathML representation for the example shown above is:

<mrow>
<munder accentunder="true">
<mrow>
<mi> x </mi>
<mo> + </mo>
<mi> y </mi>
<mo> + </mo>
<mi> z </mi>

</mrow>
<mo> ⏟ </mo>

</munder>
<mtext> versus </mtext>
<munder accentunder="false">
<mrow>
<mi> x </mi>
<mo> + </mo>
<mi> y </mi>
<mo> + </mo>
<mi> z </mi>

</mrow>
<mo> ⏟ </mo>

</munder>
</mrow>

3.4.5 Overscript (mover)

3.4.5.1 Description

The syntax for the mover element is:

<mover> base overscript </mover>

3.4.5.2 Attributes

mover elements accept the attributes listed below in addition to those specified in Section 2.1.4.

Name values default
accent true | false automatic
align left | right | center center

The accent attribute controls whether overscript is drawn as an ‘accent’ (diacritical mark) or as a limit. The main
difference between an accent and a limit is that the limit is reduced in size whereas an accent is the same size as the

3.4. Script and Limit Schemata 89

base. A second difference is that the accent is drawn closer to the base. This is shown below (accent versus limit):
x̂ versus x̂.

These differences also apply to ‘mathematical accents’ such as bars or braces over expressions:
︷ ︸︸ ︷
x+ y+ z versus︷ ︸︸ ︷

x+ y+ z. The MathML representation for each of these examples is shown below.

The default value of accent is false, unless overscript is an mo element or an embellished operator (see Sec-
tion 3.2.5). If overscript is an mo element, the value of its accent attribute is used as the default value of accent
for mover. If overscript is an embellished operator, the accent attribute of the mo element at its core is used as the
default value.

If the base is an operator with movablelimits="true" (or an embellished operator whose mo element core has
movablelimits="true"), and displaystyle="false", then overscript is drawn in a superscript position. In
this case, the accent attribute is ignored. This is often used for limits on symbols such as ∑.

Within overscript, mover always sets displaystyle to "false", but increments scriptlevel by 1 only when
accent is "false". Within base, it always leaves both attributes unchanged. (These attributes are inherited by
every element through its rendering environment, but can be set explicitly only on mstyle; see Section 3.3.4.)

The align attribute specifies whether the script is aligned left, center, or right under/over the base.

3.4.5.3 Examples

The MathML representation for the examples shown above is:

<mrow>
<mover accent="true">
<mi> x </mi>
<mo> ^ </mo>

</mover>
<mtext> versus </mtext>
<mover accent="false">
<mi> x </mi>
<mo> ^ </mo>

</mover>
</mrow>

<mrow>
<mover accent="true">
<mrow>
<mi> x </mi>
<mo> + </mo>
<mi> y </mi>
<mo> + </mo>
<mi> z </mi>

</mrow>
<mo> ⏞ </mo>

</mover>
<mtext> versus </mtext>
<mover accent="false">
<mrow>

90 Chapter 3. Presentation Markup

<mi> x </mi>
<mo> + </mo>
<mi> y </mi>
<mo> + </mo>
<mi> z </mi>

</mrow>
<mo> ⏞ </mo>

</mover>
</mrow>

3.4.6 Underscript-overscript Pair (munderover)

3.4.6.1 Description

The syntax for the munderover element is:

<munderover> base underscript overscript </munderover>

3.4.6.2 Attributes

munderover elements accept the attributes listed below in addition to those specified in Section 2.1.4.

Name values default
accent true | false automatic
accentunder true | false automatic
align left | right | center center

The munderover element is used so that the underscript and overscript are vertically spaced equally in relation to
the base and so that they follow the slant of the base as in the second expression shown below:R

∞

0 versus
R

∞

0 The MathML representation for this example is shown below.

The difference in the vertical spacing is too small to be noticed on a low resolution display at a normal font size,
but is noticeable on a higher resolution device such as a printer and when using large font sizes. In addition to
the visual differences, attaching both the underscript and overscript to the same base more accurately reflects the
semantics of the expression.

The accent and accentunder attributes have the same effect as the attributes with the same names on mover
(Section 3.4.5) and munder (Section 3.4.4), respectively. Their default values are also computed in the same manner
as described for those elements, with the default value of accent depending on overscript and the default value of
accentunder depending on underscript.

If the base is an operator with movablelimits="true" (or an embellished operator whose mo element core
has movablelimits="true"), and displaystyle="false", then underscript and overscript are drawn in a
subscript and superscript position, respectively. In this case, the accent and accentunder attributes are ignored.
This is often used for limits on symbols such as ∑.

Within underscript, munderover always sets displaystyle to "false", but increments scriptlevel by 1
only when accentunder is "false". Within overscript, munderover always sets displaystyle to "false",
but increments scriptlevel by 1 only when accent is "false". Within base, it always leaves both attributes
unchanged. (These attributes are inherited by every element through its rendering environment, but can be set
explicitly only on mstyle; see Section 3.3.4).

The align attribute specifies whether the script is aligned left, center, or right under/over the base.

3.4. Script and Limit Schemata 91

3.4.6.3 Examples

The MathML representation for the example shown above with the first expression made using separate munder
and mover elements, and the second one using an munderover element, is:

<mrow>
<mover>
<munder>
<mo> ∫ </mo>
<mn> 0 </mn>

</munder>
<mi> ∞ </mi>

</mover>
<mtext> versus </mtext>
<munderover>
<mo> ∫ </mo>
<mn> 0 </mn>
<mi> ∞ </mi>

</munderover>
</mrow>

3.4.7 Prescripts and Tensor Indices (mmultiscripts)

3.4.7.1 Description

The syntax for the mmultiscripts element is:

<mmultiscripts>
base

(subscript superscript)*
[<mprescripts/> (presubscript presuperscript)*]

</mmultiscripts>

Presubscripts and tensor notations are represented by a single element, mmultiscripts. This element allows
the representation of any number of vertically-aligned pairs of subscripts and superscripts, attached to one base
expression. It supports both postscripts (to the right of the base in visual notation) and prescripts (to the left of the
base in visual notation). Missing scripts can be represented by the empty element none.

The prescripts are optional, and when present are given after the postscripts, because prescripts are relatively rare
compared to tensor notation.

The argument sequence consists of the base followed by zero or more pairs of vertically-aligned subscripts and
superscripts (in that order) that represent all of the postscripts. This list is optionally followed by an empty element
mprescripts and a list of zero or more pairs of vertically-aligned presubscripts and presuperscripts that represent
all of the prescripts. The pair lists for postscripts and prescripts are given in the same order as the directional
context (ie. left-to-right order in LTR context). If no subscript or superscript should be rendered in a given position,
then the empty element none should be used in that position.

The base, subscripts, superscripts, the optional separator element mprescripts, the presubscripts, and the pre-
superscripts, are all direct sub-expressions of the mmultiscripts element, i.e. they are all at the same level of
the expression tree. Whether a script argument is a subscript or a superscript, or whether it is a presubscript or a
presuperscript is determined by whether it occurs in an even-numbered or odd-numbered argument position, re-
spectively, ignoring the empty element mprescripts itself when determining the position. The first argument, the

92 Chapter 3. Presentation Markup

base, is considered to be in position 1. The total number of arguments must be odd, if mprescripts is not given,
or even, if it is.

The empty elements mprescripts and none are only allowed as direct sub-expressions of mmultiscripts.

3.4.7.2 Attributes

Same as the attributes of msubsup. See Section 3.4.3.2.

The mmultiscripts element increments scriptlevel by 1, and sets displaystyle to "false", within each
of its arguments except base, but leaves both attributes unchanged within base. (These attributes are inherited by
every element through its rendering environment, but can be set explicitly only on mstyle; see Section 3.3.4.)

3.4.7.3 Examples

Two examples of the use of mmultiscripts are:

0F1(;a;z).

<mrow>
<mmultiscripts>
<mi> F </mi>
<mn> 1 </mn>
<none/>
<mprescripts/>
<mn> 0 </mn>
<none/>

</mmultiscripts>
<mo> ⁡ </mo>
<mrow>
<mo> (</mo>
<mrow>
<mo> ; </mo>
<mi> a </mi>
<mo> ; </mo>
<mi> z </mi>

</mrow>
<mo>) </mo>

</mrow>
</mrow>

Ri
j
kl (where k and l are different indices)

<mmultiscripts>
<mi> R </mi>
<mi> i </mi>
<none/>
<none/>
<mi> j </mi>
<mi> k </mi>
<none/>
<mi> l </mi>

3.5. Tabular Math 93

<none/>
</mmultiscripts>

An additional example of mmultiscripts shows how the binomial coefficient can be displayed in

Arabic style

<mmultiscripts><mo>ل</mo>
<mn>12</mn><none/>
<mprescripts/>
<none/><mn>5</mn>

</mmultiscripts>

3.5 Tabular Math

Matrices, arrays and other table-like mathematical notation are marked up using mtable, mtr, mlabeledtr and
mtd elements. These elements are similar to the table, tr and td elements of HTML, except that they provide
specialized attributes for the fine layout control necessary for commutative diagrams, block matrices and so on.

While somewhat similar to tables, the alignment issues for representing some two-dimensioal layouts in eleme-
natary such as addition and multiplication differ in some important ways. mcolumn is used for tabular elementary
math notations. See Section 3.7 for a discussion about elementary math notations.

In addition to the table elements mentiond above, the mlabeledtr element is used for labeling rows of a table.
This is useful for numbered equations. The first child of mlabeledtr is the label. A label is somewhat special in
that it is not considered an expression in the matrix and is not counted when determining the number of columns
in that row.

3.5.1 Table or Matrix (mtable)

3.5.1.1 Description

A matrix or table is specified using the mtable element. Inside of the mtable element, only mtr or mlabeledtr
elements may appear.

In MathML 1.x, the mtable element could infer mtr elements around its arguments, and the mtr element could
infer mtd elements. In other words, if some argument to an mtable was not an mtr element, a MathML application
was to assume a row with a single column (i.e. the argument was effectively wrapped with an inferred mtr).
Similarly, if some argument to a (possibly inferred) mtr element was not an mtd element, that argument was to be
treated as a table entry by wrapping it with an inferred mtd element. MathML 2 and 3 deprecate the inference of
mtr and mtd elements; mtr and mtd elements must be used inside of mtable and mtr respectively.

Table rows that have fewer columns than other rows of the same table (whether the other rows precede or follow
them) are effectively padded on the right (or left in RTL context) with empty mtd elements so that the number of
columns in each row equals the maximum number of columns in any row of the table. Note that the use of mtd
elements with non-default values of the rowspan or columnspan attributes may affect the number of mtd elements
that should be given in subsequent mtr elements to cover a given number of columns. Note also that the label in
an mlabeledtr element is not considered a column in the table.

94 Chapter 3. Presentation Markup

3.5.1.2 Attributes

mtable elements accept the attributes listed below in addition to those specified in Section 2.1.4.

Name values default
align (top | bottom | center | baseline | axis) [rownumber] axis
rowalign (top | bottom | center | baseline | axis) + baseline
columnalign (left | center | right) + center
groupalign group-alignment-list-list left
alignmentscope (true | false) + true
columnwidth (auto | number h-unit | namedspace | fit) + auto
width auto | number h-unit | namedspace auto
rowspacing (number v-unit) + 1.0ex
columnspacing (number h-unit | namedspace) + 0.8em
rowlines (none | solid | dashed) + none
columnlines (none | solid | dashed) + none
frame none | solid | dashed none
framespacing (number h-unit | namedspace) (number v-unit | namedspace) 0.4em 0.5ex
equalrows true | false false
equalcolumns true | false false
displaystyle true | false false
side left | right | leftoverlap | rightoverlap right
minlabelspacing number h-unit | namedspace 0.8em

Note that the default value for each of rowlines, columnlines and frame is the literal string ‘none’, meaning
that the default is to render no lines, rather than that there is no default.

As described in Section 2.1.3, the notation (x | y)+ means one or more occurrences of either x or y, separated
by whitespace. For example, possible values for columnalign are "left", "left left", and "left right
center center". If there are more entries than are necessary (e.g. more entries than columns for columnalign),
then only the first entries will be used. If there are fewer entries, then the last entry is repeated as often as necessary.
For example, if columnalign="right center" and the table has three columns, the first column will be right aligned
and the second and third columns will be centered. The label in a mlabeledtr is not considered as a column in
the table and the attribute values that apply to columns do not apply to labels.

The align attribute specifies where to align the table with respect to its environment. "axis" means to align the
center of the table on the environment’s axis. (The axis of an equation is an alignment line used by typesetters. It is
the line on which a minus sign typically lies. The center of the table is the midpoint of the table’s vertical extent.)
"center" and "baseline" both mean to align the center of the table on the environment’s baseline. "top" or
"bottom" aligns the top or bottom of the table on the environment’s baseline.

If the align attribute value ends with a "rownumber" between 1 and n (for a table with n rows), the specified row
is aligned in the way described above, rather than the table as a whole; the top (first) row is numbered 1, and the
bottom (last) row is numbered n. The same is true if the row number is negative, between -1 and -n, except that the
bottom row is referred to as -1 and the top row as -n. Other values of "rownumber" are illegal.

The rowalign attribute specifies how the entries in each row should be aligned. For example, "top" means that
the tops of each entry in each row should be aligned with the tops of the other entries in that row. The columnalign
attribute specifies how the entries in each column should be aligned.

The groupalign and alignmentscope attributes are described with the alignment elements, maligngroup and
malignmark, in Section 3.5.5.

The columnwidth attribute specifies how wide a column should be. The "auto" value means that the column
should be as wide as needed, which is the default. If an explicit value is given, then the column is exactly that

3.5. Tabular Math 95

wide and the contents of that column are made to fit in that width. The contents are linewrapped or clipped at the
discretion of the renderer. If "fit" is given as a value, the remaining page width after subtracting the widths for
columns specified as "auto" and/or specific widths is divided equally among the "fit" columns and this value is
used for the column width. If insufficient room remains to hold the contents of the "fit" columns, renderers may
linewrap or clip the contents of the "fit" columns. When the columnwidth is specified as a percentage, the value
is relative to the width of the table. That is, a renderer should try to adjust the width of the column so that it covers
the specified percentage of the entire table width.

The width attribute specifies the desired width of the entire table and is intended for visual user agents. When the
value is a percentage value, the value is relative to the horizontal space a MathML renderer has available for the
math element. When the value is "auto", the MathML renderer should calculate the table width from its contents
using whatever layout algorithm it chooses.

MathML does not specify a table layout algorithm. In particular, it is the responsibility of a MathML renderer to
resolve conflicts between the width attribute and other constraints on the width of a table, such as explicit values
for columnwidth attributes, and minimum sizes for table cell contents. For a discussion of table layout algorithms,
see Cascading Style Sheets, level 2.

The rowspacing and columnspacing attributes specify how much space should be added between each row and
column. However, spacing before the first row and after the last row (i.e. at the top and bottom of the table) is
given by the second number in the value of the framespacing attribute, and spacing before the first column and
after the last column (i.e. on the left and on the right of the table) is given by the first number in the value of the
framespacing attribute.

In those attributes’ syntaxes, h-unit or v-unit represents a unit of horizontal or vertical length, respectively (see
Section 2.1.3.2). The units shown in the attributes’ default values (em or ex) are typically used.

The rowlines and columnlines attributes specify whether and what kind of lines should be added between each
row and column. Lines before the first row or column and after the last row or column are given using the frame
attribute.

If a frame is desired around the table, the frame attribute is used. If the attribute value is not ‘none’, then
framespacing is used to add spacing between the lines of the frame and the first and last rows and columns of
the table. If frame="none", then the framespacing attribute is ignored. The frame and framespacing attributes
are not part of the rowlines/columnlines, rowspacing/columnspacing options because having them be so
would often require that rowlines and columnlines would need to be fully specified instead of just giving a
single value. For example, if a table had five columns and it was desired to have no frame around the table but
to have lines between the columns, then columnlines="none solid solid solid solid none" would be
necessary. If the frame is separated from the internal lines, only columnlines="solid" is needed.

The equalrows attribute forces the rows all to be the same total height when set to "true". The equalcolumns
attribute forces the columns all to be the same width when set to "true".

The displaystyle attribute specifies the value of displaystyle (described under mstyle in Section 3.3.4)
within each cell (mtd element) of the table. Setting displaystyle="true" can be useful for tables whose ele-
ments are whole mathematical expressions; the default value of "false" is appropriate when the table is part of an
expression, for example, when it represents a matrix. In either case, scriptlevel (Section 3.3.4) is not changed
for the table cells.

The side attribute specifies what side of a table a label for a table row should should be placed. This attribute is
intended to be used for labeled expressions. If "left" or "right" is specified, the label is placed on the left or
right side of the table row respectively. The other two attribute values are variations on "left" and "right": if
the labeled row fits within the width allowed for the table without the label, but does not fit within the width if the
label is included, then the label overlaps the row and is displayed above the row if rowalign for that row is "top";
otherwise the label is displayed below the row.

http://www.w3.org/TR/CSS2/tables.html#width-layout

96 Chapter 3. Presentation Markup

If there are multiple labels in a table, the alignment of the labels within the virtual column that they form is
left-aligned for labels on the left side of the table, and right-aligned for labels on the right side of the table. The
alignment can be overridden by specifying columnalignment for a mlabeledtr element.

The minlabelspacing attribute specifies the minimum space allowed between a label and the adjacent entry in
the row.

3.5.1.3 Examples

A 3 by 3 identity matrix could be represented as follows:

<mrow>
<mo> (</mo>
<mtable>
<mtr>
<mtd> <mn>1</mn> </mtd>
<mtd> <mn>0</mn> </mtd>
<mtd> <mn>0</mn> </mtd>

</mtr>
<mtr>
<mtd> <mn>0</mn> </mtd>
<mtd> <mn>1</mn> </mtd>
<mtd> <mn>0</mn> </mtd>

</mtr>
<mtr>
<mtd> <mn>0</mn> </mtd>
<mtd> <mn>0</mn> </mtd>
<mtd> <mn>1</mn> </mtd>

</mtr>
</mtable>
<mo>) </mo>

</mrow>

This might be rendered as: 1 0 0
0 1 0
0 0 1


Note that the parentheses must be represented explicitly; they are not part of the mtable element’s rendering. This
allows use of other surrounding fences, such as brackets, or none at all.

3.5.2 Row in Table or Matrix (mtr)

3.5.2.1 Description

An mtr element represents one row in a table or matrix. An mtr element is only allowed as a direct sub-expression
of an mtable element, and specifies that its contents should form one row of the table. Each argument of mtr is
placed in a different column of the table, starting at the leftmost column in a LTR context or rightmost column in
a RTL context.

As described in Section 3.5.1, mtr elements are effectively padded on the right with mtd elements when they are
shorter than other rows in a table.

3.5. Tabular Math 97

3.5.2.2 Attributes

mtr elements accept the attributes listed below in addition to those specified in Section 2.1.4.

Name values default
rowalign top | bottom | center | baseline | axis inherited
columnalign (left | center | right) + inherited
groupalign group-alignment-list-list inherited

The rowalign and columnalign attributes allow a specific row to override the alignment specified by the same
attributes in the surrounding mtable element.

As with mtable, if there are more entries than necessary in the value of columnalign (i.e. more entries than
columns in the row), then the extra entries will be ignored. If there are fewer entries than columns, then the last
entry will be repeated as many times as needed.

The groupalign attribute is described with the alignment elements, maligngroup and malignmark, in Sec-
tion 3.5.5.

3.5.3 Labeled Row in Table or Matrix (mlabeledtr)

3.5.3.1 Description

An mlabeledtr element represents one row in a table that has a label on either the left or right side, as determined
by the side attribute. The label is the first child of mlabeledtr. The rest of the children represent the contents of
the row and are identical to those used for mtr; all of the children except the first must be mtd elements.

An mlabeledtr element is only allowed as a direct sub-expression of an mtable element. Each argument of
mlabeledtr except for the first argument (the label) is placed in a different column of the table, starting at the
leftmost column.

Note that the label element is not considered to be a cell in the table row. In particular, the label element is not
taken into consideration in the table layout for purposes of width and alignment calculations. For example, in the
case of an mlabeledtr with a label and a single centered mtd child, the child is first centered in the enclosing
mtable, and then the label is placed. Specifically, the child is not centered in the space that remains in the table
after placing the label.

While MathML does not specify an algorithm for placing labels, implementors of visual renderers may find the
following formatting model useful. To place a label, an implementor might think in terms of creating a larger
table, with an extra column on both ends. The columnwidth attributes of both these border columns would be
set to "fit" so that they expand to fill whatever space remains after the inner columns have been laid out. Fi-
nally, depending on the values of side and minlabelspacing, the label is placed in whatever border column is
appropriate, possibly shifted down if necessary.

3.5.3.2 Attributes

The attributes for mlabeledtr are the same as for mtr. Unlike the attributes for the mtable element, attributes of
mlabeledtr that apply to column elements also apply to the label. For example, in a one column table,

<mlabeledtr rowalign=’top’>

means that the label and other entries in the row are vertically aligned along their top. To force a particular align-
ment on the label, the appropriate attribute would normally be set on the mtd start tag that surrounds the label
content.

98 Chapter 3. Presentation Markup

3.5.3.3 Equation Numbering

One of the important uses of mlabeledtr is for numbered equations. In a mlabeledtr, the label represents the
equation number and the elements in the row are the equation being numbered. The side and minlabelspacing
attributes of mtable determine the placement of the equation number.

In larger documents with many numbered equations, automatic numbering becomes important. While automatic
equation numbering and automatically resolving references to equation numbers is outside the scope of MathML,
these problems can be addressed by the use of style sheets or other means. The mlabeledtr construction provides
support for both of these functions in a way that is intended to facilitate XSLT processing. The mlabeledtr
element can be used to indicate the presence of a numbered equation, and the first child can be changed to the
current equation number, along with incrementing the global equation number. For cross references, an id on
either the mlabeledtr element or on the first element itself could be used as a target of any link.

<mtable>
<mlabeledtr id=’e-is-m-c-square’>
<mtd>
<mtext> (2.1) </mtext>

</mtd>
<mtd>
<mrow>
<mi>E</mi>
<mo>=</mo>
<mrow>
<mi>m</mi>
<mo>⁢</mo>
<msup>
<mi>c</mi>
<mn>2</mn>
</msup>
</mrow>

</mrow>
</mtd>

</mlabeledtr>
</mtable>

This should be rendered as:

E = mc2 (2.1)

3.5.4 Entry in Table or Matrix (mtd)

3.5.4.1 Description

An mtd element represents one entry, or cell, in a table or matrix. An mtd element is only allowed as a direct
sub-expression of an mtr or an mlabeledtr element.

The mtd element accepts any number of arguments; if this number is not 1, its contents are treated as a single
‘inferred mrow’ formed from all its arguments, as described in Section 3.1.3.

3.5.4.2 Attributes

mtd elements accept the attributes listed below in addition to those specified in Section 2.1.4.

3.5. Tabular Math 99

Name values default
rowspan positive-integer 1
columnspan positive-integer 1
rowalign top | bottom | center | baseline | axis inherited
columnalign left | center | right inherited
groupalign group-alignment-list inherited

The rowspan and columnspan attributes allow a specific matrix element to be treated as if it occupied the number
of rows or columns specified. The interpretation of how this larger element affects specifying subsequent rows and
columns is meant to correspond with the similar attributes for HTML 4.01 tables.

The rowspan and columnspan attributes can be used around an mtd element that represents the label in a
mlabeledtr element. Also, the label of a mlabeledtr element is not considered to be part of a previous rowspan
and columnspan.

The rowalign and columnalign attributes allow a specific matrix element to override the alignment specified by
a surrounding mtable or mtr element.

The groupalign attribute is described with the alignment elements, maligngroup and malignmark, in Sec-
tion 3.5.5.

3.5.5 Alignment Markers

3.5.5.1 Description

Alignment markers are space-like elements (see Section 3.2.7) that can be used to vertically align specified points
within a column of MathML expressions by the automatic insertion of the necessary amount of horizontal space
between specified sub-expressions.

The discussion that follows will use the example of a set of simultaneous equations that should be rendered with
vertical alignment of the coefficients and variables of each term, by inserting spacing somewhat like that shown
here:

8.44x + 55 y = 0
3.1 x - 0.7y = -1.1

If the example expressions shown above were arranged in a column but not aligned, they would appear as:

8.44x + 55y = 0
3.1x - 0.7y = -1.1

For audio renderers, it is suggested that the alignment elements produce the analogous behavior of altering the
rhythm of pronunciation so that it is the same for several sub-expressions in a column, by the insertion of the
appropriate time delays in place of the extra horizontal spacing described here.

The expressions whose parts are to be aligned (each equation, in the example above) must be given as the table
elements (i.e. as the mtd elements) of one column of an mtable. To avoid confusion, the term ‘table cell’ rather
than ‘table element’ will be used in the remainder of this section.

All interactions between alignment elements are limited to the mtable column they arise in. That is, every column
of a table specified by an mtable element acts as an ‘alignment scope’ that contains within it all alignment effects
arising from its contents. It also excludes any interaction between its own alignment elements and the alignment
elements inside any nested alignment scopes it might contain.

The reason mtable columns are used as alignment scopes is that they are the only general way in MathML to
arrange expressions into vertical columns. Future versions of MathML may provide an malignscope element
that allows an alignment scope to be created around any MathML element, but even then, table columns would
still sometimes need to act as alignment scopes, and since they are not elements themselves, but rather are made

100 Chapter 3. Presentation Markup

from corresponding parts of the content of several mtr elements, they could not individually be the content of an
alignment scope element.

An mtable element can be given the attribute alignmentscope="false" to cause its columns not to act as
alignment scopes. This is discussed further at the end of this section. Otherwise, the discussion in this section
assumes that this attribute has its default value of "true".

3.5.5.2 Specifying alignment groups

To cause alignment, it is necessary to specify, within each expression to be aligned, the points to be aligned with
corresponding points in other expressions, and the beginning of each alignment group of sub-expressions that can
be horizontally shifted as a unit to effect the alignment. Each alignment group must contain one alignment point.
It is also necessary to specify which expressions in the column have no alignment groups at all, but are affected
only by the ordinary column alignment for that column of the table, i.e. by the columnalign attribute, described
elsewhere.

The alignment groups start at the locations of invisible maligngroup elements, which are rendered with zero
width when they occur outside of an alignment scope, but within an alignment scope are rendered with just enough
horizontal space to cause the desired alignment of the alignment group that follows them. A simple algorithm by
which a MathML application can achieve this is given later. In the example above, each equation would have one
maligngroup element before each coefficient, variable, and operator on the left-hand side, one before the = sign,
and one before the constant on the right-hand side.

In general, a table cell containing n maligngroup elements contains n alignment groups, with the ith group con-
sisting of the elements entirely after the ith maligngroup element and before the (i+1)-th; no element within the
table cell’s content should occur entirely before its first maligngroup element.

Note that the division into alignment groups does not necessarily fit the nested expression structure of the MathML
expression containing the groups — that is, it is permissible for one alignment group to consist of the end of one
mrow, all of another one, and the beginning of a third one, for example. This can be seen in the MathML markup
for the present example, given at the end of this section.

The nested expression structure formed by mrows and other layout schemata should reflect the mathematical struc-
ture of the expression, not the alignment-group structure, to make possible optimal renderings and better automatic
interpretations; see the discussion of proper grouping in section Section 3.3.1. Insertion of alignment elements (or
other space-like elements) should not alter the correspondence between the structure of a MathML expression and
the structure of the mathematical expression it represents.

Although alignment groups need not coincide with the nested expression structure of layout schemata, there are
nonetheless restrictions on where an maligngroup element is allowed within a table cell. The maligngroup
element may only be contained within elements (directly or indirectly) of the following types (which are themselves
contained in the table cell):

• an mrow element, including an inferred mrow such as the one formed by a multi-argument mtd element;
• an mstyle element;
• an mphantom element;
• an mfenced element;
• an maction element, though only its selected sub-expression is checked;
• a semantics element.

These restrictions are intended to ensure that alignment can be unambiguously specified, while avoiding complex-
ities involving things like overscripts, radical signs and fraction bars. They also ensure that a simple algorithm
suffices to accomplish the desired alignment.

3.5. Tabular Math 101

Note that some positions for an maligngroup element, although legal, are not useful, such as for an maligngroup
element to be an argument of an mfenced element. When inserting an maligngroup element before a given
element in pre-existing MathML, it will often be necessary, and always acceptable, to form a new mrow element
to contain just the maligngroup element and the element it is inserted before. In general, this will be necessary
except when the maligngroup element is inserted directly into an mrow or into an element that can form an
inferred mrow from its contents. See the warning about the legal grouping of ‘space-like elements’ in Section 3.2.7.

For the table cells that are divided into alignment groups, every element in their content must be part of exactly
one alignment group, except the elements from the above list that contain maligngroup elements inside them, and
the maligngroup elements themselves. This means that, within any table cell containing alignment groups, the
first complete element must be an maligngroup element, though this may be preceded by the start tags of other
elements.

This requirement removes a potential confusion about how to align elements before the first maligngroup element,
and makes it easy to identify table cells that are left out of their column’s alignment process entirely.

Note that it is not required that the table cells in a column that are divided into alignment groups each contain the
same number of groups. If they don’t, zero-width alignment groups are effectively added on the right side of each
table cell that has fewer groups than other table cells in the same column.

3.5.5.3 Table cells that are not divided into alignment groups

Expressions in a column that are to have no alignment groups should contain no maligngroup elements. Expres-
sions with no alignment groups are aligned using only the columnalign attribute that applies to the table column
as a whole, and are not affected by the groupalign attribute described below. If such an expression is wider than
the column width needed for the table cells containing alignment groups, all the table cells containing alignment
groups will be shifted as a unit within the column as described by the columnalign attribute for that column. For
example, a column heading with no internal alignment could be added to the column of two equations given above
by preceding them with another table row containing an mtext element for the heading, and using the default
columnalign="center" for the table, to produce:

equations with aligned variables
8.44x + 55 y = 0
3.1 x - 0.7y = -1.1

or, with a shorter heading,

some equations
8.44x + 55 y = 0
3.1 x - 0.7y = -1.1

3.5.5.4 Specifying alignment points using malignmark

Each alignment group’s alignment point can either be specified by an malignmark element anywhere within the
alignment group (except within another alignment scope wholly contained inside it), or it is determined auto-
matically from the groupalign attribute. The groupalign attribute can be specified on the group’s preceding
maligngroup element or on its surrounding mtd, mtr, or mtable elements. In typical cases, using the groupalign
attribute is sufficient to describe the desired alignment points, so no malignmark elements need to be provided.

The malignmark element indicates that the alignment point should occur on the right edge of the preceding
element, or the left edge of the following element or character, depending on the edge attribute of malignmark.
Note that it may be necessary to introduce an mrow to group an malignmark element with a neighboring element,

102 Chapter 3. Presentation Markup

in order not to alter the argument count of the containing element. (See the warning about the legal grouping of
‘space-like elements’ in Section 3.2.7).

When an malignmark element is provided within an alignment group, it can occur in an arbitrarily deeply nested
element within the group, as long as it is not within a nested alignment scope. It is not subject to the same restric-
tions on location as maligngroup elements. However, its immediate surroundings need to be such that the element
to its immediate right or left (depending on its edge attribute) can be unambiguously identified. If no such element
is present, renderers should behave as if a zero-width element had been inserted there.

For the purposes of alignment, an element X is considered to be to the immediate left of an element Y, and Y to
the immediate right of X, whenever X and Y are successive arguments of one (possibly inferred) mrow element,
with X coming before Y. In the case of mfenced elements, MathML applications should evaluate this relation as if
the mfenced element had been replaced by the equivalent expanded form involving mrow. Similarly, an maction
element should be treated as if it were replaced by its currently selected sub-expression. In all other cases, no
relation of ‘to the immediate left or right’ is defined for two elements X and Y. However, in the case of content
elements interspersed in presentation markup, MathML applications should attempt to evaluate this relation in a
sensible way. For example, if a renderer maintains an internal presentation structure for rendering content elements,
the relation could be evaluated with respect to that. (See Chapter 4 and Chapter 5 for further details about mixing
presentation and content markup.)

malignmark elements are allowed to occur within the content of token elements, such as mn, mi, or mtext. When
this occurs, the character immediately before or after the malignmark element will carry the alignment point; in
all other cases, the element to its immediate left or right will carry the alignment point. The rationale for this is that
it is sometimes desirable to align on the edges of specific characters within multi-character token elements.

If there is more than one malignmark element in an alignment group, all but the first one will be ignored. MathML
applications may wish to provide a mode in which they will warn about this situation, but it is not an error, and
should trigger no warnings by default. The rationale for this is that it would be inconvenient to have to remove
all unnecessary malignmark elements from automatically generated data, in certain cases, such as when they are
used to specify alignment on ‘decimal points’ other than the ’.’ character.

3.5.5.5 malignmark Attributes

malignmark elements accept the attributes listed below in addition to those specified in Section 2.1.4.

Name values default
edge left | right left

malignmark has one attribute, edge, which specifies whether the alignment point will be found on the left or
right edge of some element or character. The precise location meant by ‘left edge’ or ‘right edge’ is discussed
below. If edge="right", the alignment point is the right edge of the element or character to the immediate left of
the malignmark element. If edge="left", the alignment point is the left edge of the element or character to the
immediate right of the malignmark element. Note that the attribute refers to the choice of edge rather than to the
direction in which to look for the element whose edge will be used.

For malignmark elements that occur within the content of MathML token elements, the preceding or following
character in the token element’s content is used; if there is no such character, a zero-width character is effectively
inserted for the purpose of carrying the alignment point on its edge. For all other malignmark elements, the
preceding or following element is used; if there is no such element, a zero-width element is effectively inserted to
carry the alignment point.

The precise definition of the ‘left edge’ or ‘right edge’ of a character or glyph (e.g. whether it should coincide with
an edge of the character’s bounding box) is not specified by MathML, but is at the discretion of the renderer; the
renderer is allowed to let the edge position depend on the character’s context as well as on the character itself.

3.5. Tabular Math 103

For proper alignment of columns of numbers (using groupalign values of "left", "right", or
"decimalpoint"), it is likely to be desirable for the effective width (i.e. the distance between the left and right
edges) of decimal digits to be constant, even if their bounding box widths are not constant (e.g. if ‘1’ is narrower
than other digits). For other characters, such as letters and operators, it may be desirable for the aligned edges to
coincide with the bounding box.

The ‘left edge’ of a MathML element or alignment group refers to the left edge of the leftmost glyph drawn to
render the element or group, except that explicit space represented by mspace or mtext elements should also
count as ‘glyphs’ in this context, as should glyphs that would be drawn if not for mphantom elements around them.
The ‘right edge’ of an element or alignment group is defined similarly.

3.5.5.6 maligngroup Attributes

maligngroup elements accept the attributes listed below in addition to those specified in Section 2.1.4.

Name values default
groupalign left | center | right | decimalpoint inherited

maligngroup has one attribute, groupalign, which is used to determine the position of its group’s alignment
point when no malignmark element is present. The following discussion assumes that no malignmark element is
found within a group.

In the example given at the beginning of this section, there is one column of 2 table cells, with 7 alignment groups
in each table cell; thus there are 7 columns of alignment groups, with 2 groups, one above the other, in each column.
These columns of alignment groups should be given the 7 groupalign values ‘decimalpoint left left decimalpoint
left left decimalpoint’, in that order. How to specify this list of values for a table cell or table column as a whole,
using attributes on elements surrounding the maligngroup element is described later.

If groupalign is ‘left’, ‘right’, or ‘center’, the alignment point is defined to be at the group’s left edge, at its right
edge, or halfway between these edges, respectively. The meanings of ‘left edge’ and ‘right edge’ are as discussed
above in relation to malignmark.

If groupalign is ‘decimalpoint’, the alignment point is the right edge of the last character before the decimal
point. The decimal point is the first ‘.’ character (ASCII 0x2e) in the first mn element found along the alignment
group’s baseline. More precisely, the alignment group is scanned recursively, depth-first, for the first mn element,
descending into all arguments of each element of the types mrow (including inferred mrows), mstyle, mpadded,
mphantom, menclose, mfenced, or msqrt, descending into only the first argument of each ‘scripting’ element (
msub, msup, msubsup, munder, mover, munderover, mmultiscripts) or of each mroot or semantics element,
descending into only the selected sub-expression of each maction element, and skipping the content of all other
elements. The first mn so found always contains the alignment point, which is the right edge of the last character
before the first decimal point in the content of the mn element. If there is no decimal point in the mn element, the
alignment point is the right edge of the last character in the content. If the decimal point is the first character of the
mn element’s content, the right edge of a zero-width character inserted before the decimal point is used. If no mn
element is found, the right edge of the entire alignment group is used (as for groupalign="right").

In order to permit alignment on decimal points in cn elements, a MathML application can convert a content ex-
pression into a presentation expression that renders the same way before searching for decimal points as described
above.

If characters other than ‘.’ should be used as ‘decimal points’ for alignment, they should be preceded by
malignmark elements within the mn token’s content itself.

For any of the groupalign values, if an explicit malignmark element is present anywhere within the group,
the position it specifies (described earlier) overrides the automatic determination of alignment point from the
groupalign value.

104 Chapter 3. Presentation Markup

3.5.5.7 Inheritance of groupalign values

It is not usually necessary to put a groupalign attribute on every maligngroup element. Since this attribute is
usually the same for every group in a column of alignment groups to be aligned, it can be inherited from an attribute
on the mtable that was used to set up the alignment scope as a whole, or from the mtr or mtd elements surrounding
the alignment group. It is inherited via an ‘inheritance path’ that proceeds from mtable through successively
contained mtr, mtd, and maligngroup elements. There is exactly one element of each of these kinds in this path
from an mtable to any alignment group inside it. In general, the value of groupalign will be inherited by any
given alignment group from the innermost element that surrounds the alignment group and provides an explicit
setting for this attribute. For example, if an mtable element specifies values for groupalign and a maligngroup
element within the table also specifies an explicit groupalign value, then then the value from the maligngroup
takes priority.

Note, however, that each mtd element needs, in general, a list of groupalign values, one for each maligngroup
element inside it, rather than just a single value. Furthermore, an mtr or mtable element needs, in general, a list
of lists of groupalign values, since it spans multiple mtable columns, each potentially acting as an alignment
scope. Such lists of group-alignment values are specified using the following syntax rules:

group-alignment := left | right | center | decimalpoint
group-alignment-list := group-alignment +
group-alignment-list-list := (’{’ group-alignment-list ’}’) +

As described in Section 2.1.3, | separates alternatives; + represents optional repetition (i.e. 1 or more copies of what
precedes it), with extra values ignored and the last value repeated if necessary to cover additional table columns
or alignment group columns; ’’ and ’’ represent literal braces; and (and) are used for grouping, but do not
literally appear in the attribute value.

The permissible values of the groupalign attribute of the elements that have this attribute are specified using the
above syntax definitions as follows:

Element type groupalign attribute syntax default value
mtable group-alignment-list-list left
mtr group-alignment-list-list inherited from mtable attribute
mlabeledtr group-alignment-list-list inherited from mtable attribute
mtd group-alignment-list inherited from within mtr attribute
maligngroup group-alignment inherited from within mtd attribute

In the example near the beginning of this section, the group alignment values could be specified on every mtd
element using groupalign = ‘decimalpoint left left decimalpoint left left decimalpoint’, or on every mtr element
using groupalign = ‘decimalpoint left left decimalpoint left left decimalpoint’, or (most conveniently) on the
mtable as a whole using groupalign = ‘decimalpoint left left decimalpoint left left decimalpoint’, which provides
a single braced list of group-alignment values for the single column of expressions to be aligned.

3.5.5.8 MathML representation of an alignment example

The above rules are sufficient to explain the MathML representation of the example given near the start of this
section. To repeat the example, the desired rendering is:

8.44x + 55 y = 0
3.1 x - 0.7y = -1.1

One way to represent that in MathML is:

3.5. Tabular Math 105

<mtable groupalign="{decimalpoint left left decimalpoint left left decimalpoint}">
<mtr>
<mtd>
<mrow>
<mrow>
<mrow>
<maligngroup/>
<mn> 8.44 </mn>
<mo> ⁢ </mo>
<maligngroup/>
<mi> x </mi>

</mrow>
<maligngroup/>
<mo> + </mo>
<mrow>
<maligngroup/>
<mn> 55 </mn>
<mo> ⁢ </mo>
<maligngroup/>
<mi> y </mi>

</mrow>
</mrow>

<maligngroup/>
<mo> = </mo>
<maligngroup/>
<mn> 0 </mn>

</mrow>
</mtd>

</mtr>
<mtr>
<mtd>
<mrow>
<mrow>
<mrow>
<maligngroup/>
<mn> 3.1 </mn>
<mo> ⁢ </mo>
<maligngroup/>
<mi> x </mi>

</mrow>
<maligngroup/>
<mo> - </mo>
<mrow>
<maligngroup/>
<mn> 0.7 </mn>
<mo> ⁢ </mo>
<maligngroup/>
<mi> y </mi>

</mrow>
</mrow>

106 Chapter 3. Presentation Markup

<maligngroup/>
<mo> = </mo>
<maligngroup/>
<mrow>
<mo> - </mo>
<mn> 1.1 </mn>

</mrow>
</mrow>

</mtd>
</mtr>

</mtable>

3.5.5.9 Further details of alignment elements

The alignment elements maligngroup and malignmark can occur outside of alignment scopes, where they are
ignored. The rationale behind this is that in situations in which MathML is generated, or copied from another
document, without knowing whether it will be placed inside an alignment scope, it would be inconvenient for this
to be an error.

An mtable element can be given the attribute alignmentscope="false" to cause its columns not to act as align-
ment scopes. In general, this attribute has the syntax (true | false) +; if its value is a list of boolean values,
each boolean value applies to one column, with the last value repeated if necessary to cover additional columns, or
with extra values ignored. Columns that are not alignment scopes are part of the alignment scope surrounding the
mtable element, if there is one. Use of alignmentscope="false" allows nested tables to contain malignmark
elements for aligning the inner table in the surrounding alignment scope.

As discussed above, processing of alignment for content elements is not well-defined, since MathML does not
specify how content elements should be rendered. However, many MathML applications are likely to find it conve-
nient to internally convert content elements to presentation elements that render the same way. Thus, as a general
rule, even if a renderer does not perform such conversions internally, it is recommended that the alignment elements
should be processed as if it did perform them.

A particularly important case for renderers to handle gracefully is the interaction of alignment elements with the
matrix content element, since this element may or may not be internally converted to an expression containing
an mtable element for rendering. To partially resolve this ambiguity, it is suggested, but not required, that if
the matrix element is converted to an expression involving an mtable element, that the mtable element be
given the attribute alignmentscope="false", which will make the interaction of the matrix element with the
alignment elements no different than that of a generic presentation element (in particular, it will allow it to contain
malignmark elements that operate within the alignment scopes created by the columns of an mtable that contains
the matrix element in one of its table cells).

The effect of alignment elements within table cells that have non-default values of the columnspan or rowspan
attributes is not specified, except that such use of alignment elements is not an error. Future versions of MathML
may specify the behavior of alignment elements in such table cells.

The effect of possible linebreaking of an mtable element on the alignment elements is not specified.

3.5.5.10 A simple alignment algorithm

A simple algorithm by which a MathML application can perform the alignment specified in this section is given
here. Since the alignment specification is deterministic (except for the definition of the left and right edges of a
character), any correct MathML alignment algorithm will have the same behavior as this one. Each mtable column

3.5. Tabular Math 107

(alignment scope) can be treated independently; the algorithm given here applies to one mtable column, and takes
into account the alignment elements, the groupalign attribute described in this section, and the columnalign
attribute described under mtable (Section 3.5.1).

First, a rendering is computed for the contents of each table cell in the column, using zero width for all
maligngroup and malignmark elements. The final rendering will be identical except for horizontal shifts applied
to each alignment group and/or table cell. The positions of alignment points specified by any malignmark elements
are noted, and the remaining alignment points are determined using groupalign values.

For each alignment group, the horizontal positions of the left edge, alignment point, and right edge are noted,
allowing the width of the group on each side of the alignment point (left and right) to be determined. The sum of
these two ‘side-widths’, i.e. the sum of the widths to the left and right of the alignment point, will equal the width
of the alignment group.

Second, each column of alignment groups, from left to right, is scanned. The ith scan covers the ith alignment
group in each table cell containing any alignment groups. Table cells with no alignment groups, or with fewer
than i alignment groups, are ignored. Each scan computes two maximums over the alignment groups scanned: the
maximum width to the left of the alignment point, and the maximum width to the right of the alignment point, of
any alignment group scanned.

The sum of all the maximum widths computed (two for each column of alignment groups) gives one total width,
which will be the width of each table cell containing alignment groups. Call the maximum number of alignment
groups in one cell n; each such cell’s width is divided into 2n adjacent sections, called L(i) and R(i) for i from 1
to n, using the 2n maximum side-widths computed above; for each i, the width of all sections called L(i) is the
maximum width of any cell’s ith alignment group to the left of its alignment point, and the width of all sections
called R(i) is the maximum width of any cell’s ith alignment group to the right of its alignment point.

The alignment groups are then positioned in the unique way that places the part of each ith group to the left of its
alignment point in a section called L(i), and places the part of each ith group to the right of its alignment point in
a section called R(i). This results in the alignment point of each ith group being on the boundary between adjacent
sections L(i) and R(i), so that all alignment points of ith groups have the same horizontal position.

The widths of the table cells that contain no alignment groups were computed as part of the initial rendering, and
may be different for each cell, and different from the single width used for cells containing alignment groups. The
maximum of all the cell widths (for both kinds of cells) gives the width of the table column as a whole.

The position of each cell in the column is determined by the applicable part of the value of the columnalign
attribute of the innermost surrounding mtable, mtr, or mtd element that has an explicit value for it, as described
in the sections on those elements. This may mean that the cells containing alignment groups will be shifted within
their column, in addition to their alignment groups having been shifted within the cells as described above, but
since each such cell has the same width, it will be shifted the same amount within the column, thus maintaining
the vertical alignment of the alignment points of the corresponding alignment groups in each cell.

3.5.6 mcolumn

mcolumn is typically used to layout numbers that are aligned on each digit. This is common in many elementary
math notations such as 2D addition and multiplication.

Inside an mcolumn, the character inside of the token elements mi, mn, mo, and mtext each occupy a column. The
width of a column is the maximum of the widths of each character in that column. If a child of mcolumn is not
one of the token elements listed above, then that element is considered to be a single digit wide. The exceptions to
this are mspace, mline, mstyle and mrow. mspace and mline have the amount of space specifed by them and do
not participate in the computation of the width of a column. The width rule should be applied (recursively) to the
child of mstyle. For mrow, the width is the sum of the widths of each child. Inside of a mcolumn, mrow does not

108 Chapter 3. Presentation Markup

perform automatic spacing or linebreaking. If there is no character in a column, its width is taken to be the width
of a 0 in the current language (in many fonts, all digits have the same width).

If a child is too small or to large to fit within a column, the columnalign attribute controls whether it is left, center,
or right aligned.

The width of a mcolumn is the sum of the widths of all of the columns; no spacing should be added between
columns. The baseline of the mcolumn is specifed by the align attribute.

Issue (overflows-mcolumn):Should an entry too large or too small for a column be centered?

Issue (mcolumn):Should an mphantom also act as a wrapper for computing digits? If so, people might be
encouraged to use it to play alignment games that make the result not very accessible.

3.5.6.1 Attributes

mcolumn elements accept the attributes listed below in addition to those specified in Section 2.1.4.

Name values default
justify left | right right
columnalign (left | center | right) + center
align (top | bottom | center | baseline | axis) [rownumber] baseline

The justify attribute specifies whether the row is to be left justified or right justified.

The columnalign attribute specifies how the entries in each column should be aligned if they are bigger or
smaller than the column width. The specification for columnalign is the same as columnalign in mtable. See
Section 3.5.1 for the full specification of the attribute value. If an element is too large to fit within a column,
the columnalign attribute controls its alignment with respect to that column and any excess overflows into the
surrounding columns. This excess does not participate in the column width calculation. In these cases, authors
should take care to avoid collisions between column overflows.

The align attribute specifies where to align the mcolumn with respect to its environment. Its specification is the
same as that for mtable’s align attribute. See Section 3.5.1 for the full specification of the attribute value

Issue (multidigit-alignment):If there is more than one number in a row, which number should be used to
determine the alignment if decimal point alignment is specfied?

3.5.6.2 Examples

Issue (to-display-mcolumn):The examples in this section should be images based on real typesetting, not ASCII
approximations.

123
×456

123
246

369

The MathML for this is:

<mcolumn>
<mn>123</mn>
<mrow> <mo>×</mo> <mn>321</mn> </mrow>
<mline spacing=’12345’/>
<mn>123</mn>

3.5. Tabular Math 109

<mrow> <mn>246</mn> <mspace spacing=’0’/></mrow>
<mrow> <mn>369</mn> <mspace spacing=’00’/></mrow>
<mline spacing=’36900’/>

</mcolumn>

Here is an example with the operator on the right. Placing the operator on the right is standard in the Netherlands
and some other countries.

<mcolumn>
<mn>123</mn>
<mrow> <mn>456</mn> <mo>+</mo> </mrow>
<mline spacing=’456+’/>
<mn>579</mn>

</mcolumn>

Because the default alignment is placed to the right of number, the numbers align properly and none of the rows
need to be shifted.

123
456+
579

Here is an example of subtraction where there is a borrow with multiple digits in a single column and a cross out.
The borrowed amount is underlined (the example is from a Swedish source):

Issue (examples-missing-graphic):An image is required here.

Here is how it can be done with mcolumn:

<mcolumn>
<mstyle mathsize=’71%’> <menclose notation=’bottom’> <mn>10</mn> </menclose> </mstyle>
<mn>5̸2</mn>
<mrow> <mo>−</mo> <mn>7</mn> </mrow>
<mline spacing=’45’/>
<mn>45</mn>

</mcolumn>

10

5/2
−7
45

Note that because menclose is not one of the listed elements above, it is considered to be a single digit wide so
that its use does not make that column wider. If it is too wide, it overflows into the other columns.

Notice also that the combining long solidus (/) is used rather than menclose. This is done because it logically
keeps the number 57 as a single number in an mn. An menclose can be used, but the use of combining characters
is recommended for the above reason. U+20E5 can be used for a reverse strike out, along with other overlay
characters. If more than one character should be included in the cross out (as opposed to multiple characters that
are individually crossed out), then menclose should be used.

Carries and borrows are typically reduced in size, but the computation of their size is based on the number of digits
as specified above, and the digit size is taken as the size of a digit in effect at the mcolumn. If there is more than
one carry, it may be more convenient to wrap all of the carries in a single mstyle as shown below:

http://www.fritext.se/matte/grunder/posi2.html

110 Chapter 3. Presentation Markup

<mcolumn>
<mstyle mathsize=’71%’> <mn>1</mn> <mn>1</mn> <mspace spacing=’0’/></mstyle>
<mn>987</mn>
<mrow> <mo>+</mo> <mn>456</mn> </mrow>
<mline spacing=’+1443’/>
<mn>1443</mn>

</mcolumn>

1 1
987

+456
1443

Here is a bigger example that illustrates using various values besides digits as the "spacing" attribute’s value.

1 1

1 1
1,234

×4,321
1 1 1 1 1

1,234
24,68

370,2
4,936
5,332,114

This example has multiple rows of carries. It also (somewhat artificially) includes ","s as digit separators. The
encoding includes these separators in the spacing attribute value, along non-ASCII values.

<mcolumn>
<mstyle mathsize=’71%’>

<mn>1</mn>
<mn>1</mn>
<mspace spacing=’0’/>

</mstyle>
<mstyle mathsize=’71%’>

<mn>1</mn>
<mn>1</mn>
<mspace spacing=’0’/>

</mstyle>
<mrow>
<mo rspace=’thinmathspace’>×</mo>
<mn>4,321</mn>

</mrow>
<mline spacing=’× 0,000’/>
<mstyle mathsize=’71%’>

<mn>1</mn>
<mspace spacing=’,’/>
<mn>1</mn>

3.6. Enlivening Expressions 111

<mn>1</mn>
<mn>1</mn>
<mspace spacing=’,’/>
<mn>1</mn>
<mspace spacing=’00’/>

</mstyle>
<mn>1,234</mn>
<mrow><mn>24,68</mn><mspace spacing=’0’/></mrow>
<mrow><mn>370,2</mn><mspace spacing=’00’/></mrow>
<mrow><mn>4,936</mn><mspace spacing=’,000’/></mrow>
<mline spacing=’5,332,114’/>
<mn>5,332,114</mn>

</mcolumn>

3.6 Enlivening Expressions

3.6.1 Bind Action to Sub-Expression (maction)

Issue ():There is concensus that maction should be deprecated or restricted in some way. There is also consensus
that in any event, all attribute values and their behavior should be fully specified (in contrast to the present text.)
Note that maction is currently used for linking, so the fate of maction is tied to producing a satisfactory
substitute. There is also a dependency on the decision on how to handle foreign markup within MathML.
MathQTI has a requirement for form elements that appear in typeset equations, e.g. an input field for an exponent,
which could be satisfied by either maction or XForms.

There are many ways in which it might be desirable to make mathematical content active. Adding a link to a
MathML sub-expression is one basic kind of interactivity. See Section 7.3.1. However, many other kinds of in-
teractivity cannot be easily accommodated by generic linking mechanisms. For example, in lengthy mathematical
expressions, the ability to ‘fold’ expressions might be provided, i.e. a renderer might allow a reader to toggle
between an ellipsis and a much longer expression that it represents.

To provide a mechanism for binding actions to expressions, MathML provides the maction element. This element
accepts any number of sub-expressions as arguments.

3.6.1.1 Attributes

maction elements accept the attributes listed below in addition to those specified in Section 2.1.4.

By default, MathML applications that do not recognize the specified actiontype should render the selected sub-
expression as defined below. If no selected sub-expression exists, it is a MathML error; the appropriate rendering
in that case is as described in Section 2.3.2.

Since a MathML application is not required to recognize any particular actiontypes, an application can be in
MathML conformance just by implementing the above-described default behavior.

The selection attribute is provided for those actiontypes that permit someone viewing a document to select
one of several sub-expressions for viewing. Its value should be a positive integer that indicates one of the sub-
expressions of the maction element, numbered from 1 to the number of children of the element. When this is the
case, the sub-expression so indicated is defined to be the ‘selected sub-expression’ of the maction element; other-
wise the ‘selected sub-expression’ does not exist, which is an error. When the selection attribute is not specified
(including for actiontypes for which it makes no sense), its default value is 1, so the selected sub-expression will
be the first sub-expression.

112 Chapter 3. Presentation Markup

Furthermore, as described in Section 2.5.2, if a MathML application responds to a user command to copy a
MathML sub-expression to the environment’s ‘clipboard’, any maction elements present in what is copied should
be given selection attributes that correspond to their selection state in the MathML rendering at the time of the
copy command.

A suggested list of actiontypes and their associated actions is given below. Keep in mind, however, that this list
is mainly for illustration, and recognized values and behaviors will vary from application to application.
<maction actiontype="toggle" selection="positive-integer" > (first expression) (second expression)... </mac-
tion>

For this action type, a renderer would alternately display the given expressions, cycling through them
when a reader clicked on the active expression, starting with the selected expression and updating the
selection attribute value as described above. Typical uses would be for exercises in education, ellipses
in long computer algebra output, or to illustrate alternate notations. Note that the expressions may be of
significantly different size, so that size negotiation with the browser may be desirable. If size negotia-
tion is not available, scrolling, elision, panning, or some other method may be necessary to allow full
viewing.

<maction actiontype="statusline"> (expression) (message) </maction>
In this case, the renderer would display the expression in context on the screen. When a reader clicked
on the expression or moved the mouse over it, the renderer would send a rendering of the message to the
browser statusline. Since most browsers in the foreseeable future are likely to be limited to displaying
text on their statusline, authors would presumably use plain text in an mtext element for the message in
most circumstances. For non-mtext messages, renderers might provide a natural language translation
of the markup, but this is not required.

<maction actiontype="tooltip"> (expression) (message) </maction>
Here the renderer would also display the expression in context on the screen. When the mouse pauses
over the expression for a long enough delay time, the renderer displays a rendering of the message in a
pop-up ‘tooltip’ box near the expression. These message boxes are also sometimes called ‘balloon help’
boxes. Presumably authors would use plain text in an mtext element for the message in most circum-
stances. For non-mtext messages, renderers may provide a natural language translation of the markup
if full MathML rendering is not practical, but this is not required.

<maction actiontype="highlight" my:color="red" my:background="yellow"> expression </maction>
In this case, a renderer might highlight the enclosed expression on a ‘mouse-over’ event. In the example
given above, non-standard attributes from another namespace are being used to pass additional infor-
mation to renderers that support them, without violating the MathML DTD (see Section 2.3.3). The
my:color attribute changes the color of the characters in the presentation, while the my:background
attribute changes the color of the background behind the characters.

3.7 Elementary Math

Mathematics used in the lower grades tends to be tabular in nature. However, the specific notation used varies
among countries much more than it does for higher level math. Furthermore, elementary math often presents ex-
amples in some intermediate step and MathML must be able to capture these intermediate or intentionally missing
partial forms.

The elements needed for elementary math are presented elsewhere in this chapter. In this section, examples are
given of how these elements can be used to display various notations used for elementary mathematics.

3.7.1 Addition, Subtraction, and Multiplication

Two-dimensional addition, subtraction, and multiplication typically involve numbers, carrries/borrows, lines, and
the sign of the operation. These are supported by MathML inside of mcolumn. Lines are drawn using mline and

3.7. Elementary Math 113

alignment is achieved via padding each line with mspace.

Issue (ldiv-img):Should move some of the examples from Section 3.5.6 here.

3.7.2 Long Division

The notation used for long division varies considerably among countries. Many notations share the common char-
acteristics of aligning intermediate results and drawing lines for the operands to be subtracted. The line that is
drawn various in length depending upon the notation.

The position of the divisor varies, as does the location of the quotient, remainder, and intermediate terms.

Issue (ldiv-img2):Image of two-dimensional long division needed. Need several images showing different styles
of long division.

Issue (ldiv-example):Need to include MathML for the following examples.

The US method for long division is

435.3̄
3 1306

12
10
9
16
15
1.0

9
1

The MathML for this is:

<mtable>
<mtr>
<mtd></mtd>
<mtd columnalign="right"><mn>435.3̅</mn></mtd>

</mtr>
<mtr>
<mtd columnalign="left"><mn>3</mn></mtd>
<mtd columnalign="left">
<mcolumn align="left">
<menclose notation="longdiv"><mn>1306</mn></menclose>
<mn>12</mn>

<mline spacing="00"/>
<mrow><mspace spacing="0"/><mn>10</mn></mrow>
<mrow><mspace spacing="00"/><mn>9</mn></mrow>
<mrow><mspace spacing="0"/><mline spacing="00"/></mrow>
<mrow><mspace spacing="00"/><mn>16</mn></mrow>
<mrow><mspace spacing="00"/><mn>15</mn></mrow>
<mrow><mspace spacing="00"/><mline spacing="00"/></mrow>
<mrow><mspace spacing="000"/><mn>1.0</mn></mrow>
<mrow><mspace spacing="0000."/><mn>9</mn></mrow>

114 Chapter 3. Presentation Markup

<mrow><mspace spacing="000"/><mline spacing="0.0"/></mrow>
<mrow><mspace spacing="0000."/><mn>1</mn></mrow>

</mcolumn>
</mtd>

</mtr>
</mtable>

The French method for long division is

1306 3
12 435, 3̄
10
9
16
15
1,0

9
1

The MathML for this is:

<mtable>
<mtr>
<mtd columnalign="left">
<menclose notation="left">
<mcolumn justify="left">
<mn>1306</mn>
<mn>12</mn>
<mline spacing="00"/>
<mrow><mspace spacing="0"/><mn>10</mn></mrow>
<mrow><mspace spacing="00"/><mn>9</mn></mrow>
<mrow><mspace spacing="0"/><mline spacing="00"/></mrow>
<mrow><mspace spacing="00"/><mn>16</mn></mrow>
<mrow><mspace spacing="00"/><mn>15</mn></mrow>
<mrow><mspace spacing="00"/><mline spacing="00"/></mrow>
<mrow><mspace spacing="000"/><mn>1,0</mn></mrow>
<mrow><mspace spacing="0000,"/><mn>9</mn></mrow>
<mrow><mspace spacing="000"/><mline spacing="0,0"/></mrow>
<mrow><mspace spacing="0000,"/><mn>1</mn></mrow>

</mcolumn>
</menclose>

</mtd>
<mtd columnalign="left">
<mcolumn justify="left">
<mn>3</mn>
<mline spacing="000,0"/>
<mn>435,3̅</mn>

</mcolumn>
</mtd>

</mtr>

3.8. Semantics and Presentation 115

</mtable>

3.7.3 Repeating decimal

Decimal numbers that have digits that repeat infinitely such as 1/3 (.3333) are represented using several notations.
One common notation is to put a horizontal line over the digits that repeat (in Portugal an underline is used.)
Another notation involves putting dots over the digits that repeat. These notations are shown below:

0.333333

0.142857

0.142857

0.1̇42857̇

The MathML for these involves using mover, munder, and mline. The MathML for the preceeding examples
above is given below.

<mover align="right">
<mn> 0.3333 </mn>
<mline spacing="3"/>

</mover>

<mover align="right">
<mn> 0.142857 </mn>
<mline spacing="142857"/>

</mover>

<munder align="right">
<mn> 0.142857 </mn>
<mline spacing="142857"/>

</munder >

<mover align="right" diff="add">
<mn> 0.142857 </mn>
<mrow> <mo>.</mo> <mspace spacing="4285"/> <mo>.</mo> </mrow>

</mover>

3.8 Semantics and Presentation
MathML uses the semantics element to allow specifying semantic annotations to presentation MathML elements;
these can be content MathML or other notations. As such, semantics should be considered part of both presenta-
tion MathML and content MathML. All MathML processors should process the semantics element, even if they
only process one of those subsets.

In semantic annotations a presentation MathML expression is typically the first child of the semantics element.
However, it can also be given inside of an annotation-xml element inside the semantics element. If it is
part of an annotation-xml element, then encoding="MathML-presentation" must be used and presentation
MathML processors should use this value for the presentation.

See Section 5.1 for more details about the semantics and annotation-xml elements.

Chapter 4

Content Markup

4.1 Introduction

In MathML 3, content markup is divided into two subsets ‘Strict’- and ‘Pragmatic’ Content MathML. The
first subset uses a minimal set of elements representing the meaning of a mathematical expression in a uniform
structure, while the second one tries to strike a pragmatic balance between verbosity and formality. Both forms
of content expressions are legitimate and have their role in representing mathematics. Strict Content MathML
is canonical in a sense and simplifies the implementation of content MathML processors and the comparison of
content expressions and Pragmatic Content MathML is much simpler and more intuitive for humans to understand,
read, and write.

Strict content MathML expressions can directly be given a formal semantics in terms of ‘OpenMath Objects’
[OpenMath2004], and we interpret pragmatic content MathML expressions by specifying equivalent Strict variants,
so that they inherit their semantics.

4.2 Strict Content MathML

4.2.1 The structure of MathML Content Expressions

MathML content encoding is based on the concept of an expression tree built up from

• basic expressions, i.e. Numbers, Symbols, and Identifiers
• derived expressions, i.e. function applications and binding expressions, and
• attributions
• error markup

As a general rule, the terminal nodes in the tree represent basic mathematical objects such as numbers, variables,
arithmetic operations and so on. The internal nodes in the tree generally represent some kind of function application
or other mathematical construction that builds up a compound object. Function application provides the most
important example; an internal node might represent the application of a function to several arguments, which are
themselves represented by the terminal nodes underneath the internal node.

This section provides the basic XML Encoding of content MathML expression trees. General usage and the mech-
anism used to associate mathematical meaning with symbols are provided here. [mathml3cds] provides a complete
listing of the specific Content MathML symbols defined by this specification along with full reference information
including attributes, syntax, and examples. It also describes the intended semantics of those symbols and suggests
default renderings. The rules for using presentation markup within content markup are explained in Section 5.3.1.

116

4.2. Strict Content MathML 117

4.2.2 Encoding OpenMath Objects

Strict Content MathML is designed to be and XML encoding of OpenMath Objects (see [OpenMath2004]), which
constitute the semantics of strict content MathML expressions. The table below gives an element-by-element cor-
respondence between the OpenMath XML encoding of OpenMath objects and strict content MathML.

strict Content MathML OpenMath
cn OMI, OMF
csymbol OMS
ci OMV
apply OMA
bind OMBIND
bvar OMBVAR
share OMR
semantics OMATTR, OMATP
annotation, annotation-xml OMFOREIGN
error OME

4.2.3 Numbers (cn)

Editor’s note:MiKoSome of the original parts of this section has been moved to the section as pragmatic
MathML, it is rather new and might change at any moment as the discussion in the Math WG progresses.

The cn element is the MathML element used to represent numbers. Strict content MathML supports integers, real
numbers, double precision floating point numbers.Pragmatic content MathML also supports representation of real
numbers by e-notation, rational numbers and complex numbers.

Where it makes sense, the base in which the number is written can be specified. The content of a cn element is
PCDATA. The permissible attributes on the cn are:

Name Values Default
type "integer" | "real" | "double" real
base number 10
hex hex

The type attribute specifies which kind of number is represented in the cn element. Unless otherwise specified,
the default "real" is used. The attribute base is used to specify how the content is to be parsed. The attribute
value is a base 10 positive integer giving the value of base in which the PCDATA is to be interpreted. The base
attribute should only be used on elements with type "integer" or "real". Its use on cn elements of other type is
deprecated. The default value for base is "10".

Each data type implies that the content be of a certain form, as detailed below.

integer An integer is represented by an optional sign followed by a string of one or more ‘digits’. How a ‘digit’ is
interpreted depends on the base attribute. If base is present, it specifies the base for the digit encoding,
and it specifies it base 10. Thus base=’16’ specifies a hexadecimal encoding. When base > 10, letters
are used in alphabetical order as digits. For example,
<cn base="16">7FE0</cn>
encodes the number written as 32736 in base ten. When base > 36, some integers cannot be represented
using numbers and letters alone and it is up to the application what additional characters (if any) may be
used for digits. For example,
<cn base="1000">10F</cn>
represents the number written in base 10 as 1,000,015. However, the number written in base 10 as
1,000,037 cannot be represented using letters and numbers alone when base is 1000.

118 Chapter 4. Content Markup

real A real number is presented in radix notation. Radix notation consists of an optional sign (‘+’ or ‘-’) followed
by a string of digits possibly separated into an integer and a fractional part by a ‘decimal point’. Some
examples are 0.3, 1, and -31.56. If a different base is specified, then the digits are interpreted as being
digits computed to that base (in the same was as described for type "integer").

double This type is used to mark up those double-precision floating point numbers that can be represented in the
IEEE 754 standard. This includes a subset of the (mathematical) real numbers, negative zero, positive
and negative real infinity and a set of "not a number" values. The content of a cn element may be
PCDATA (representing numeric values as described below), a infinity symbol (representing positive
real infinity), a minfinity symbol (representing negative real infinity) or a notanumber element.
Editor’s note:MikoStephen is postulating an mininfinity symbol here, but we do not have one yet.
Editor’s note:MiKoWe have decided in the F2F that we are adding a hex attribute to allow the
encoding of IEEE NaNs. David will write something about this here. Furthermore, we should not forget
to add the hex attribute on the notanumber and infinity elements in pragmatic content MathML.
If the content is PCDATA, it is interpreted as a real number in scientific notation. The number then has
one or two parts, a significand and possibly an exponent. The significand has the format of a base 10 real
number, as described above. The exponent (if present) has the format of a base 10 integer as described
above. If the exponent is not present, it is taken to have the value 0. The value of the number is then
that of the significand times ten to the power of the exponent. A special case of PCDATA content is
recognized. If a number of the above form has a negative sign and all digits of the significand are zero,
then it is taken to be a negative zero in the sense of the IEEE 754 standard.

4.2.4 Symbols and Identifiers

The notion of constructing a general expression tree is essentially that of applying an operator to sub-objects. For
example, the sum ‘x+y’ can be thought of as an application of the addition operator to two arguments x and y. And
the expression ‘cos(π)’ as the application of the cosine function to the number π.

In Content MathML, elements are used for operators and functions to capture the crucial semantic distinction
between the function itself and the expression resulting from applying that function to zero or more arguments.
This is addressed by making the functions self-contained objects with their own properties and providing an explicit
apply construct corresponding to function application. We will consider the apply construct in the next section.

In a sum expression ‘x+y’ above, x and y typically taken to be ‘variables’, since they have properties, but no
fixed value, whereas the addition function is a ‘constant’ or ‘symbol’ as it denotes a specific function, which is
defined somewhere externally. (Note that ‘symbol’ is used here in the abstract sense and has no connection with
any presentation of the construct on screen or paper).

4.2.4.1 Content Identifiers (ci)

Strict content MathML uses the ci element (for ‘content identifier’) to construct a variable, or an identifier that is
not a symbol. Its PCDATA content is interpreted as a name that identifies it. Two variables are considered equal, iff
their names are in the respective scope (see Section 4.2.6 for a discussion). A type attribute indicates the type of
object the symbol represents. Typically, ci represents a real scalar, but no default is specified.

Name values default
type string unspecified
name string unspecified
name string unspecified

4.2.4.2 Content Symbols (csymbol)

Due to the nature of mathematics the meaning of the mathematical expressions must be extensible. The key to ex-
tensibility is the ability of the user to define new functions and other symbols to expand the terrain of mathematical

4.2. Strict Content MathML 119

discourse. The csymbol element is used represent a ‘symbol’ in much the same way that ci is used to construct
a variable. The difference is that csymbol should refer to some mathematically defined concept with an external
definition referenced via the content dictionary attributes, whereas ci is used for identifiers that are essentially
‘local’ to the MathML expression.

In MathML 3, external definitions are grouped in Content Dictionaries (structured documents for the definition of
mathematical concepts; see [OpenMath2004] and [mathml3cds]).

We need three bits of information to fully identify a symbol: a symbol name, a Content Dictionary name, and (op-
tionally) a Content Dictionary base URI, which we encode in the textual content (which is the symbol name) and
two attributes of the csymbol element: cd and cdbase. The Content Dictionary is the location of the declaration
of the symbol, consisting of a name and, optionally, a unique prefix called a cdbase which is used to disambiguate
multiple Content Dictionaries of the same name. There are multiple encodings for content dictionaries, this refer-
encing scheme does not distinguish between them. If a symbol does not have an explicit cdbase attribute, then it
inherits its cdbase from the first ancestor in the XML tree with one, should such an element exist. In this document
we have tended to omit the cdbase for brevity.

Name values default
cdbase URI inherited
cd NCName required

Editor’s note:MiKoneed to fix the default URI here

Issue ():We might make the cd attribute optional? Then that would refer to the current CD if we are in one, or we
could make cd inherit like cdbase. That would save bandwidth

There are other properties of the symbol that are not explicit in these fields but whose values may be obtained by
inspecting the Content Dictionary specified. These include the symbol definition, formal properties and examples
and, optionally, a Role which is a restriction on where the symbol may appear in a MathML expression tree. The
possible roles are described in Chapter 8.

<csymbol cdbase="http://www.example.com" cd="VectorCalculus">Christoffel</csymbol>

For backwards compatibility with MathML2 and to facilitate the use of MathML within a URI-based framework
(such as RDF [rdf] or the Semantic Web), the csymbol content together with the values of the cd and cdbase
attributes can be combined in the definitionURL attribute: we provide the following scheme for constructing a
canonical URI for an MathML Symbol, which can be given in the definitionURL attribute.

{URI = }cdbase− value{ + ’/’ + }cd− value{ + ’#’ + }content

In the case of the Christoffel symbol above this would be the URI

http://www.example.com/VectorCalculus#Christoffel

For backwards compatibility with MathML2, we do not require that the definitionURL point to a content dictio-
nary. But if the URL in this attribute is of the form above, it will be interpreted as the canonical URL of a MathML
symbol. So the representation above would be equivalent to the one below:

<csymbol definitionURL="http://www.example.com/VectorCalculus">Christoffel</csymbol>

Issue ():We still have to fix this. Maybe it should correspond to the final resting place for CDs.

Issue ():The URI encoding of the triplet we propose here does not work (not yet for MathMLCDs and not at all
for OpenMath2 CDs). The URI reference proposed uses a bare name pointer #Christoffel at the end, which
points to the element that has and ID-type attribute with value Christoffel, which is not present in either of
these formats. Moreover, it does not scale well with extended CD formats like the OMDoc 1.8 format currently
under development

Issue ():What do we want to use for referencing the CD in csymbol? I propose to add cdbase, cd attributes as in
OpenMath to have maximal compatibility. This also enables negotiation over multiple CD encodings.

120 Chapter 4. Content Markup

Resolution: We have decided to add cdbase and cd and use the csymbol content for the symbol name. Using the
triplet means that there is an abstract CD for this.

Issue (default):For the inheritance mechanism to be complete, it would make sense to define a default cdbase
attribute value, e.g. at the math element. We’d support expressions ignorant of cdbase as they all are thus far.
Something such as http://www.w3.org/Math/CDs/official ? Moreover the MathML content dictionaries
should contain such.

Issue ():What should be the value of the encoding attribute. I propose the MIME type. What is the mine-type for
MathML content dictionaries?

Resolution: We should drop theencoding altogether and let the application deal with the MIME type returned by
the CD hosting application. We can use MIME type negotiation to get the right one.

Issue ():do we want to deprecate it for the OM-conformant three-attribute referencing way?

Resolution: We do not deprecate anything, but this is ‘Pragmatic Content MathML’quote> now. In particular, we
can still use definitionURL for situations where we do not want to or cannot point to a Content Dictionary, but
somewhere which isn’t. This is a slight anomaly in the pragmatic-by-translation approach.

Issue ():do we want to keep a table of MIME types (for the encodings) and and the default extensions to make the
mapping work? Is this something the OpenMath Society should do?

Resolution: This is something for the OpenMath Society, not the W3C

4.2.5 Function Application (apply)

The most fundamental way of building a compound object in mathematics is by applying a function or an operator
to some arguments. MathML supplies an infrastructure to represent this in expression trees, which we will present
in this section.

An apply element is used to build an expression tree that represents the result of applying a function or operator to
its arguments. The tree corresponds to a complete mathematical expression. Roughly speaking, this means a piece
of mathematics that could be surrounded by parentheses or ‘logical brackets’ without changing its meaning.

Name values default
cdbase URI inherited

For example, (x + y) might be encoded as

<apply><csymbol cd="arith1">plus</csymbol><ci>x</ci><ci>y</ci></apply>

The opening and closing tags of apply specify exactly the scope of any operator or function. The most typical way
of using apply is simple and recursive. Symbolically, the content model can be described as:

<apply> op a b </apply>

where the operands a and b are MathML expression trees themselves, and op is a MathML expression tree that
represents an operator or function. Note that apply constructs can be nested to arbitrary depth.

An apply may in principle have any number of operands:

<apply> op a b [c...] </apply>

For example, (x + y + z) can be encoded as

<apply>
<csymbol cd="arith1">plus</csymbol>
<ci>x</ci>
<ci>y</ci>
<ci>z</ci>

</apply>

4.2. Strict Content MathML 121

Mathematical expressions involving a mixture of operations result in nested occurrences of apply. For example, a
x + b would be encoded as

<apply><csymbol cd="arith1">plus</csymbol>
<apply><csymbol cd="arith1">times</csymbol>
<ci>a</ci>
<ci>x</ci>

</apply>
<ci>b</ci>

</apply>

There is no need to introduce parentheses or to resort to operator precedence in order to parse the expression
correctly. The apply tags provide the proper grouping for the re-use of the expressions within other constructs.
Any expression enclosed by an apply element is viewed as a single coherent object.

An expression such as (F+G)(x) might be a product, as in

<apply><csymbol cd="arith1">times</csymbol>
<apply><csymbol cd="arith1">plus</csymbol>
<ci>F</ci>
<ci>G</ci>

</apply>
<ci>x</ci>

</apply>

or it might indicate the application of the function F + G to the argument x. This is indicated by constructing the
sum

<apply><csymbol cd="arith1">plus</csymbol><ci>F</ci><ci>G</ci></apply>

and applying it to the argument x as in

<apply>
<apply><csymbol cd="arith1">plus</csymbol>
<ci>F</ci>
<ci>G</ci>

</apply>
<ci>x</ci>

</apply>

Both the function and the arguments may be simple identifiers or more complicated expressions.

The apply element is conceptually necessary in order to distinguish between a function or operator, and an instance
of its use. The expression constructed by applying a function to 0 or more arguments is always an element from
the codomain of the function. Proper usage depends on the operator that is being applied. For example, the plus
operator may have zero or more arguments, while the minus operator requires one or two arguments to be properly
formed.

If the object being applied as a function is not already one of the elements known to be a function (such as sin or
plus) then it is treated as if it were a function.

4.2.6 Bindings and Bound Variables (bind)

Some complex mathematical objects are constructed by the use of bound variables. For instance the integration
variables in an integral expression is one.

122 Chapter 4. Content Markup

4.2.6.1 Bindings

Such expressions are represented as MathML expression trees using the bind element. Its first child is a MathML
expression that represents a binding operator (the integral operator in our example). This can be followed by a non-
empty list of bvar elements for the bound variables, and the body of the binding, it is another content MathML
expression.

Name values default
cdbase URI inherited

4.2.6.2 Bound Variables

The bvar element is a special qualifier element that is used to denote the bound variable of a binding expression,
e.g. in sums, products, and quantifiers or user defined functions.

Name values default
cdbase URI inherited

Bound variables are identified by comparing the XML information sets of the ci content after first carrying out
XML space normalization. Such identification can be made explicit by placing an id on the ci element in the
bvar element and referring to it using the name attribute on all other instances. An example of this approach is

<bind>
<csymbol cd="quant1">forall</csymbol>
<bvar><ci id="var-x">x</ci></bvar>
<apply>
<csymbol cd="relation1">lt</csymbol>
<ci name="var-x">x</ci>
<cn>1</cn>

</apply>
</bind>

This id based approach is especially helpful when constructions involving bound variables are nested.

It can be necessary to associate additional information with a bound variable one or more instances of it. The
information might be something like a detailed mathematical type, an alternative presentation or encoding or a
domain of application. Such associations are accomplished in the standard way by replacing a ci element (even
inside the bvar element) by a semantics element containing both it and the additional information. Recognition
of and instance of the bound variable is still based on the actual ci elements and not the semantics elements or
anything else they may contain. The id based approach outlined above may still be used.

4.2.6.3 Examples

<bind>
<csymbol cd="quant1">forall</csymbol>
<bvar><ci>x</ci></bvar>
<apply><csymbol cd="relation1">eq</csymbol>
<apply><csymbol cd="arith1">minus</csymbol><ci>x</ci><ci>x</ci></apply>
<cn>0</cn>

</apply>
</bind>

<bind>
<csymbol cd="calculus1">int</csymbol>
<bvar><ci id="var_x">x</ci></bvar>

4.2. Strict Content MathML 123

<apply><csymbol cd="arith1">power</csymbol>
<ci definitionURL="#var_x"><mi>x</mi></ci>
<cn>7</cn>

</apply>
</bind>

Editor’s note:MiKoWe need to say something about alpha-conversion here for OpenMath compatibility.

4.2.7 Structure Sharing (share)

To conserve space, MathML expression trees can make use of structure sharing

4.2.7.1 The share element

This element has an href attribute whose value is the value of a URI referencing an id attribute of a MathML
expression tree. When building the MathML expression tree, the share element is replaced by a copy of the
MathML expression tree referenced by the href attribute. Note that this copy is structurally equal, but not identical
to the element referenced. The values of the share will often be relative URI references, in which case they are
resolved using the base URI of the document containing the share element.

Name values default
href URI
Issue ():In order to get parallel markup working, we might want to introduce a sharing element for presentation
MathML as well. That would also potentially give us size benefits.

Resolution: The WG decided on the Boston F2F that we do not want sharing in presentation (too complicated
with all the inherited elements

For instance, the mathematical object f (f (f (a,a), f (a,a)), f (a,a), f (a,a)) can be encoded as either one of the
following representations (and some intermediate versions as well).

<math> <math>
<apply> <apply>
<ci>f</ci> <ci>f</ci>
<apply> <apply id="t1">
<ci>f</ci> <ci>f</ci>
<apply> <apply id="t11">
<ci>f</ci> <ci>f</ci>
<ci>a</ci> <ci>a</ci>
<ci>a</ci> <ci>a</ci>

</apply> </apply>
<apply> <share href="#t11"/>
<ci>f</ci>
<ci>a</ci>
<ci>a</ci>

</apply>
</apply> </apply>
<apply> <share href="#t1"/>
<ci>f</ci>
<apply>
<ci>f</ci>
<ci>a</ci>
<ci>a</ci>

124 Chapter 4. Content Markup

</apply>
<apply>
<ci>f</ci>
<ci>a</ci>
<ci>a</ci>

</apply>
</apply>

</apply>
</math> </math>

4.2.7.2 An Acyclicity Constraint

We say that an element dominates all its children and all elements they dominate. An share element dominates its
target, i.e. the element that carries the id attribute pointed to by the href attribute. For instance in the representation
above the apply element with id="t1" and also the second share dominate the apply element with id="t11".

The occurrences of the share element must obey the following global acyclicity constraint : An element may not
dominate itself. For instance the following representation violates this constraint:

<apply id="foo">
<csymbol cd="arith1">plus</csymbol>
<cn>1</cn>
<apply>

<csymbol cd="arith1">plus</csymbol>
<cn>1</cn>
<share href="#foo"/>

</apply>
</apply>

Here, the apply element with id="foo" dominates its third child, which dominates the share element, which
dominates its target: the element with id="foo". So by transitivity, this element dominates itself, and by the
acyclicity constraint, it is not an MathML expression tree. Even though it could be given the interpretation of the
continued fraction 1

1+ 1
1+ 1

1+...

this would correspond to an infinite tree of applications, which is not admitted by

Content MathML

Note that the acyclicity constraints is not restricted to such simple cases, as the following example shows:

<apply id="bar"> <apply id="baz">
<csymbol cd="arith1">plus</csymbol> <csymbol cd="arith1">plus</csymbol>
<cn>1</cn> <cn>1</cn>
<share href="#baz"/> <share href="#bar"/>

</apply> </apply>

Here, the apply with id="bar" dominates its third child, the share with href="#baz", which dominates its
target apply with id="baz", which in turn dominates its third child, the share with href="#bar", this final-
ly dominates its target, the original apply element with id="bar". So this pair of representations violates the
acyclicity constraint.

4.2.7.3 Structure Sharing and Binding

Note that the share element is a syntactic referencing mechanism: an share element stands for the exact element
it points to. In particular, referencing does not interact with binding in a semantically intuitive way, since it allows
for variable capture. Consider for instance

4.2. Strict Content MathML 125

<bind id="outer">
<csymbol cd="fns1">lambda</csymbol>
<bvar><ci>x</ci></bvar>
<apply>
<ci>f</ci>
<bind id="inner">
<csymbol cd="fns1">lambda</csymbol>
<bvar><ci>x</ci></bvar>
<share id="copy" href="#orig"/>

</bind>
<apply id="orig"><ci>g</ci><ci>X</ci></apply>

</apply>
</bind>

it represents the term λx. f (λx.g(x),g(x)) which has two sub-terms of the form g(x), one with id="orig" (the one
explicitly represented) and one with id="copy", represented by the share element. In the original, the variable x
is bound by the outer bind element, and in the copy, the variable x is bound by the inner bind element. We say
that the inner bind has captured the variable X .

It is well-known that variable capture does not conserve semantics. For instance, we could use α-conversion to
rename the inner occurrence of x into, say, y arriving at the (same) object λx. f (λy.g(y),g(x)) Using references that
capture variables in this way can easily lead to representation errors, and is not recommended.

4.2.7.4 Structure Sharing and cdbase

Editor’s note:MiKosay something about cdbase here.

4.2.8 Attribution via semantics

Content elements can be adorned with additional information via the semantics element. An attribution decorates
a content MathML expression with a sequence of one or more semantic annotations. MathML uses the semantics
element to wrap the annotated element and the annotation-xml and annotation elements for representing the
annotations themselves. Each annotation has cdbase, cd, and name attribute to specify the key, i.e. a symbol that
specifies the relation between the annotated object and the annotation; See Section 5.1 for details.

An annotation acts as either adornment annotation or as semantic annotation. When the key has role
"attribution", then dropping the attribution is not harmful and preserves the semantics. When the key has
role "semantic-attribution" then the attributed object is modified by the attribution and dropping changes
semantics. If the attribute lacks the role specification then attribution is acting as adornment annotation.

An example of the use of an adornment attribution would be to indicate the color in which an content representation
object A should be displayed, for example

<semantics>
A
<annotation-xml cd="display" name="color" encoding="MathML Presentation">

red
</annotation>

</semantics>

Note red are arbitrary representations whereas the key is a symbol.

An example of the use of a semantic attribution would be to indicate the type of an object. For example the
following expression associates with an identifier F the information that it represents an operator that takes real

126 Chapter 4. Content Markup

numbers as input and returns natural numbers as values (the absolute value function is an example of such a
function).

<semantics>
<ci>F</ci>
<annotation-xml cd="types" name="typeof" encoding="MathML Content">
<apply>
<csymbol cd="types">funtype</csymbol>
<csymbol cd="setname1">integers</csymbol>
<csymbol cd="setname1">naturalnumbers</csymbol>

</apply>
<annotation-xml>

</semantics>

Here we have assumed the existence of a content dictionary types that provides a key symbol typeof that specifies
that the attributed expression is of the type specified by the content MathML expression in the annotation-xml
element. The key is specified by the cd and name attributes in the attribution-xml element. The encoding
attribute on the annotation-xml element specifies the format of the XML data.

As such, the semantics element should be considered part of both presentation MathML and content MathML.
MathML considers a semantics element (strict) content MathML, if and only if its first child is (strict) content
MathML. All MathML processors should process the semantics element, even if they only process one of those
subsets.

Issue ():The functionality of semantics together with annotation is very similar to the one given by the
OpenMath style attribution and foreign elements. At least if we make the definitionURL attribute
mandatory on annotation, as we had planned for MathML2(2e), but forgot (the types note depends on this). The
Difference then is largely in the way the key is addressed, and what we say about the semantics of attributions
(does the order play a role, how about duplicates, interaction with alpha renaming,...); some of this is still not fully
solved in OpenMath yet, but on the agenda. We should decide for one of the possibilities and consolidate the rest.

Resolution: We have decided to go only with semantics and upgrade it so that it is openmath-compatible.

4.2.9 In Situ Error Markup

A content error expression is made up of a symbol and a sequence of zero or more MathML expression trees.
This object has no direct mathematical meaning. Errors occur as the result of some treatment on an expression tree
and are thus of real interest only when some sort of communication is taking place. Errors may occur inside other
objects and also inside other errors.

Name values default
cdbase URI inherited

To encode an error caused by a division by zero, we would employ a aritherror Content Dictionary with a
DivisionByZero symbol with role error we would use the following expression tree:

<cerror>
<csymbol cd="aritherror">DivisionByZero</csymbol>
<apply><csymbol cd="arith1">divide</csymbol><ci>x</ci><cn>0</cn></apply>

</cerror>

Note that the error should cover the smallest erroneous sub-expression so cerror can be a sub-expression of a
bigger one, e.g.

<apply><csymbol cd="relation1">eq</csymbol>
<cerror>
<csymbol cd="aritherror">DivisionByZero</csymbol>

4.3. Pragmatic Content MathML 127

<apply><csymbol cd="arith1">divide</csymbol><ci>x</ci><cn>0</cn></apply>
</cerror>
<cn>0</cn>

</apply>

If an application wishes to signal that the content MathML expressions it has received is invalid or is not well-
formed then the offending data must be encoded as a string. For example:

<cerror>
<csymbol cd="parser">invalid_XML</csymbol>
<mtext> <apply><cos> <ci>v</ci> </apply> </mtext>

</cerror>

Note that the < and > characters have been escaped as is usual in an XML document.

4.3 Pragmatic Content MathML

Strict MathML3 content markup differs from earlier versions of MathML in that it has been regularized and based
on the content dictionary model introduced by OpenMath [OpenMath2004]. MathML3 also supports MathML2-
like markup as a pragmatic representation that is easier to read and more intuitive for humans. ‘Content MathML’
without qualification consists of both types of markup together.

In the following we will discuss the general aspects of pragmatic Content MathML3 and indicate the equivalent
strict Content MathML3 expressions. Thus the ‘pragmatic content MathML’ representations inherit the meaning
from their strict counterparts. As pragmatic Content MathML is not as regular as strict Content MathML and the
mapping from the former to the latter is not regular either, the particulars will be covered in this section.

Editor’s note:MiKoThis part of the specification is still under development and should not be considered as final.
In particular, the description of the pragmatic-vs-strict correspondence is still somewhat under-defined and should
only be considered as an indication of the intended relation. We anticipate that we may have to give normative
specification of the relation as a XSLT style sheet that converts pragmatic content MathML expressions to strict
content MathML expressions. Such a style sheet is under development at
http://svn.openmath.org/OpenMath3/xsl/cmml2om.xsl (actually it transforms pragmatic content
MathML to OpenMath, but this is equivalent, and can be transformed to strict content MathML via http://
svn.openmath.org/OpenMath3/xsl/om2mml.xsl.

4.3.1 Pragmatic Numbers (cn)

Editor’s note:MiKoThis section has been extracted from the section as pragmatic MathML, it is rather new and
might change at any moment as the discussion in the Math WG progresses.

In pragmatic content MathML the cn allows additional values for the type attribute element for supporting e-
notations for real numbers, rational numbers and complex numbers. Where it makes sense, the base in which the
number is written can be specified. For most numeric values, the content of a cn element should be either PCDATA
or other cn elements.

The permissible attributes on the cn are:

Name Values Default
type "e-notation," | "rational" | "complex-cartesian" | "complex-polar" real
base number 10

Each data type implies that the content be of a certain form, as detailed below.

http://svn.openmath.org/OpenMath3/xsl/cmml2om.xsl
http://svn.openmath.org/OpenMath3/xsl/cmml2om.xsl
http://svn.openmath.org/OpenMath3/xsl/cmml2om.xsl

128 Chapter 4. Content Markup

e-notation A real number may be presented in scientific notation using this type. Such numbers have two parts (a
significand and an exponent) separated by a <sep/> element. The first part is a real number, while the
second part is an integer exponent indicating a power of the base. For example, 12.3<sep/>5 represents
12.3 times 105. The default presentation of this example is 12.3e5. In strict content MathML, we can
just use the cn with "double" if it is in the range of IEEE floats:
<cn type="e-notation">12.3<sep/>5</cn>
Strict MathML equivlalent
<cn type="double">12.3e5</cn>
and we use a construction with bigfloat symbol from the bigfloat1 content dictionary.
<cn type="e-notation">12.3<sep/>5</cn>
Strict MathML equivlalent
<apply>

<csymbol cd="bigfloat1">bigfloat</csymbol>
<cn type="real">12.3</cn>
<cn type="integer">10</cn>
<cn type="integer">5</cn>

</apply>

rational A rational number is given as two integers giving the numerator and denominator of a quotient. These
themselves can either be given as nested cn elements or as PCDATA separated by <sep/>. In strict content
MathML we use a construction with the rational symbol from the nums1 content dictionary.
<cn type="rational">3<sep/>5</cn>
Strict MathML equivlalent
<apply>

<csymbol cd="num1">rational</csymbol>
<cn type="integer">3</cn>
<cn type="integer">5</cn>

</apply>
If a base is present, it specifies the base used for the digit encoding of both integers.
<cn type="rational" base="16">3<sep/>5</cn>
Strict MathML equivlalent
<apply>

<csymbol cd="num1">rational</csymbol>
<cn type="integer" base="16">3</cn>
<cn type="integer" base="16">5</cn>

</apply>

complex-cartesian A complex cartesian number is given as two numbers giving the real and imaginary parts.
These should themselves be given as nested cn elements or as PCDATA separated by a <sep/> element.
In strict content MathML we represent this using the complex_cartesian element from the complex1
content dictionary.
<cn type="complex-cartesian">3.5<sep/>1.2</cn>
Strict MathML equivlalent
<apply>

<csymbol cd="complex1">complex-cartesian</csymbol>
<cn>3.5</cn>
<cn>1.2</cn>

</apply>

complex-polar A complex polar number is given as two numbers giving the magnitude and angle. These should
themselves be given as nested cn elements or as PCDATA separated by a <sep/> element. In strict content
MathML we represent this using the complex_polar element from the complex1 content dictionary.
<cn type="complex-polar">3.5<sep/>1.2</cn>
Strict MathML equivlalent

http://svn.openmath.org/OpenMath3/cd/MathML/bigfloat1.xhtml#bigfloat
http://svn.openmath.org/OpenMath3/cd/MathML/bigfloat1.xhtml
http://svn.openmath.org/OpenMath3/cd/MathML/nums1.xhtml#rational
http://svn.openmath.org/OpenMath3/cd/MathML/nums1.xhtml
http://svn.openmath.org/OpenMath3/cd/MathML/complex1.xhtml#complex_cartesian
http://svn.openmath.org/OpenMath3/cd/MathML/complex1.xhtml
http://svn.openmath.org/OpenMath3/cd/MathML/complex1.xhtml#complex_polar
http://svn.openmath.org/OpenMath3/cd/MathML/complex1.xhtml

4.3. Pragmatic Content MathML 129

<apply>
<csymbol cd="complex1">complex-polar</csymbol>
<cn>3.5</cn>
<cn>1.2</cn>

</apply>
constant If the value type is "constant", then the content can be various Unicode representations of number

constants. Several important constants such as π have been included explicitly in MathML 2 as empty
elements. This use of the cn is discouraged in favor of the defined constants, or the use of csymbol
element with appropriate values for the cd and cdbaseattributes. For example, instead of using the pi
element, an instance of <cn type="constant">π</cn> could be used. This should be interpreted
as having the semantics of the mathematical constant Pi. The data for a constant cn tag may be one of
the following common constants:
content intuition Symbol strict content

MathML
π The usual π of trigonometry: approximately

3.141592653...
pi <csymbol

cd="nums1"
name="pi"/>

ⅇ
(or ⅇ)

The base for natural logarithms:
approximately 2.718281828...

exponentiale <csymbol
cd="nums1"
name="e"/>

ⅈ
(or ⅈ)

Square root of -1 imaginaryi <csymbol
cd="nums1"
name="i"/>

γ Euler’s constant: approximately
0.5772156649...

eulergamma <csymbol
cd="nums1"
name="eulergamma"/>

∞ (or
&infty;)

Infinity. Proper interpretation varies with
context

infinity <csymbol
cd="nums1"
name="infinity"/>

&true; the logical constant true true <csymbol
cd="logic1"
name="true"/>

&false; the logical constant false false <csymbol
cd="logic1"
name="false"/>

&NotANumber;
(or &NaN;)

represents the result of an ill-defined
floating point division

notanumber <csymbol
cd="nums1"
name="notanumber"/>

4.3.2 Operator Elements

Pragmatic content MathML provides empty elements for the operators and functions of the K-14 fragment of
mathematics. For instance, the empty MathML element <plus/> is equivalent to the element

<csymbol cdbase="http://w3.org/Math/CD" cd="arith1">plus</csymbol>

The set of elements is the same as the ones for MathML2 with few additions. In most cases, the names of the empty
operator elements are the same as the symbol names defined in the MathML 3 content dictionaries. Note that the
concepts of ‘MathML symbols’ (defined in Section 4.2.4) and ‘operator elements’ are different. In particular not
all symbols defined by the MathML 3 Content Dictionaries have corresponding operator elements in pragmatic
Content MathML.

http://svn.openmath.org/OpenMath3/cd/MathML/nums1.xhtml#pi
http://svn.openmath.org/OpenMath3/cd/MathML/nums1.xhtml#exponentiale
http://svn.openmath.org/OpenMath3/cd/MathML/nums1.xhtml#imaginaryi
http://svn.openmath.org/OpenMath3/cd/MathML/nums1.xhtml#eulergamma
http://svn.openmath.org/OpenMath3/cd/MathML/nums1.xhtml#infinity
http://svn.openmath.org/OpenMath3/cd/MathML/logic1.xhtml#true
http://svn.openmath.org/OpenMath3/cd/MathML/logic1.xhtml#false
http://svn.openmath.org/OpenMath3/cd/MathML/nums1.xhtml#notanumber

130 Chapter 4. Content Markup

Issue ():do we want to deprecate the old MathML2 elements in favor of the csymbol variant, or is it enough just
to state that they are equivalent and leave the choice to the user?

Resolution: We do not deprecate anything, but label it as "pragmatic content MathML"

Issue ():do we introduce new empty elements for the new symbols for which we introduce definitions in the CDs?

Resolution: We introduce new operator elements for the new symbols in the (MathML 3) CDs, but no general
mechanisms for making new operator elements for other CDs.

Issue ():In MathML2, the meaning of various operator elements could be specialized via various attributes,
usually the type attribute. Strict Content MathML does not have this possibility

Resolution: We pass these attributes as extra arguments in the apply (or bind elements), or add new symbols for
the non-default case to the respective content dictionaries.

4.3.3 Pragmatic Elements with Attributes

Following MathML2, pragmatic content MathML allows to specialize the meaning of some elements via attributes,
usually the type attribute. Strict Content MathML does not have this possibility, therefore these attributes are
either passed to the symbols as extra arguments in the apply or bind elements, or MathML 3 adds new symbols
for the non-default case to the respective content dictionaries. These will normally not have corresponding operator
elements (see above).

For instance the closure interval element can be given by the closure attribute. Thus the pragmatic content
MathML expression

<apply><interval closure="open-closed"/><cn>0</cn><cn>1</cn></apply>

is equivalent to the strict content MathML expression

<apply><csymbol cd="interval1">interval-oc</csymbol><cn>0</cn><cn>1</cn></apply>

In MathML2, the definitionURL attribute could be used to modify the meaning of an element to allow essentially
the same notation to be re-used for a discussion taking place in a different mathematical domain. This use of the
attribute is deprecated in MathML 3, in favor of using a csymbol with cdbase and cd attributes that combine to
the same definitionURL attribute (see Section 4.2.4.2).

4.3.4 Bindings with apply

Pragmatic content MathML allows to use the apply element instead of the bind element to conserve backwards
compatibility with MathML2. The mapping to strict Content MathML applies two general principles here depend-
ing on the operator. Where there is a binding operator in the content dictionaries, we use that and only replace the
apply tag with a bind tag. This is the case for instance for the quantifiers: the pragmatic expression

<apply>
<forall/>
<bvar><ci>x</ci></bvar>
<apply><geq/><ci>x</ci><ci>x</ci></apply>

</apply>

is equivalent to the strict expression

<bind>
<csymbol cd="logic1">forall</csymbol>
<bvar><ci>x</ci></bvar>
<apply><csymbol cd="relation1">geq</csymbol><ci>x</ci><ci>x</ci></apply>

</bind>

4.3. Pragmatic Content MathML 131

This situation also obtains for the exists and lambda symbols.

Where binding operators are not available, we just convert the expression with the bound variable into a λ-
expression. Usually we have to move any qualifiers into an argument. For instance for sums:
<apply>
<sum/>
<bvar><ci>i</ci></bvar>
<lowlimit><cn>0</cn></lowlimit>
<uplimit><cn>100</cn></uplimit>
<apply><power/><ci>x</ci><ci>i</ci></apply>

</apply>

is equivalent to the strict expression.
<apply>
<sum/>
<apply>
<csymbol cd="interval1">integer_interval</csymbol>
<cn>0</cn>
<cn>100</cn>

</apply>
<bind>
<csymbol cd="fns1">lambda</csymbol>
<bvar><ci>i</ci></bvar>
<apply><power/><ci>x</ci><ci>i</ci></apply>

</bind>
</apply>

Editor’s note:MiKowe should probably say here that we cannot expect alpha-conversion for apply-with-bvar in
contrast to the bind. An example for this is the diff element where the bvar is not bound at all.

4.3.5 Container Markup

4.3.5.1 Container Markup for Constructor Symbols

Pragmatic content MathML provides an alternative representation for applications of ‘constructor’ symbols called
‘container markup’. Constructor symbols represent operators that construct mathematical operators that construct
a mathematical structure from a list of objects. This list can be given by an explicit sequence of arguments or as an
expression with a bound variable. In pragmatic content MathML, we allow to write the argument list as children to
the element instead of having to append them as to the empty operator element as children of an apply element.

For instance for the set constructor allow to write:
<set><ci>a</ci><ci>b</ci><ci>c</ci></set>

This is considered equivalent to the following strict content MathML expression.
<apply><csymbol cd="set1">set</csymbol><ci>a</ci><ci>b</ci><ci>c</ci></apply>

But the set constructor can also take a list that is given as an expression with a bound variable in pragmatic Content
MathML. Consider for instance the collection of all intervals from 0 to x. Here we do not have a systematic
correspondence, since a symbol can only have one role. For the constructor symbols this is the role application.
Thus the pragmatic Content MathML expression
<set>
<bvar><ci>x</ci></bvar>
<interval><cn>0</cn><ci>x</ci></interval>

</set>

132 Chapter 4. Content Markup

has to be modeled by a

<apply>
<csymbol cd="set1">suchthat</csymbol>
<bind>
<csymbol cd="fns1">lambda</csymbol>
<bvar><ci>x</ci></bvar>
<apply>
<csymbol cd="interval1">interval</csymbol>
<cn>0</cn>
<ci>x</ci>

</apply>
</bind>

</apply>

Note that even though we have not made use of this here, the bound variable can be qualified by any of the qualifier
elements condition, uplimit, lowlimit, domainofapplication, and degree.

Note furthermore that container markup is restricted to the MathML2 elements set, interval, list, matrix,
matrixrow, and vector.

Issue ():Do we want to prescribe one of the representations for the DOM? That would make the processing much
simpler.

Resolution: We have decided to keep the MathML DOM directly in equivalent to the XML DOM of this, then
this becomes a non-issue

4.3.5.2 Container Markup for Binding Constructors

The lambda element allows a kind of container markup for the lambda symbol from the fns1 content dictionary.
e.g.

<lambda><bvar><ci>x</ci></bvar><ci>x</ci></lambda>

but unlike the set element, which corresponds to a symbol with role application, the role of the lambda symbol
is binding. Therefore the lambda element has to have at least one bvar child followed by qualifiers (see below),
followed by a content MathML element. The strict Content MathML equivalent of the expression above is

<bind><csymbol cd="fns1">lambda</csymbol><bvar><ci>x</ci></bvar><ci>x</ci></bind>

4.3.5.3 Container Markup for Applicative Constructors

The piecewise, piece, and otherwise allow container markup for the constructor symbols of the content dictio-
nary piece1. Unlike the cases described above, these do not allow their arguments to be represented as expressions
with bound variables, so the strict-pragmatic correspondence is very simple in this case. For instance the pragmatic
Content MathML representation of the absolute value function

<piecewise>
<piece>
<apply><minus/><ci>x</ci></apply>
<apply><lt/><ci>x</ci><cn>0</cn></apply>

</piece>
<piece>
<cn>0</cn>
<apply><eq/><ci>x</ci><cn>0</cn></apply>

</piece>

http://svn.openmath.org/OpenMath3/cd/MathML/piece1.xhtml

4.3. Pragmatic Content MathML 133

<piece>
<ci>x</ci>
<apply><gt/><ci>x</ci><cn>0</cn></apply>

</piece>
</piecewise>

has the strict equivalent
<apply>
<csymbol cd="piece1">piecewise</csymbol>
<apply>
<csymbol cd="piece1">piece</csymbol>
<apply><csymbol cd="arith1">minus</csymbol><ci>x</ci></apply>
<apply><csymbol cd="arith1">lt</csymbol><ci>x</ci><cn>0</cn></apply>

</apply>
<apply>
<csymbol cd="piece1">piece</csymbol>
<cn>0</cn>
<apply><csymbol cd="arith1">eq</csymbol><ci>x</ci><cn>0</cn></apply>

</apply>
<apply>
<csymbol cd="piece1">piece</csymbol>
<ci>x</ci>
<apply><csymbol cd="arith1">gt</csymbol><ci>x</ci><cn>0</cn></apply>

</apply>
</apply>

4.3.6 Symbols and Identifiers With Presentation MathML

In Pragmatic Content MathML, the ci and csymbol elements can contain a general presentation construct (see
Section 3.1.7), which is used for rendering (see Section 4.5). For example,
<csymbol cd="ContDiffFuncs">
<msup><mi>C</mi><mn>2</mn></msup>

</csymbol>

encodes an atomic symbol that displays visually as C2 and that, for purposes of content, is treated as a single
symbol representing the space of twice-differentiable continuous functions.
Issue ():What is the strict equivalent for the case of a csymbol with pMathML content, we do not have a good
way of determining that either from the pMathML (we could take the element content stripped of elements; I am
assuming this in the example below for now) or from the definitionURL. But as David convinced me, this does
not work, so we still need to discuss this. In the We also need to keep the use of symbol names as fragment
identifiers in mind.
A ci or csymbol element with Presentation MathML content is equivalent to a semantics construction where the
first child is a ci whose content is the symbol or identifier name and whose second child is an annotation-xml
element with the MathML Presentation. For example the Strict Content MathML equivalent to the example above
would be
<semantics>
<csymbol cd="ContDiffFuncs">C2</csymbol>
<annotation-xml encoding="MathMLÂ Presentation">
<msup><mi>C</mi><mn>2</mn></msup>

</annotation-xml>
</semantics>

134 Chapter 4. Content Markup

In this situation, the name of the symbol name (which has to be a text string) can be determined from the pre-
sentation MathML representation above by stripped off elements. But this is not possible in general . Therefore
pragmatic Content MathML allows an additional name attribute on csymbol and ci which allows to specify the
name. It is highly advisable to supply name attributes for symbols and identifiers that have presentation MathML
content.

Alternatively, the definitionURL attribute can be used to associate a name with with a ci element. See the
discussion of bound variables (Section 4.2.6) for a discussion of an important instance of this. For example,

<ci name="c1"><msub><mi>c</mi><mn>1</mn></msub></ci>

encodes an atomic symbol that displays visually as c1 which, for purposes of content, is treated as a atomic concept
representing a real number.

4.3.7 Elementary MathML Types on Operator and Container Elements

The ci element uses the type attribute to specify the basic type of object that it represents. While any CDATA
string is a valid type, the predefined types include "integer", "rational", "real", "complex",
"complex-polar", "complex-cartesian", "constant", "function" and more generally, any of the names
of the MathML container elements (e.g. vector) or their type values. For a more advanced treatment of types,
the type attribute is inappropriate. Advanced types require significant structure of their own (for example, vec-
tor(complex)) and are probably best constructed as mathematical objects and then associated with a MathML
expression through use of the semantics element.

Editor’s note:MiKo Give the Strict equivalent here by techniques from the Types Note, but be careful what we
eventually do with types.

4.3.8 Qualifiers for Bound Variables

In many situations, we want to specify range of bound variables, e.g. in definitive integrals. A number of common
mathematical constructions involve such restrictions, either implicit in conventional notation, such as a bound
variable, or thought of as part of the operator rather than an argument, as is the case with the limits of a definite
integral. MathML 3 provides the optional qualifier elements uplimit, lowlimit, domainofapplication,
condition, and degree as a pragmatic restriction mechanism.

4.3.8.1 Domain of Application

In pragmatic Content MathML the domainofapplication element may be used in an apply element without
bvar children to mark up the domain over which a given function is being applied. In contrast to its use as a
qualifier in the bind element, the usage in the apply element only marks the argument position. For instance, the
integral of a function f over an arbitrary domain C can be represented as

<apply><int/>
<domainofapplication><ci>C</ci></domainofapplication>
<ci>f</ci>

</apply>

in Pragmatic Content MathML to mark the domain for the range argument of the definite integral. This expression
is considered equivalent to

<apply><csymbol cd="calculus1">int</csymbol><ci>C</ci><ci>f</ci></apply>

4.3. Pragmatic Content MathML 135

4.3.8.2 Domain of Application in Bindings

The range of bound variables can be restricted by a domainofapplication in pragmatic Content MathML.
In strict Content MathML we usually represent such restricted quantifiers with complex binding operators. For
instance the expression

<apply><forall/>
<bvar><ci>x</ci></bvar>
<domainofapplication><ci type="set">D</ci></domainofapplication>
<apply><ci>p</ci><ci>x</ci></apply>

</apply>

is equivalent to the Strict Content MathML representation

<bind>
<apply>
<csymbol cd="quant1">every</csymbol>
<ci type="set">D</ci>

</apply>
<bvar><ci>x</ci></bvar>
<apply><ci>p</ci><ci>x</ci></apply>
</bind>

Note that the binding operator (the first child of the bind element) is not just a symbol, but a complex expression
constructed by applying the every symbol to the set D.

4.3.8.3 degree

The degree element is a qualifier used by some MathML container elements to specify that, for example, a bound
variable is repeated several times, i.e. for the for the ‘degree’ or ‘order’ of an operation. There are a number
of basic mathematical constructs that come in families, such as derivatives and moments. Rather than introduce
special elements for each of these families, pragmatic MathML allows uses a single general construct, the degree
element for this concept of ‘order’. This element is placed in the bvar element before or after the variable itself.

For instance, in a derivative, the degree element indicates the order of the derivative with respect to that variable.

<apply>
<diff/>
<bvar>
<ci>x</ci>
<degree><cn>2</cn></degree>

</bvar>
<apply><power/><ci>x</ci><cn>4</cn></apply>

</apply>

Strict MathML equivlalent

<bind>
<apply><csymbol cd="calculus3">diff</csymbol><cn>2</cn></apply>
<bvar><ci>x</ci></bvar>
<apply><csymbol cd="arith1">power</csymbol><ci>x</ci><cn>4</cn></apply>

</bind>

Editor’s note:MiKomake sure that this is consistent with revised calculus3

Note that the degree element is only allowed in the container representation. The strict representation takes the
degree as a regular argument as the second child of the apply or bind element.

http://svn.openmath.org/OpenMath3/cd/MathML/quant2.xhtml#every

136 Chapter 4. Content Markup

4.3.8.4 Upper and Lower Limits (uplimit and lowlimit)

The uplimit and lowlimit elements are pragmatic Content MathML qualifiers that can be used to restrict the
range of a bound variable to an interval, e.g. in some integrals and sums. In strict content MathML, the uplimit/
lowlimit pairs can be expressed via the interval. For instance, we consider the Pragmatic Content MathML
representation

<apply><int/>
<bvar><ci> x </ci></bvar>
<lowlimit><ci>a</ci></lowlimit>
<uplimit><ci>b</ci></uplimit>
<apply><ci>f</ci><ci>x</ci></apply>

</apply>

Strict MathML equivlalent

<apply>
<csymbol cd="calculus1">defint</csymbol>
<apply><csymbol cd="interval1">interval</csymbol><ci>a</ci><ci>b</ci></apply>
<bind>
<csymbol cd="fns1">lambda</csymbol>
<bvar><ci>x</ci></bvar>
<apply><ci>f</ci><ci>x</ci></apply>

</bind>
</apply>

Editor’s note:MiKorework for calculus3

If the lowlimit qualifier is missing, it is interpreted as negative infinity, similarly, if uplimit is then it is inter-
preted as positive infinity.

4.3.8.5 Conditions (condition)

A condition element contains a single child that represents a truth condition. Compound conditions are indicated
by applying operators such as and in the condition. Consider for instance the following representation of a definite
integral.

Name values default
cdbase URI inherited

For example

<bind>
<int/>
<bvar><ci>x</ci></bvar>
<condition>
<apply><in/><ci>x</ci><ci>S</ci></apply>

</condition>
<apply><sin/><ci>x</ci></apply>

</bind>

Here the condition element restricts the bound variables to range over a set S. In this special case, the strict
counterpart is given by a construction using the defint symbol:

<apply>
<csymbol cd="calculus1">defint</csymbol>
<ci>S</ci>

http://svn.openmath.org/OpenMath3/cd/MathML/interval1.xhtml#interval
http://svn.openmath.org/OpenMath3/cd/MathML/calculus1.xhtml#defint

4.3. Pragmatic Content MathML 137

<bind>
<csymbol cd="fns1">lambda</csymbol>
<bvar><ci>x</ci></bvar>
<apply><sin/><ci>x</ci></apply>

</bind>
</apply>

We will specify the special cases of the strict-to-pragmatic mapping with the binding operators below. For the
general case note that the binding operator can be a csymbol element or even an identifier (ci). We treat these
cases differently. For the first case consider

<bind>
<csymbol cd="foo">bar</csymbol>
<bvar><ci>x</ci></bvar>
<condition><apply><ci>P</ci><ci>x</ci></apply></condition>
<apply><sin/><ci>x</ci></apply>

</bind>

Restrictions via the condition element cannot be treated by complex binding operators as the
domainofapplication, uplimit, lowlimit, and degree qualifiers in the strict-to-pragmatic mapping since it
contains the bound variable, which would be placed outside the scope of alpha-renaming. Therefore we need to
place the content of the condition element in the body of the binding expression. We assume that the content
dictionary foo that defines the bar symbol also supplies a symbol foo_condition to use for the restriction and
translate the example above to:

<bind>
<csymbol cd="foo">bar</csymbol>
<bvar><ci>x</ci></bvar>
<apply>
<csymbol cd="foo">fooCondition</csymbol>
<apply><ci>P</ci><ci>x</ci></apply>
<apply><sin/><ci>x</ci></apply>

</apply>
</bind>

In the case where the binding operator is an identifier given by a ci element, the treatment is analogous only that
we use the general condition symbol instead of a CD-defined one.

4.3.9 Lifted Associative Commutative Operators

Issue ():Pragmatic Content MathML allows the use of n-ary operators as binding operators with bound variables
induced by them. For instance union could be used as the equivalent for the TeX \cup as well as \bigcup.
While the relation between the nary and the set-based operators is deterministic, i.e. the induced big operators are
fully determined by them, the concepts are quite different in nature (different notational conventions, different
types, different occurrence schemata. I therefore propose to extend the MathML K-14 CDs with symbols big
operators, much like we already have sum as the big operator for for the n-ary plus symbol, and prod for times.
For the new symbols, I propose the naming convention of capitalizing the big operators (as an alternative, we
could follow TeX and pre-pend a big). For example we could have Union as a big operator for union

Resolution: We have decided not to have a general rule for this correspondence, but to define it on a case-by-case
basis to be specified in the CDs. Most cases will be dealt with by making them OpenMath compatible, i.e. by
introducing a lambda.

Pragmatic Content MathML allows to use a associative operators to be ‘lifted’ to ‘big operators’, for instance the
n-ary minimum operator to the minimum operator over sets, as the minimum of squares in this expression:

http://svn.openmath.org/OpenMath3/cd/MathML/fns1.xhtml#condition

138 Chapter 4. Content Markup

<apply>
<min/>
<bvar><ci>x</ci></bvar>
<condition>
<apply><in/><ci>x</ci><interval><cn>-4</cn><cn>4</cn></interval></apply>

</condition>
<apply><power/><ci>x</ci><cn>2</cn></apply>

</apply>

While the relation between the nary and the set-based operators is deterministic, i.e. the induced big operators
are fully determined by them, the concepts are quite different in nature (different notational conventions, different
types, different occurrence schemata). Therefore the MathML 3 content dictionaries provide explicit symbols for
the ‘big operators’, much like MathML2 did with sum as the big operator for for the n-ary plus symbol, and prod
for times. Concretely, these are big_union, big_intersect, big_max, big_min, big_gcd, big_lcm, big_or, big_and,
big_xor.

Editor’s note:MiKoactually, there are more, e.g. cartesianproduct; make a complete list

With these, we can express all pragmatic Content MathML expressions. For instance, the minimum above can be
represented in strict Content MathML as

<apply>
<csymbol cd="set1">suchthat</csymbol>
<bind>
<csymbol cd="fns1">lambda</csymbol>
<bvar><ci>S</ci></bvar>
<condition>

<apply><csymbol cd="set1">in</csymbol><ci>S</ci><ci>F</ci></apply>
</condition>
<apply><csymbol cd="set1">setdiff</csymbol><ci>U</ci><ci>S</ci></apply>

</bind>
</apply>

For the exact meaning of the new symbols, consult the content dictionaries.

Issue ():The large operators can be solved in two ways, in the way described here, by inventing large operators
(and David does not like symbol names distinguished only by case; and I agree tend to agree with him). Or by
extending the role of roles to allow duplicate roles per symbol, then we could re-use the symbols like we did in
MathML2, but then we would have to extend OpenMath for that

Resolution: We have decided to provide big operators in the respective CDs, but they do not have empty operator
elements.

4.3.10 basic elements

4.3.10.1 Interval (interval)

The interval element is used to represent simple mathematical intervals of the real number line. It takes an
optional attribute closure, with a default value of "closed". Depending on its presence and value, the interval
element corresponds to one of five symbols from the interval1 content dictionary. If this has the value "open"
then interval corresponds to the interval_oo. With the value "closed" interval corresponds to the symbol
interval_cc, with value "open-closed" to interval_oc, and with "closed-open" to interval_co. The interval1 CD
also provides the symbol interval which cannot be represented in pragmatic content MathML, since the "closed"
is the default value of the closure attribute.

Content MathML

http://svn.openmath.org/OpenMath3/cd/MathML/set1.xhtml#big_union
http://svn.openmath.org/OpenMath3/cd/MathML/set1.xhtml#big_intersect
http://svn.openmath.org/OpenMath3/cd/MathML/minmax1.xhtml#big_max
http://svn.openmath.org/OpenMath3/cd/MathML/minmax1.xhtml#big_min
http://svn.openmath.org/OpenMath3/cd/MathML/arith1.xhtml#big_gcd
http://svn.openmath.org/OpenMath3/cd/MathML/arith1.xhtml#big_lcm
http://svn.openmath.org/OpenMath3/cd/MathML/logic1.xhtml#big_or
http://svn.openmath.org/OpenMath3/cd/MathML/logic1.xhtml#big_and
http://svn.openmath.org/OpenMath3/cd/MathML/logic1.xhtml#big_xor
http://svn.openmath.org/OpenMath3/cd/MathML/interval1.xhtml
http://svn.openmath.org/OpenMath3/cd/MathML/interval1.xhtml#interval_oo
http://svn.openmath.org/OpenMath3/cd/MathML/interval1.xhtml#interval_cc
http://svn.openmath.org/OpenMath3/cd/MathML/interval1.xhtml#interval_oc
http://svn.openmath.org/OpenMath3/cd/MathML/interval1.xhtml#interval_co
http://svn.openmath.org/OpenMath3/cd/MathML/interval1.xhtml
http://svn.openmath.org/OpenMath3/cd/MathML/interval1.xhtml#interval

4.3. Pragmatic Content MathML 139

<interval closure="open">
<ci>x</ci>
<cn>1</cn>

</interval>

Default Rendering: Presentation MathML

<mfenced open="(" close=")">
<mi>x</mi><mn>1</mn>
</mfenced>

Default Rendering: Image

(x,1)

Content MathML

<interval closure="closed">
<cn>0</cn>
<cn>1</cn>

</interval>

Default Rendering: Presentation MathML

<mfenced open="[" close="]">
<mn>0</mn><mn>1</mn>
</mfenced>

Default Rendering: Image

[0,1]

Content MathML

<interval closure="open-closed">
<cn>0</cn>
<cn>1</cn>

</interval>

Default Rendering: Presentation MathML

<mfenced open="(" close="]">
<mn>0</mn><mn>1</mn>
</mfenced>

Default Rendering: Image

(0,1]

Content MathML

<interval closure="closed-open">
<cn>0</cn>
<cn>1</cn>

</interval>

140 Chapter 4. Content Markup

Default Rendering: Presentation MathML
<mfenced open="[" close=")">
<mn>0</mn><mn>1</mn>
</mfenced>

Default Rendering: Image

[0,1)

The interval element can be used as a container element in pragmatic Content MathML.

If the optional type attribute of the interval element has the value "integers", then it corresponds to the
symbol integer_interval

Content MathML

Default Rendering: Presentation MathML

Default Rendering: Image

Finally pragmatic content MathML allows the interval element to be used with a bvar element and condition
defining the interval. Then we translate this to a set construction:
<interval>

<bvar><ci>x</ci></bvar>
<condition>
<apply><lt/><cn>0</cn><ci>x</ci></apply>

</condition>
</interval>

Strict MathML equivlalent
<apply><csymbol cd="set1">suchthat</csymbol>

<csymbol cd="setname1">R</csymbol>
<bind><csymbol cd="fns1">lambda</csymbol>
<bvar><ci>x</ci></bvar>
<apply><csymbol cd="relation1">lt</csymbol><cn>0</cn><ci>x</ci></apply>

</bind>
</apply>

4.3.10.2 Inverse (inverse)

The inverse element is applied to a function in order to construct a generic expression for the functional inverse
of that function. (See also the discussion of inverse in ???). As with other MathML functions, inverse may
either be applied to arguments, or it may appear alone, in which case it represents an abstract inversion operator
acting on other functions.

A typical use of the inverse element is in an HTML document discussing a number of alternative definitions for
a particular function so that there is a need to write and define f (−1)(x). To associate a particular definition with
f (−1), use the definitionURL and encoding attributes.

http://svn.openmath.org/OpenMath3/cd/MathML/interval1.xhtml#integer_interval

4.3. Pragmatic Content MathML 141

<apply>
<inverse/>
<ci> f </ci>

</apply>

<apply>
<inverse definitionURL="../MyDefinition.htm" encoding="text"/>
<ci> f </ci>

</apply>

<apply>
<apply><inverse/>
<ci type="matrix"> a </ci>

</apply>
<ci> A </ci>

</apply>

The default rendering for a functional inverse makes use of a parenthesized exponent as in f (−1)(x).

4.3.10.3 Lambda (lambda)

The lambda element is used to construct a user-defined function from an expression, bound variables, and quali-
fiers. In a lambda construct with n (possibly 0) bound variables, the first n children are bvar elements that identify
the variables that are used as placeholders in the last child for actual parameter values. The bound variables can be
restricted by an optional domainofapplication qualifier or one of its shorthand notations. The meaning of the
lambda construct is an n-ary function that returns the expression in the last child where the bound variables are
replaced with the respective arguments. See ??? for further details.

The domainofapplication child restricts the possible values of the arguments of the constructed function. For
instance, the following two lambda constructs are representations of a function on the integers.

<lambda>
<bvar><ci> x </ci></bvar>
<domainofapplication><integers/></domainofapplication>
<apply><sin/><ci> x </ci></apply>

</lambda>

If a lambda construct does not contain bound variables, then the arity of the constructed function is unchanged,
and the lambda construct is redundant, unless it also contains a domainofapplication construct that restricts
existing functional arguments, as in this example, which is a variant representation for the function above.

<lambda>
<domainofapplication><integers/></domainofapplication>
<sin/>

</lambda>

In particular, if the last child of a lambda construct is not a function, say a number, then the lambda construct will
not be a function, but the same number. Of course, in this case a domainofapplication does not make sense

Content MathML

<lambda>
<bvar>
<ci>x</ci>

</bvar>
<apply>
<sin/>

142 Chapter 4. Content Markup

<ci>x</ci>
</apply>
</lambda>

Default Rendering: Presentation MathML

<mrow>
<mi>λ</mi><mi>x</mi><mo>.</mo><mfenced><mrow>
<mi>sin</mi><mi>x</mi>
</mrow></mfenced>

</mrow>

Default Rendering: Image

λx.(sinx)

Content MathML

<bind>
<lambda/>
<bvar>
<ci>x</ci>

</bvar>
<apply>
<sin/>
<apply>
<plus/>
<ci>x</ci>
<cn>1</cn>

</apply>
</apply>

</bind>

Default Rendering: Presentation MathML

<mrow>
<mrow>
<mi>λ</mi><mrow/><mo>.</mo><mfenced/>
</mrow><mo>.</mo><mrow>
<mi>sin</mi><mrow>
<mo>(</mo><mi>x</mi><mo>+</mo><mn>1</mn><mo>)</mo>
</mrow>
</mrow>
</mrow>

Default Rendering: Image

λ.().sin(x+1)

4.3.10.4 Function composition (compose)

Editor’s note:MiKoWe need to talk about this.

4.3. Pragmatic Content MathML 143

The compose element represents the function composition operator. Note that MathML makes no assumption about
the domain and codomain of the constituent functions in a composition; the domain of the resulting composition
may be empty.

To override the default semantics for the compose element, or to associate a more specific definition for function
composition, use the definitionURL and encoding attributes.

The compose element is an n-ary operator (see ???). As an n-ary operator, its operands may also be generated as
described in Section 4.3.9 Therefore it may take qualifiers.

<apply>
<compose/>
<fn><ci> f </ci></fn>
<fn><ci> g </ci></fn>

</apply>

<apply>
<compose/>
<ci type="function"> f </ci>
<ci type="function"> g </ci>
<ci type="function"> h </ci>

</apply>

<apply>
<apply><compose/>
<fn><ci> f </ci></fn>
<fn><ci> g </ci></fn>

</apply>
<ci> x </ci>

</apply>

<apply>
<fn><ci> f </ci></fn>
<apply>
<fn><ci> g </ci></fn>
<ci> x </ci>

</apply>
</apply>

• f ◦g
• f ◦g◦h
• (f ◦g)(x)
• f (g(x))

4.3.10.5 Identity function (ident)

This is the identity function on a set.

Content MathML

<apply>
<eq/>

144 Chapter 4. Content Markup

<apply>
<compose/>

<ci type="function">f</ci>
<apply>
<inverse/>
<ci type="function">f</ci>

</apply>
</apply>
<ident/>

</apply>

Default Rendering: Presentation MathML

<mrow>
<mrow>
<mi>f</mi><mo>∘</mo><msup>
<mi>f</mi><mrow>
<mo>(</mo><mn>-1</mn><mo>)</mo>
</mrow>
</msup>
</mrow><mo>=</mo><mo>id</mo>
</mrow>

Default Rendering: Image

f ◦ f (−1) = id

4.3.10.6 Domain (domain)

This is the domain of a function. It is a unary operation.

Content MathML

<apply>
<eq/>
<apply>
<domain/>
<ci>f</ci>

</apply>
<reals/>

</apply>

Default Rendering: Presentation MathML

<mrow>
<mrow>
<mo>domain</mo><mo/><mfenced open="(" close=")" separators=","><mi>f</mi></mfenced>
</mrow><mo>=</mo><mi mathvariant="double-struck">R</mi>
</mrow>

Default Rendering: Image

domain(f) = R

4.3. Pragmatic Content MathML 145

4.3.10.7 codomain (codomain)

This is the codomain, or range, of a function. It is a unary function.

This symbol denotes the range of a function, that is a set that the function will map to. The single argument should
be the function whos range is being queried. It should be noted that this is not necessarily equal to the image, it is
merely required to contain the image.

Content MathML

<apply>
<eq/>
<apply>
<codomain/>
<ci>f</ci>

</apply>
<rationals/>

</apply>

Default Rendering: Presentation MathML

<mrow>
<mrow>
<mo>codomain</mo><mo/><mfenced open="(" close=")" separators=","><mi>f</mi></mfenced>
</mrow><mo>=</mo><mi mathvariant="double-struck">Q</mi>
</mrow>

Default Rendering: Image

codomain(f) = Q

4.3.10.8 Image (image)

This is the image of a function. It is a unary operator.

The image element denotes the image of a given function, which is the set of values taken by the function. Every
point in the image is generated by the function applied to some point of the domain.

Content MathML

Default Rendering: Presentation MathML

Default Rendering: Image

4.3.10.9 Piecewise declaration (piecewise, piece, otherwise)

The piecewise, piece, and otherwise elements are used to support ‘piecewise’ declarations of the form ‘ H(x)
= 0 if x less than 0, H(x) = 1 otherwise’.

The declaration is constructed using the piecewise element. This contains zero or more piece elements, and
optionally one otherwise element. Each piece element contains exactly two children. The first child defines the

146 Chapter 4. Content Markup

value taken by the piecewise expression when the condition specified in the associated second child of the piece
is true. The degenerate case of no piece elements and no otherwise element is treated as undefined for all values
of the domain.

otherwise allows the specification of a value to be taken by the piecewise function when none of the conditions
(second child elements of the piece elements) is true, i.e. a default value.

It should be noted that no ‘order of execution’ is implied by the ordering of the piece child elements within
piecewise. It is the responsibility of the author to ensure that the subsets of the function domain defined by the
second children of the piece elements are disjoint, or that, where they overlap, the values of the corresponding
first children of the piece elements coincide. If this is not the case, the meaning of the expression is undefined.

Content MathML
<piecewise>

<piece>
<apply>
<minus/>
<ci>x</ci>

</apply>
<apply>
<lt/>
<ci>x</ci>
<cn>0</cn>

</apply>
</piece>
<piece>
<cn>0</cn>
<apply>
<eq/>
<ci>x</ci>
<cn>0</cn>

</apply>
</piece>
<piece>
<ci>x</ci>
<apply>
<gt/>
<ci>x</ci>
<cn>0</cn>

</apply>
</piece>

</piecewise>

Default Rendering: Presentation MathML
<mrow>
<mo>{</mo><mtable>
<mtr>
<mtd><mrow>
<mo>−</mo><mi>x</mi>
</mrow></mtd><mtd columnalign="left"><mtext> if </mtext></mtd><mtd><mrow>
<mi>x</mi><mo><</mo><mn>0</mn>
</mrow></mtd>

4.3. Pragmatic Content MathML 147

</mtr><mtr>
<mtd><mn>0</mn></mtd><mtd columnalign="left"><mtext> if </mtext></mtd><mtd><mrow>
<mi>x</mi><mo>=</mo><mn>0</mn>
</mrow></mtd>

</mtr><mtr>
<mtd><mi>x</mi></mtd><mtd columnalign="left"><mtext> if </mtext></mtd><mtd><mrow>
<mi>x</mi><mo>></mo><mn>0</mn>
</mrow></mtd>

</mtr>
</mtable>
</mrow>

Default Rendering: Image


−x if x < 0
0 if x = 0
x if x > 0

4.3.11 Arithmetic, Algebra and Logic

4.3.11.1 Quotient (quotient)

The symbol to represent the integer (binary) division operator. That is, for integers a and b, quotient(a,b) denotes q
such that a=b*q+r, with |r| less than |b| and a*r positive.

The quotient element is the operator used for division modulo a particular base. When the quotient operator is
applied to integer arguments a and b, the result is the ‘quotient of a divided by b ’. That is, quotient returns the
unique integer q such that a = q b + r. (In common usage, q is called the quotient and r is the remainder.)

Content MathML

<apply>
<quotient/>
<ci>a</ci>
<ci>b</ci>

</apply>

Default Rendering: Presentation MathML

<mrow>
<mo>⌊</mo><mi>a</mi><mo>/</mo><mi>b</mi><mo>⌋</mo>
</mrow>

Default Rendering: Image

ba/bc

4.3.11.2 Factorial (factorial)

The symbol to represent a unary factorial function on non-negative integers.

Factorials are defined by n! = n*(n-1)* ... * 1

Content MathML

148 Chapter 4. Content Markup

<apply>
<factorial/>
<ci>n</ci>

</apply>

Default Rendering: Presentation MathML

<mrow>
<mi>n</mi><mo>!</mo>
</mrow>

Default Rendering: Image

n!

4.3.11.3 Division (divide)

This symbol represents a (binary) division function denoting the first argument right-divided by the second, i.e.
divide(a,b)=a*inverse(b). It is the inverse of the multiplication function defined by the symbol times in this CD.

Content MathML

<apply>
<divide/>
<ci>a</ci>
<ci>b</ci>

</apply>

Default Rendering: Presentation MathML

<mrow>
<mi>a</mi><mo>/</mo><mi>b</mi>
</mrow>

Default Rendering: Image

a/b

4.3.11.4 Maximum (max)

This symbol denotes the unary maximum function which takes a set as its argument and returns the maximum
element in that set.

Content MathML

<apply>
<max/>
<cn>2</cn>
<cn>3</cn>
<cn>5</cn>

</apply>

Default Rendering: Presentation MathML

4.3. Pragmatic Content MathML 149

<mrow>
<mo>max</mo><mrow>
<mo>{</mo><mn>2</mn><mo>,</mo><mn>3</mn><mo>,</mo><mn>5</mn><mo>}</mo>
</mrow>
</mrow>

Default Rendering: Image

max{2,3,5}

The max operator element can be used as a binding operator in pragmatic Content MathML. This role is taken over
by the big_max symbol in strict Content MathML. We translate:

<apply>
<max/>
<bvar><ci>x</ci></bvar>
<apply><power/><ci>x</ci></apply>

</apply>

Strict MathML equivlalent

<apply>
<csymbol cd="arith1">big_max</csymbol>
<bind>
<csymbol cd="fns1">lambda</csymbol>
<bvar><ci>x</ci></bvar>
<apply><csymbol cd="arith1">power</csymbol><ci>x</ci></apply>

</bind>
</apply>

Content MathML

<apply>
<max/>
<bvar>
<ci>y</ci>

</bvar>
<condition>
<apply>
<in/>
<ci>y</ci>
<interval>
<cn>0</cn>
<cn>1</cn>

</interval>
</apply>

</condition>
<apply>
<power/>
<ci>y</ci>
<cn>3</cn>

</apply>
</apply>

150 Chapter 4. Content Markup

Default Rendering: Presentation MathML

<mrow>
<mo>max</mo><mrow>
<mo>{</mo><mi>y</mi><mo>|</mo><mrow>
<mi>y</mi><mo>∈</mo><mfenced open="[" close="]">
<mn>0</mn><mn>1</mn>
</mfenced>
</mrow><mo>}</mo>

</mrow>
</mrow>

Default Rendering: Image

max{y|y ∈ [0,1]}

Content MathML

<apply>
<max/>
<ci>a</ci>
<ci>b</ci>

</apply>

Default Rendering: Presentation MathML

<mrow>
<mo>max</mo><mrow>
<mo>{</mo><mi>a</mi><mo>,</mo><mi>b</mi><mo>}</mo>
</mrow>
</mrow>

Default Rendering: Image

max{a,b}

4.3.11.5 Minimum (min)

This symbol denotes the unary minimum function which takes a set as its argument and returns the minimum
element in that set.

Content MathML

Default Rendering: Presentation MathML

Default Rendering: Image

The min operator element can be used as a binding operator in pragmatic Content MathML. This role is taken over
by the big_min symbol in strict Content MathML. We translate:

http://svn.openmath.org/OpenMath3/cd/MathML/minmax1.xhtml#big_min

4.3. Pragmatic Content MathML 151

<apply>
<min/>
<bvar><ci>x</ci></bvar>
<apply><power/><ci>x</ci></apply>

</apply>

Strict MathML equivlalent

<apply>
<csymbol cd="arith1">big_min</csymbol>
<bind>
<csymbol cd="fns1">lambda</csymbol>
<bvar><ci>x</ci></bvar>
<apply><csymbol cd="arith1">power</csymbol><ci>x</ci></apply>

</bind>
</apply>

Content MathML

<apply>
<min/>
<bvar>
<ci>y</ci>

</bvar>
<condition>
<apply>
<in/>
<ci>y</ci>
<interval>
<cn>0</cn>
<cn>1</cn>

</interval>
</apply>

</condition>
<apply>
<power/>
<ci>y</ci>
<cn>2</cn>

</apply>
</apply>

Default Rendering: Presentation MathML

<mrow>
<mo>min</mo><mrow>
<mo>{</mo><mi>y</mi><mo>|</mo><mrow>
<mi>y</mi><mo>∈</mo><mfenced open="[" close="]">
<mn>0</mn><mn>1</mn>
</mfenced>
</mrow><mo>}</mo>

</mrow>
</mrow>

Default Rendering: Image

152 Chapter 4. Content Markup

min{y|y ∈ [0,1]}

Content MathML

<apply>
<min/>
<bvar>
<ci>x</ci>

</bvar>
<condition>
<apply>
<notin/>
<ci>x</ci>
<ci type="set"> B</ci>

</apply>
</condition>
<apply>
<power/>
<ci>x</ci>
<cn>2</cn>

</apply>
</apply>

Default Rendering: Presentation MathML

<mrow>
<mo>min</mo><mrow>
<mo>{</mo><mi>x</mi><mo>|</mo><mrow>
<mi>x</mi><mo>∉</mo><mi> B</mi>
</mrow><mo>}</mo>

</mrow>
</mrow>

Default Rendering: Image

min{x|x 6∈ B}

4.3.11.6 Subtraction (minus)

The minus element can be used as a unary arithmetic operator (e.g. to represent - x), or as a binary arithmetic
operator (e.g. to represent x- y).

If it is used with one argument, minus corresponds to the unary_minus symbol

Content MathML

<apply>
<minus/>
<cn>3</cn>

</apply>

Default Rendering: Presentation MathML

http://svn.openmath.org/OpenMath3/cd/MathML/arith1.xhtml#unary_minus

4.3. Pragmatic Content MathML 153

<mrow>
<mo>−</mo><mn>3</mn>
</mrow>

Default Rendering: Image

−3

If it is used with two arguments, minus corresponds to the minus symbol

Content MathML

<apply>
<minus/>
<ci>x</ci>
<ci>y</ci>

</apply>

Default Rendering: Presentation MathML

<mrow>
<mi>x</mi><mo>−</mo><mi>y</mi>
</mrow>

Default Rendering: Image

x− y

4.3.11.7 Addition (plus)

The symbol representing an n-ary commutative function plus. If no operands are provided, the expression repre-
sents the additive identity. If one operand, a, is provided the expression evaluates to "a". If two or more operands
are provided, the expression represents the (semi) group element corresponding to a left associative binary pairing
of the operands. The meaning of mixed operand types not covered by the signatures shown here are left up to the
target system.

Content MathML

<apply>
<plus/>
<ci>x</ci>
<ci>y</ci>
<ci>z</ci>

</apply>

Default Rendering: Presentation MathML

<mrow>
<mi>x</mi><mo>+</mo><mi>y</mi><mo>+</mo><mi>z</mi>
</mrow>

Default Rendering: Image

x+ y+ z

http://svn.openmath.org/OpenMath3/cd/MathML/arith1.xhtml#minus

154 Chapter 4. Content Markup

The lcm symbol can be used as a binding operator in pragmatic Content MathML. This role is taken over by the
big_lcm symbol in strict Content MathML.

<apply>
<lcm/>
<bvar><ci>x</ci></bvar>
<ci>x</ci>

</apply>

Strict MathML equivlalent

<apply>

<bind>
<csymbol cd="fns1">lambda</csymbol>
<bvar><ci>x</ci></bvar>
<ci>x</ci>

</bind>
</apply>

4.3.11.8 Exponentiation (power)

This symbol represents a power function. The first argument is raised to the power of the second argument. When
the second argument is not an integer, powering is defined in terms of exponentials and logarithms for the complex
and real numbers. This operator can represent general powering.

Content MathML

<apply>
<power/>
<ci>x</ci>
<cn>3</cn>

</apply>

Default Rendering: Presentation MathML

<msup>
<mi>x</mi><mn>3</mn>
</msup>

Default Rendering: Image

x3

4.3.11.9 Remainder (rem)

Content MathML

Default Rendering: Presentation MathML

Default Rendering: Image

4.3. Pragmatic Content MathML 155

4.3.11.10 Multiplication (times)

The symbol representing an n-ary multiplication function.

Content MathML

<apply>
<times/>
<ci>a</ci>
<ci>b</ci>

</apply>

Default Rendering: Presentation MathML

<mrow>
<mi>a</mi><mo/><mi>b</mi>
</mrow>

Default Rendering: Image

ab

4.3.11.11 Root (root)

The kind of root to be taken is specified by a ‘degree’ child, which should be given as the second child of the
apply element enclosing the root element. Thus, square roots correspond to the case where degree contains the
value 2, cube roots correspond to 3, and so on.

Note that pragmatic MathML supports a degree element in the container representation. If no degree is present,
a default value of 2 is used.

Content MathML

<apply>
<root/>
<degree>
<ci>n</ci>

</degree>
<ci>a</ci>

</apply>

Default Rendering: Presentation MathML

<mroot>
<mi>a</mi><mi>n</mi>
</mroot>

Default Rendering: Image

n
√

a

4.3.11.12 Greatest common divisor (gcd)

This is the n-ary operator used to construct an expression which represents the greatest common divisor of its
arguments. If no argument is provided, the gcd is 0. If one argument is provided, the gcd is that argument.

Content MathML

156 Chapter 4. Content Markup

<apply>
<gcd/>
<ci>a</ci>
<ci>b</ci>
<ci>c</ci>

</apply>

Default Rendering: Presentation MathML

<mrow>
<mo>gcd</mo><mo/><mfenced open="(" close=")" separators=",">
<mi>a</mi><mi>b</mi><mi>c</mi>
</mfenced>
</mrow>

Default Rendering: Image

gcd(a,b,c)

This default rendering is English-language locale specific: other locales may have different default renderings.

The gcd symbol can be used as a binding operator in pragmatic Content MathML. This role is taken over by the
big_gcd symbol in strict Content MathML. We translate:

<apply>
<gcd/>
<bvar><ci>x</ci></bvar>
<ci>x</ci>

</apply>

Strict MathML equivlalent

<apply>
<csymbol cd="arith1">big_gcd</csymbol>
<bind>
<csymbol cd="fns1">lambda</csymbol>
<bvar><ci>x</ci></bvar>
<ci>x</ci>

</bind>
</apply>

4.3.11.13 And (and)

This symbol represents the logical and function which is an n-ary function taking boolean arguments and returning
a boolean value. It is true if all arguments are true or false otherwise.

Content MathML

<apply>
<and/>
<ci>a</ci>
<ci>b</ci>

</apply>

Default Rendering: Presentation MathML

4.3. Pragmatic Content MathML 157

<mrow>
<mi>a</mi><mo>∧</mo><mi>b</mi>
</mrow>

Default Rendering: Image

a∧b

The and operator element can be used as a binding operator in pragmatic Content MathML. This role is taken over
by the big_and symbol in strict Content MathML.

<apply>
<and/>
<bvar><ci>x</ci></bvar>
<apply><eq/><ci>x</ci><ci>x</ci></apply>

</apply>

Strict MathML equivlalent

<apply>
<csymbol cd="arith1">big_and</csymbol>
<bind>
<csymbol cd="fns1">lambda</csymbol>
<bvar><ci>x</ci></bvar>
<apply><csymbol cd="relation1">eq</csymbol><ci>x</ci><ci>x</ci></apply>

</bind>
</apply>

4.3.11.14 Or (or)

This symbol represents the logical or function which is an n-ary function taking boolean arguments and returning
a boolean value. It is true if any of the arguments are true or false otherwise.

Content MathML

<apply>
<or/>
<ci>a</ci>
<ci>b</ci>

</apply>

Default Rendering: Presentation MathML

<mrow>
<mi>a</mi><mo>∨</mo><mi>b</mi>
</mrow>

Default Rendering: Image

a∨b

The or operator element can be used as a binding operator in pragmatic Content MathML. This role is taken over
by the big_or symbol in strict Content MathML.

158 Chapter 4. Content Markup

<apply>
<or/>
<bvar><ci>x</ci></bvar>
<apply><eq/><ci>x</ci><ci>x</ci></apply>

</apply>

Strict MathML equivlalent

<apply>
<csymbol cd="arith1">big_or</csymbol>
<bind>
<csymbol cd="fns1">lambda</csymbol>
<bvar><ci>x</ci></bvar>
<apply><csymbol cd="relation1">eq</csymbol><ci>x</ci><ci>x</ci></apply>

</bind>
</apply>

4.3.11.15 Exclusive Or (xor)

This symbol represents the logical xor function which is an n-ary function taking boolean arguments and returning
a boolean value. It is true if there are an odd number of true arguments or false otherwise.

Content MathML

<apply>
<xor/>
<ci>a</ci>
<ci>b</ci>

</apply>

Default Rendering: Presentation MathML

<mrow>
<mi>a</mi><mo>xor</mo><mi>b</mi>
</mrow>

Default Rendering: Image

axorb

The xor operator element can be used as a binding operator in pragmatic Content MathML. This role is taken over
by the big_xor symbol in strict Content MathML.

<apply>
<xor/>
<bvar><ci>x</ci></bvar>
<apply><eq/><ci>x</ci><ci>x</ci></apply>

</apply>

Strict MathML equivlalent

<apply>
<csymbol cd="arith1">big_xor</csymbol>
<bind>
<csymbol cd="fns1">lambda</csymbol>
<bvar><ci>x</ci></bvar>

4.3. Pragmatic Content MathML 159

<apply><csymbol cd="relation1">eq</csymbol><ci>x</ci><ci>x</ci></apply>
</bind>

</apply>

4.3.11.16 Not (not)

This symbol represents the logical not function which takes one boolean argument, and returns the opposite boolean
value.

Content MathML

<apply>
<not/>
<ci>a</ci>

</apply>

Default Rendering: Presentation MathML

<mrow>
<mo>¬</mo><mi>a</mi>
</mrow>

Default Rendering: Image

¬a

4.3.11.17 Implies (implies)

This symbol represents the logical implies function which takes two boolean expressions as arguments. It evaluates
to false if the first argument is true and the second argument is false, otherwise it evaluates to true.

Content MathML

<apply>
<implies/>
<ci>A</ci>
<ci>B</ci>

</apply>

Default Rendering: Presentation MathML

<mrow>
<mi>A</mi><mo>⇒</mo><mi>B</mi>
</mrow>

Default Rendering: Image

A ⇒ B

4.3.11.18 Universal quantifier (forall)

This symbol represents the universal ("for all") quantifier which takes two arguments. It is usually used in conjunc-
tion with one or more bound variables and an assertion.

Content MathML

160 Chapter 4. Content Markup

<bind>
<forall/>
<bvar>
<ci>x</ci>

</bvar>
<apply>
<eq/>
<apply>

<minus/>
<ci>x</ci>
<ci>x</ci>

</apply>
<cn>0</cn>

</apply>
</bind>

Default Rendering: Presentation MathML

<mrow>
<mi>forall</mi><mo>.</mo><mrow>
<mrow>
<mi>x</mi><mo>−</mo><mi>x</mi>
</mrow><mo>=</mo><mn>0</mn>
</mrow>
</mrow>

Default Rendering: Image

f orall.x− x = 0

When the forall element is used with a condition qualifier the strict equivalent is constructed with the help of
logical implication.

Content MathML

<bind>
<forall/>
<bvar>
<ci>p</ci>

</bvar>
<bvar>
<ci>q</ci>

</bvar>
<condition>

<apply>
<and/>
<apply>
<in/>
<ci>p</ci>
<rationals/>

</apply>
<apply>

4.3. Pragmatic Content MathML 161

<in/>
<ci>q</ci>
<rationals/>

</apply>
<apply>
<lt/>
<ci>p</ci>
<ci>q</ci>

</apply>
</apply>

</condition>
<apply>
<lt/>
<ci>p</ci>
<apply>

<power/>
<ci>q</ci>
<cn>2</cn>

</apply>
</apply>

</bind>

Default Rendering: Presentation MathML

<mrow>
<mi>forall</mi><mo>.</mo><mrow>
<mrow>
<mi>p</mi><mo>∈</mo><mi mathvariant="double-struck">Q</mi>
</mrow><mo>∧</mo><mrow>
<mi>q</mi><mo>∈</mo><mi mathvariant="double-struck">Q</mi>
</mrow><mo>∧</mo><mrow>
<mo>(</mo><mi>p</mi><mo><</mo><mi>q</mi><mo>)</mo>
</mrow>
</mrow><mrow>
<mi>p</mi><mo><</mo><msup>
<mi>q</mi><mn>2</mn>
</msup>
</mrow>
</mrow>

Default Rendering: Image

f orall.p ∈Q∧q ∈Q∧ (p < q) p < q2

The universal quantifier can also be used with the domainofapplication qualifier to restrict the range of the
bound variable. In this case, we use the every symbol from the quant2 content dictionary.

Content MathML

Default Rendering: Presentation MathML

http://svn.openmath.org/OpenMath3/cd/MathML/quant2.xhtml#every
http://svn.openmath.org/OpenMath3/cd/MathML/quant2.xhtml

162 Chapter 4. Content Markup

Default Rendering: Image

Note:The second and third examples in this section are correct MathML expressions of False mathematical
statements.

4.3.11.19 Existential quantifier (exists)

This symbol represents the existential ("there exists") quantifier which takes two arguments. It is used in conjunc-
tion with one or more bound variables and an assertion.

Content MathML
<bind>

<exists/>
<bvar>
<ci>x</ci>

</bvar>
<apply>
<eq/>
<apply>
<ci>f</ci>
<ci>x</ci>

</apply>
<cn>0</cn>

</apply>
</bind>

Default Rendering: Presentation MathML
<mrow>
<mi>exists</mi><mo>.</mo><mrow>
<mrow>
<mi>f</mi><mo/><mfenced open="(" close=")" separators=","><mi>x</mi></mfenced>
</mrow><mo>=</mo><mn>0</mn>
</mrow>
</mrow>

Default Rendering: Image

exists. f (x) = 0

Content MathML

Default Rendering: Presentation MathML

Default Rendering: Image

4.3. Pragmatic Content MathML 163

When the exists element is used with a condition qualifier the strict equivalent is constructed with the help of
logical conjunction.

Content MathML

Default Rendering: Presentation MathML

Default Rendering: Image

The existential quantifier can also be used with the domainofapplication qualifier to restrict the range of the
bound variable. In this case, we use the some symbol from the quant2 content dictionary.

4.3.11.20 Absolute Value (abs)

A unary operator which represents the absolute value of its argument. The argument should be numerically valued.
In the complex case this is often referred to as the modulus.

Content MathML
<apply>

<abs/>
<ci>x</ci>

</apply>

Default Rendering: Presentation MathML
<mrow>
<mo>|</mo><mi>x</mi><mo>|</mo>
</mrow>

Default Rendering: Image

|x|

4.3.11.21 Complex conjugate (conjugate)

The unary "conjugate" arithmetic operator is used to represent the complex conjugate of its argument.

Content MathML
<apply>

<conjugate/>
<apply>
<plus/>
<ci>x</ci>
<apply>
<times/>
<cn>␘</cn>
<ci>y</ci>

</apply>
</apply>

</apply>

http://svn.openmath.org/OpenMath3/cd/MathML/quant2.xhtml#some
http://svn.openmath.org/OpenMath3/cd/MathML/quant2.xhtml

164 Chapter 4. Content Markup

Default Rendering: Presentation MathML
<mover>
<mrow>
<mi>x</mi><mo>+</mo><mrow>
<mn>␘</mn><mo/><mi>y</mi>
</mrow>
</mrow><mo>¯</mo>
</mover>

Default Rendering: Image

x+ 〈9240〉y

4.3.11.22 Argument (arg)

This symbol represents the unary function which returns the argument of a complex number, viz. the angle which
a straight line drawn from the number to zero makes with the Real line (measured anti-clockwise). The argument
to the symbol is the complex number whos argument is being taken.

Content MathML
<apply>

<arg/>
<apply>
<plus/>
<ci> x </ci>
<apply>
<times/>
<imaginaryi/>
<ci>y</ci>

</apply>
</apply>

</apply>

Default Rendering: Presentation MathML
<mrow>
<mo>arg</mo><mo/><mfenced open="(" close=")" separators=","><mrow>
<mi> x </mi><mo>+</mo><mrow>
<mi>i</mi><mo/><mi>y</mi>
</mrow>
</mrow></mfenced>

</mrow>

Default Rendering: Image

arg(x+ iy)

4.3.11.23 Real part (real)

This symbol is a unary operator used to construct an expression representing the "real" part of a complex number,
that is the x component in x + iy.

Content MathML

4.3. Pragmatic Content MathML 165

<apply>
<real/>
<apply>
<plus/>
<ci>x</ci>
<apply>
<times/>
<imaginaryi/>
<ci>y</ci>

</apply>
</apply>

</apply>

Default Rendering: Presentation MathML

<mrow>
<mo>ℛ</mo><mo/><mfenced open="(" close=")" separators=","><mrow>
<mi>x</mi><mo>+</mo><mrow>
<mi>i</mi><mo/><mi>y</mi>
</mrow>
</mrow></mfenced>

</mrow>

Default Rendering: Image

R (x+ iy)

4.3.11.24 Imaginary part (imaginary)

This symbol represents unary function used to construct the imaginary part of a complex number, i.e. the y com-
ponent in x+iy.

Content MathML

<apply>
<imaginary/>
<apply>
<plus/>
<ci>x</ci>
<apply>
<times/>
<imaginaryi/>
<ci>y</ci>

</apply>
</apply>

</apply>

Default Rendering: Presentation MathML

<mrow>
<mo>ℑ</mo><mo/><mfenced open="(" close=")" separators=","><mrow>
<mi>x</mi><mo>+</mo><mrow>
<mi>i</mi><mo/><mi>y</mi>
</mrow>

166 Chapter 4. Content Markup

</mrow></mfenced>
</mrow>

Default Rendering: Image

I(x+ iy)

4.3.11.25 Lowest common multiple (lcm)

This n-ary operator is used to construct an expression which represents the least common multiple of its arguments.
If no argument is provided, the lcm is 1. If one argument is provided, the lcm is that argument. The least common
multiple of x and 1 is x.

Content MathML

Default Rendering: Presentation MathML

Default Rendering: Image

This default rendering is English-language locale specific: other locales may have different default renderings.

The lcm symbol can be used as a binding operator in pragmatic Content MathML. This role is taken over by the
big_lcm symbol in strict Content MathML. We translate:

<apply>
<lcm/>
<bvar><ci>x</ci></bvar>
<ci>x</ci>

</apply>

Strict MathML equivlalent

<apply>
<csymbol cd="arith1">big_lcm</csymbol>
<bind>
<csymbol cd="fns1">lambda</csymbol>
<bvar><ci>x</ci></bvar>
<ci>x</ci>

</bind>
</apply>

4.3.11.26 Floor (floor)

The round down (towards negative infinity) operation. This function takes one real number as an argument and
retunrns an integer.

Content MathML

4.3. Pragmatic Content MathML 167

<apply>
<floor/>
<ci>a</ci>

</apply>

Default Rendering: Presentation MathML

<mrow>
<mo>⌊</mo><mi>a</mi><mo>⌋</mo>
</mrow>

Default Rendering: Image

bac

4.3.11.27 Ceiling (ceiling)

The ceiling function is used to round-up (towards positive infinity). This function takes one real number as an
argument and retunrns an integer.

Content MathML

<apply>
<ceiling/>
<ci>a</ci>

</apply>

Default Rendering: Presentation MathML

<mrow>
<mo>⌈</mo><mi>a</mi><mo>⌉</mo>
</mrow>

Default Rendering: Image

dae

4.3.12 Relations

4.3.12.1 Equals (eq)

This symbol represents the binary equality function.

Content MathML

<apply>
<eq/>
<cn type="rational">2<sep/>4</cn>
<cn type="rational">1<sep/>2</cn>

</apply>

Default Rendering: Presentation MathML

<mrow>
<mrow>
<mn>2</mn><mo>/</mo><mn>4</mn>

168 Chapter 4. Content Markup

</mrow><mo>=</mo><mrow>
<mn>1</mn><mo>/</mo><mn>2</mn>
</mrow>
</mrow>

Default Rendering: Image

2/4 = 1/2

In pragmatic content MathML, the eq element can be used as an n-ary operator. We interpret the n-ary application
as a conjunction of binary ones and translate:

<apply><eq/><ci>x</ci><ci>y</ci><ci>z</ci><ci>w</ci></apply>

Strict MathML equivlalent

<apply>
<csymbol cd="logic1">and</csymbol>
<apply><csymbol cd="relation1">eq</csymbol><ci>x</ci><ci id="arg_eq_2">y</ci></apply>
<apply><csymbol cd="relation1">eq</csymbol><share href="#arg_eq_2"/><ci id="arg_eq_3">z</ci></apply>
<apply><csymbol cd="relation1">eq</csymbol><share href="#arg_eq_3"/><ci>w</ci></apply>
</apply>

Editor’s note:MiKomaybe we should deprecate the following usage?

In pragmatic content MathML, the eq element can be used as a binding operator taking qualifiers. For strict content
MathML we translate this using a universally quantified expression:

<apply><eq/>
<bvar><ci>i</ci></bvar>
<condition><ci>C</ci></condition>
<apply><ci>Ai</ci></apply>

</apply>

Strict MathML equivlalent

<bind>
<csymbol cd="quant1">forall</csymbol>
<bvar><ci>i</ci></bvar>
<bvar><ci>j</ci></bvar>
<apply>
<csymbol cd="logic1">implies</csymbol>
<ci>C</ci>
<apply><csymbol cd="relation1">eq</csymbol><ci>Ai</ci><ci>Aj</ci></apply>

</apply>
</bind>

4.3.12.2 Not Equals (neq)

This symbol represents the binary inequality relation, i.e. the relation "not equal to" which returns true unless the
two arguments are equal.

Content MathML

<apply>
<neq/>

4.3. Pragmatic Content MathML 169

<cn>3</cn>
<cn>4</cn>

</apply>

Default Rendering: Presentation MathML

<mrow>
<mn>3</mn><mo>≠</mo><mn>4</mn>
</mrow>

Default Rendering: Image

3 6= 4

4.3.12.3 Greater than (gt)

This symbol represents the binary greater than function which returns true if the first argument is greater than the
second, it returns false otherwise.

Content MathML

<apply>
<gt/>
<cn>3</cn>
<cn>2</cn>

</apply>

Default Rendering: Presentation MathML

<mrow>
<mn>3</mn><mo>></mo><mn>2</mn>
</mrow>

Default Rendering: Image

3 > 2

In pragmatic content MathML, the gt element can be used as an n-ary operator. We interpret the n-ary application
as a conjunction of binary ones and translate:

<apply><gt/><ci>x</ci><ci>y</ci><ci>z</ci><ci>w</ci></apply>

Strict MathML equivlalent

<apply>
<csymbol cd="logic1">and</csymbol>
<apply><csymbol cd="relation1">gt</csymbol><ci>x</ci><ci id="arg_gt_2">y</ci></apply>
<apply><csymbol cd="relation1">gt</csymbol><share href="#arg_gt_2"/><ci id="arg_gt_3">z</ci></apply>
<apply><csymbol cd="relation1">gt</csymbol><share href="#arg_gt_3"/><ci>w</ci></apply>
</apply>

Editor’s note:MiKomaybe we should deprecate the following usage?

In pragmatic content MathML, the gt element can also be used as a binding operator taking qualifiers. For strict
content MathML we translate this using a universally quantified expression:

170 Chapter 4. Content Markup

<apply><gt/>
<bvar><ci>i</ci></bvar>
<domainofapplication><ci>C</ci></domainofapplication>
<apply><ci>Ai</ci></apply>

</apply>

Strict MathML equivlalent

<bind>
<csymbol cd="quant1">forall</csymbol>
<bvar><ci>i</ci></bvar>
<apply>
<csymbol cd="quant1">implies</csymbol>
<apply><csymbol cd="set1">in</csymbol><ci>i</ci><ci>S</ci></apply>
<bind>

<csymbol cd="quant1">forall</csymbol>
<bvar><ci>j</ci></bvar>
<apply>
<apply><csymbol cd="set1">in</csymbol><ci>i</ci><ci>S</ci></apply>
<apply>
<csymbol cd="logic1">implies</csymbol>
<apply><csymbol cd="relation1">lt</csymbol><ci>i</ci><ci>j</ci></apply>
<apply><csymbol cd="relation1">gt</csymbol><ci>Ai</ci><ci>Aj</ci></apply>

</apply>
</apply>

</bind>
</apply>

</bind>

Note that this only makes sense, if the domain C of application is ordered, we have used the ordering relation lt
on C. Furthermore, we have used the fact that gt is transitive.

4.3.12.4 Less Than (lt)

This symbol represents the binary less than function which returns true if the first argument is less than the second,
it returns false otherwise.

Content MathML

<apply>
<lt/>
<cn>2</cn>
<cn>3</cn>
<cn>4</cn>

</apply>

Default Rendering: Presentation MathML

<mrow>
<mn>2</mn><mo><</mo><mn>3</mn><mo><</mo><mn>4</mn>
</mrow>

Default Rendering: Image

2 < 3 < 4

4.3. Pragmatic Content MathML 171

In pragmatic content MathML, the lt element can be used as an n-ary operator. We interpret the n-ary application
as a conjunction of binary ones and translate:

<apply><lt/><ci>x</ci><ci>y</ci><ci>z</ci><ci>w</ci></apply>

Strict MathML equivlalent

<apply>
<csymbol cd="logic1">and</csymbol>
<apply><csymbol cd="relation1">lt</csymbol><ci>x</ci><ci id="arg_lt_2">y</ci></apply>
<apply><csymbol cd="relation1">lt</csymbol><share href="#arg_lt_2"/><ci id="arg_lt_3">z</ci></apply>
<apply><csymbol cd="relation1">lt</csymbol><share href="#arg_lt_3"/><ci>w</ci></apply>
</apply>

Editor’s note:MiKomaybe we should deprecate the following usage?

In pragmatic content MathML, the lt element can also be used as a binding operator taking qualifiers. For strict
content MathML we translate this using a universally quantified expression:

<apply><lt/>
<bvar><ci>i</ci></bvar>
<domainofapplication><ci>C</ci></domainofapplication>
<apply><ci>Ai</ci></apply>

</apply>

Strict MathML equivlalent

<bind>
<csymbol cd="quant1">forall</csymbol>
<bvar><ci>i</ci></bvar>
<apply>
<csymbol cd="quant1">implies</csymbol>
<apply><csymbol cd="set1">in</csymbol><ci>i</ci><ci>S</ci></apply>
<bind>

<csymbol cd="quant1">forall</csymbol>
<bvar><ci>j</ci></bvar>
<apply>
<apply><csymbol cd="set1">in</csymbol><ci>i</ci><ci>S</ci></apply>
<apply>
<csymbol cd="logic1">implies</csymbol>
<apply><csymbol cd="relation1">lt</csymbol><ci>i</ci><ci>j</ci></apply>
<apply><csymbol cd="relation1">lt</csymbol><ci>Ai</ci><ci>Aj</ci></apply>

</apply>
</apply>

</bind>
</apply>

</bind>

Note that this only makes sense, if the domain C of application is ordered, we have used the ordering relation lt
on C. Furthermore, we have used the fact that lt is transitive.

4.3.12.5 Greater Than or Equal (geq)

This symbol represents the binary greater than or equal to function which returns true if the first argument is greater
than or equal to the second, it returns false otherwise.

Content MathML

172 Chapter 4. Content Markup

<apply>
<geq/>
<cn>4</cn>
<cn>3</cn>
<cn>3</cn>

</apply>

Default Rendering: Presentation MathML

<mrow>
<mn>4</mn><mo>≥</mo><mn>3</mn><mo>≥</mo><mn>3</mn>
</mrow>

Default Rendering: Image

4 ≥ 3 ≥ 3

In pragmatic content MathML, the geq element can be used as an n-ary operator. We interpret the n-ary application
as a conjunction of binary ones and translate:

<apply><geq/><ci>x</ci><ci>y</ci><ci>z</ci><ci>w</ci></apply>

Strict MathML equivlalent

<apply>
<csymbol cd="logic1">and</csymbol>
<apply><csymbol cd="relation1">geq</csymbol><ci>x</ci><ci id="arg_geq_2">y</ci></apply>
<apply><csymbol cd="relation1">geq</csymbol><share href="#arg_geq_2"/><ci id="arg_geq_3">z</ci></apply>
<apply><csymbol cd="relation1">geq</csymbol><share href="#arg_geq_3"/><ci>w</ci></apply>
</apply>

Editor’s note:MiKomaybe we should deprecate the following usage?

In pragmatic content MathML, the geq element can also be used as a binding operator taking qualifiers. For strict
content MathML we translate this using a universally quantified expression:

<apply><geq/>
<bvar><ci>i</ci></bvar>
<domainofapplication><ci>C</ci></domainofapplication>
<apply><ci>Ai</ci></apply>

</apply>

Strict MathML equivlalent

<bind>
<csymbol cd="quant1">forall</csymbol>
<bvar><ci>i</ci></bvar>
<apply>
<csymbol cd="quant1">implies</csymbol>
<apply><csymbol cd="set1">in</csymbol><ci>i</ci><ci>S</ci></apply>
<bind>

<csymbol cd="quant1">forall</csymbol>
<bvar><ci>j</ci></bvar>
<apply>
<apply><csymbol cd="set1">in</csymbol><ci>i</ci><ci>S</ci></apply>
<apply>
<csymbol cd="logic1">implies</csymbol>

4.3. Pragmatic Content MathML 173

<apply><csymbol cd="relation1">lt</csymbol><ci>i</ci><ci>j</ci></apply>
<apply><csymbol cd="relation1">geq</csymbol><ci>Ai</ci><ci>Aj</ci></apply>

</apply>
</apply>

</bind>
</apply>

</bind>

Note that this only makes sense, if the domain C of application is ordered, we have used the ordering relation lt
on C. Furthermore, we have used the fact that geq is transitive.

4.3.12.6 Less Than or Equal (leq)

This symbol represents the binary less than or equal to function which returns true if the first argument is less than
or equal to the second, it returns false otherwise.

Content MathML
<apply>

<leq/>
<cn>3</cn>
<cn>3</cn>
<cn>4</cn>

</apply>

Default Rendering: Presentation MathML
<mrow>
<mn>3</mn><mo>≤</mo><mn>3</mn><mo>≤</mo><mn>4</mn>
</mrow>

Default Rendering: Image

3 ≤ 3 ≤ 4

In pragmatic content MathML, the leq element can be used as an n-ary operator. We interpret the n-ary application
as a conjunction of binary ones and translate:
<apply><leq/><ci>x</ci><ci>y</ci><ci>z</ci><ci>w</ci></apply>

Strict MathML equivlalent
<apply>

<csymbol cd="logic1">and</csymbol>
<apply><csymbol cd="relation1">leq</csymbol><ci>x</ci><ci id="arg_leq_2">y</ci></apply>
<apply><csymbol cd="relation1">leq</csymbol><share href="#arg_leq_2"/><ci id="arg_leq_3">z</ci></apply>
<apply><csymbol cd="relation1">leq</csymbol><share href="#arg_leq_3"/><ci>w</ci></apply>
</apply>

Editor’s note:MiKomaybe we should deprecate the following usage?
In pragmatic content MathML, the leq element can also be used as a binding operator taking qualifiers. For strict
content MathML we translate this using a universally quantified expression:
<apply><leq/>

<bvar><ci>i</ci></bvar>
<domainofapplication><ci>C</ci></domainofapplication>
<apply><ci>Ai</ci></apply>

</apply>

174 Chapter 4. Content Markup

Strict MathML equivlalent

<bind>
<csymbol cd="quant1">forall</csymbol>
<bvar><ci>i</ci></bvar>
<apply>
<csymbol cd="quant1">implies</csymbol>
<apply><csymbol cd="set1">in</csymbol><ci>i</ci><ci>S</ci></apply>
<bind>

<csymbol cd="quant1">forall</csymbol>
<bvar><ci>j</ci></bvar>
<apply>
<apply><csymbol cd="set1">in</csymbol><ci>i</ci><ci>S</ci></apply>
<apply>
<csymbol cd="logic1">implies</csymbol>
<apply><csymbol cd="relation1">geq</csymbol><ci>i</ci><ci>j</ci></apply>
<apply><csymbol cd="relation1">leq</csymbol><ci>Ai</ci><ci>Aj</ci></apply>

</apply>
</apply>

</bind>
</apply>

</bind>

Note that this only makes sense, if the domain C of application is ordered, we have used the ordering relation lt
on C. Furthermore, we have used the fact that leq is transitive.

4.3.12.7 Equivalent (equivalent)

This symbol is used to show that two boolean expressions are logically equivalent, that is have the same boolean
value for any inputs.

Content MathML

Default Rendering: Presentation MathML

Default Rendering: Image

In pragmatic content MathML, the equivalent element can be used as an n-ary operator. We interpret the n-ary
application as a conjunction of binary ones and translate:

<apply><equivalent/><ci>x</ci><ci>y</ci><ci>z</ci><ci>w</ci></apply>

Strict MathML equivlalent

<apply>
<csymbol cd="logic1">and</csymbol>
<apply><csymbol cd="relation1">equivalent</csymbol><ci>x</ci><ci id="arg_eqv_2">y</ci></apply>
<apply><csymbol cd="relation1">equivalent</csymbol><share href="#arg_eqv_2"/><ci id="arg_eqv_3">z</ci></apply>
<apply><csymbol cd="relation1">equivalent</csymbol><share href="#arg_eqv_3"/><ci>w</ci></apply>
</apply>

4.3. Pragmatic Content MathML 175

Editor’s note:MiKomaybe we should deprecate the following usage?

In pragmatic content MathML, the equivalent element can also be used as a binding operator taking qualifiers.
For strict content MathML we translate this using a universally quantified expression:

<apply><equivalent/>
<bvar><ci>i</ci></bvar>
<condition><ci>C</ci></condition>
<apply><ci>Ai</ci></apply>

</apply>

Strict MathML equivlalent

<bind>
<csymbol cd="quant1">forall</csymbol>
<bvar><ci>i</ci></bvar>
<bvar><ci>j</ci></bvar>
<apply>
<csymbol cd="logic1">implies</csymbol>
<ci>C</ci>
<apply><csymbol cd="relation1">equivalent</csymbol><ci>Ai</ci><ci>Aj</ci></apply>

</apply>
</bind>

4.3.12.8 Approximately (approx)

This symbol is used to denote the approximate equality of its two arguments.

Content MathML

<apply>
<approx/>
<pi/>
<cn type="rational">22<sep/>7</cn>

</apply>

Default Rendering: Presentation MathML

<mrow>
<mi>π</mi><mo>≃</mo><mrow>
<mn>22</mn><mo>/</mo><mn>7</mn>
</mrow>
</mrow>

Default Rendering: Image

π ' 22/7

4.3.12.9 Factor Of (factorof)

This is the binary operator that is used to indicate the mathematical relationship a "is a factor of" b, where a is the
first argument and b is the second. This relationship is true if and only if b mod a = 0.

Content MathML

176 Chapter 4. Content Markup

<apply>
<factorof/>
<ci>a</ci>
<ci>b</ci>

</apply>

Default Rendering: Presentation MathML

<mrow>
<mi>a</mi><mo>|</mo><mi>b</mi>
</mrow>

Default Rendering: Image

a|b

4.3.13 Calculus and Vector Calculus

Editor’s note:MiKoThe material in this section needs to be reworked for the new calculus3 CD

4.3.13.1 Integral (int)

The int element is the operator element for a definite or indefinite integral. It can be applied directly to a function
or to an expression with a bound variable.

As an indefinite integral applied to a function the int element corresponds to the int symbol from the calculus1
content dictionary.

This symbol is used to represent indefinite integration of unary functions. The argument is the unary function.

Content MathML

<apply><eq/>
<apply><int/><sin/></apply>
<cos/>

</apply>

Default Rendering: Presentation MathML

<mrow>
<mrow>
<msubsup>
<mi>∫</mi><mrow/><mrow/>
</msubsup><mi>sin</mi>
</mrow><mo>=</mo><mi>cos</mi>
</mrow>

Default Rendering: Image

Z
sin = cos

As an definite integral applied to a function the int element corresponds to the defint symbol from the calculus1
content dictionary.

http://svn.openmath.org/OpenMath3/cd/MathML/calculus1.xhtml#int
http://svn.openmath.org/OpenMath3/cd/MathML/calculus1.xhtml
http://svn.openmath.org/OpenMath3/cd/MathML/calculus1.xhtml#defint
http://svn.openmath.org/OpenMath3/cd/MathML/calculus1.xhtml

4.3. Pragmatic Content MathML 177

This symbol is used to represent definite integration of unary functions. It takes two arguments; the first being the
range (e.g. a set) of integration, and the second the function.

Content MathML

<apply>
<int/>
<apply><interval/><ci>a</ci><ci>b</ci></apply>
<cos/>

</apply>

Default Rendering: Presentation MathML

<mrow>
<msubsup>
<mi>∫</mi><mrow/><mrow/>
</msubsup><mi>cos</mi>
</mrow>

Default Rendering: Image

Z
cos

The int element can also be used with bound variables serving as the integration variables. Here, definite integrals
are indicated by providing a qualifier element specifying a domain of integration.

As a definite integral applied to an expression the int element corresponds to the defintbounds symbol from the
calculus1 content dictionary.

This symbol is used to construct binding operator for definite integration of unary functions. It takes two arguments:
the lower and upper bounds of the the range of integration.

This example specifies an interval of the real line as the domain of integration with an interval element. In this
form the integrand is provided as a function and no mention is made of a bound variable. We translate:

<apply>
<int/>
<bvar><ci>x</ci></bvar>
<apply><interval/><ci>a</ci><ci>b</ci></apply>
<apply><cos/><ci>x</ci></apply>

</apply>

Strict MathML equivlalent

<bind>
<apply>
<csymbol cd="calculus3">defint</csymbol>
<csymbol cd="interval1">interval</csymbol><ci>a</ci><ci>b</ci>

</apply>
<apply><csymbol cd="transc1">cos</csymbol><ci>x</ci></apply>

</bind>

The next example specifies the integrand using an expression involving a bound variable and makes it a definite
integral by using the qualifiers lowlimit, uplimit to place restrictions on the bound variable. We translate

<apply>
<int/>

http://svn.openmath.org/OpenMath3/cd/MathML/calculus3.xhtml#defintbounds
http://svn.openmath.org/OpenMath3/cd/MathML/calculus1.xhtml

178 Chapter 4. Content Markup

<bvar><ci>x</ci></bvar>
<lowlimit><cn>0</cn></lowlimit>
<uplimit><ci>a</ci></uplimit>
<apply><ci>f</ci><ci>x</ci></apply>

</apply>

Strict MathML equivlalent

<bind>
<apply><csymbol cd="calculus3">defintbounds</csymbol><cn>0</cn><ci>a</ci></apply>
<bvar><ci>x</ci></bvar>
<apply><ci>f</ci><ci>x</ci></apply>

</bind>

The final example specifies the domain of integration with a bound variable and a condition element We translate.

<apply>
<int/>
<bvar><ci>x</ci></bvar>
<condition>
<apply><in/><ci>x</ci><ci type="set">D</ci></apply>

</condition>
<apply><ci type="function">f</ci><ci>x</ci></apply>

</apply>

Strict MathML equivlalent

<bind>
<apply>
<csymbol cd="calculus3">defintcond</csymbol>
<apply><csymbol cd="set1">in</csymbol><ci>x</ci><ci type="set">D</ci></apply>

</apply>
<bvar><ci>x</ci></bvar>
<apply><ci type="function">f</ci><ci>x</ci></apply>

</bind>

Note that the pragmatic use of the condition element extends to multivariate domains by using extra bound
variables and a domain corresponding to a cartesian product as in

<bind>
<int/>
<bvar><ci>x</ci></bvar>
<bvar><ci>y</ci></bvar>
<condition>
<apply><and/>
<apply><leq/><cn>0</cn><ci>x</ci></apply>
<apply><leq/><ci>x</ci><cn>1</cn></apply>
<apply><leq/><cn>0</cn><ci>y</ci></apply>

<apply><leq/><ci>y</ci><cn>1</cn></apply>
</apply>

</condition>
<apply><times/>
<apply><power/><ci>x</ci><cn>2</cn></apply>
<apply><power/><ci>y</ci><cn>3</cn></apply>

</apply>
</bind>

4.3. Pragmatic Content MathML 179

Strict MathML equivlalent

<bind>
<csymbol cd="calculus1">defint</csymbol>
<bvar><ci>x</ci></bvar>
<bvar><ci>y</ci></bvar>
<apply>
<csymbol cd="set1">suchthat</csymbol>
<apply>

<csymbol cd="set1">cartesianproduct</csymbol>
<csymbol cd="setname1">R</csymbol>
<csymbol cd="setname1">R</csymbol>

</apply>
<apply><csymbol cd="logic1">and</csymbol>
<apply><csymbol cd="arith1">leq</csymbol><cn>0</cn><ci>x</ci></apply>
<apply><csymbol cd="arith1">leq</csymbol><ci>x</ci><cn>1</cn></apply>
<apply><csymbol cd="arith1">leq</csymbol><cn>0</cn><ci>y</ci></apply>

<apply><csymbol cd="arith1">leq</csymbol><ci>y</ci><cn>1</cn></apply>
</apply>
<apply><csymbol cd="arith1">times</csymbol>
<apply><csymbol cd="arith1">power</csymbol><ci>x</ci><cn>2</cn></apply>

<apply><csymbol cd="arith1">power</csymbol><ci>y</ci><cn>3</cn></apply>
</apply>

</apply>
</bind>

4.3.13.2 Differentiation (diff)

The diff element is the differentiation operator element for functions or expressions of a single variable. It may
be applied directly to an actual function thereby denoting a function which is the derivative of the original function,
or it can be applied to an expression involving a single variable.

When applied to a function, the diff element corresponds to the diff symbol from the calculus1 content dictionary.

This symbol is used to express ordinary differentiation of a function with a single variable. The only argument is
the function.

Content MathML

<apply><eq/>
<apply><diff/><sin/></apply>
<cos/>

</apply>

Default Rendering: Presentation MathML

<mrow>
<mfrac>
<mrow>
<mo>d</mo><mi>sin</mi>
</mrow><mo>d</mo>
</mfrac><mo>=</mo><mi>cos</mi>
</mrow>

Default Rendering: Image

http://svn.openmath.org/OpenMath3/cd/MathML/calculus1.xhtml#diff
http://svn.openmath.org/OpenMath3/cd/MathML/calculus1.xhtml

180 Chapter 4. Content Markup

dsin
d

= cos

Content MathML

<apply><diff/><ci>f</ci></apply>

Default Rendering: Presentation MathML

<msup>
<mi>f</mi><mo>′</mo>
</msup>

Default Rendering: Image

f
′

For the expression case the actual variable is designated by a bvar element that is a child of the containing apply
element. The bvar element may also contain a degree element, which specifies the order of the derivative to be
taken.

Editor’s note:MiKoThe following text is left over from an earlier discussion, it should probably be rewritten to
calculus3

The derivative with respect to x of an expression in x such as f (x) can be written as:

<apply>
<diff/>
<bvar><ci> x </ci></bvar>
<apply><ci>f</ci><ci>x</ci></apply>

</apply>

In pragmatic Content MathML the diff operator can be applied to an expression involving a single variable such
as sin(x), or cos(x). or a polynomial in x. For the expression case the actual variable is designated by a bvar element
that is a child of the containing apply element. To translate this usage to strict Content MathML, we add a lambda
construction.

<apply>
<diff/>
<bvar><ci>x</ci></bvar>
<apply><sin/><ci>x</ci></apply>

</apply>

Strict MathML equivlalent

<apply>
<csymbol cd="calculus1">diff</csymbol>
<bind>
<csymbol cd="fns1">lambda</csymbol>
<bvar><ci>x</ci></bvar>
<apply><csymbol cd="transc1">sin</csymbol><ci>x</ci></apply>

</bind>
</apply>

The bvar element may also contain a degree element, which specifies the order of the derivative to be taken. To
achieve this effect in strict Content MathML, we use the nthdiff symbol.

4.3. Pragmatic Content MathML 181

<apply>
<diff/>
<bvar>
<degree><cn>2</cn></degree>
<ci>x</ci>

</bvar>
<apply><sin/><ci>x</ci></apply>

</apply>

Strict MathML equivlalent

<apply>
<csymbol cd="calculus1">nthdiff</csymbol>
<cn>2</cn>
<bind>
<csymbol cd="fns1">lambda</csymbol>
<bvar><ci>x</ci></bvar>
<apply><csymbol cd="transc1">sin</csymbol><ci>x</ci></apply>

</bind>
</apply>

4.3.13.3 Partial Differentiation (partialdiff)

The partialdiff element is the partial differentiation operator element for functions or expressions in several
variables. It may be applied directly to an actual function thereby denoting a function which is the derivative of the
original function, or it can be applied to an expression involving a single variable.

Editor’s note:MiKotalk about the type attribute here, which can have the values "function" or "algebraic".

For the case of partial differentiation of a function, the containing apply takes two child elements: firstly a list of
indices indicating by position which coordinates are involved in constructing the partial derivatives, and secondly
the actual function to be partially differentiated. The coordinates may be repeated.

When applied to a function, the diff element corresponds to the partialdiff symbol from the calculus1 content
dictionary.

This symbol is used to express ordinary differentiation of a function with a single variable. The only argument is
the function.

Content MathML

<apply>
<partialdiff/>
<bvar>
<ci>x</ci>
<degree>
<ci>m</ci>

</degree>
</bvar>
<bvar>
<ci>y</ci>
<degree>
<ci>n</ci>

</degree>
</bvar>

http://svn.openmath.org/OpenMath3/cd/MathML/calculus1.xhtml#partialdiff
http://svn.openmath.org/OpenMath3/cd/MathML/calculus1.xhtml

182 Chapter 4. Content Markup

<degree>
<ci>k</ci>

</degree>
<apply>
<ci type="function">f</ci>
<ci>x</ci>
<ci>y</ci>

</apply>
</apply>

Default Rendering: Presentation MathML

<mfrac>
<mrow>
<msup>
<mo>∂</mo><mi>k</mi>
</msup><mrow>
<mi>f</mi><mo/><mfenced open="(" close=")" separators=",">
<mi>x</mi><mi>y</mi>
</mfenced>
</mrow>
</mrow><mrow>
<mrow>
<mo>∂</mo><msup>
<mi>x</mi><mi>m</mi>
</msup>
</mrow><mrow>
<mo>∂</mo><msup>
<mi>y</mi><mi>n</mi>
</msup>
</mrow>
</mrow>
</mfrac>

Default Rendering: Image

∂k f (x,y)
∂xm∂yn

Content MathML

<apply>
<partialdiff/>
<bvar>
<ci>x</ci>

</bvar>
<bvar>
<ci>y</ci>

</bvar>
<apply>
<ci type="function">f</ci>
<ci>x</ci>

4.3. Pragmatic Content MathML 183

<ci>y</ci>
</apply>

</apply>

Default Rendering: Presentation MathML
<mfrac>
<mrow>
<msup>
<mo>∂</mo><mn>2</mn>
</msup><mrow>
<mi>f</mi><mo/><mfenced open="(" close=")" separators=",">
<mi>x</mi><mi>y</mi>
</mfenced>
</mrow>
</mrow><mrow>
<mrow>
<mo>∂</mo><msup>
<mi>x</mi><mrow/>
</msup>
</mrow><mrow>
<mo>∂</mo><msup>
<mi>y</mi><mrow/>
</msup>
</mrow>
</mrow>
</mfrac>

Default Rendering: Image

∂2 f (x,y)
∂x∂y

Content MathML
<apply>

<partialdiff/>
<list>
<cn>1</cn>
<cn>1</cn>
<cn>3</cn>

</list>
<ci type="function">f</ci>

</apply>

Default Rendering: Presentation MathML
<mrow>
<msub>
<mo>D</mo><mrow>
<mn>1</mn><mo>,</mo><mn>1</mn><mo>,</mo><mn>3</mn>
</mrow>
</msub><mi>f</mi>
</mrow>

184 Chapter 4. Content Markup

Default Rendering: Image

D1,1,3 f

In the case of algebraic expressions, the bound variables are given by bvar elements, which are children of the
containing apply element. The bvar elements may also contain degree element, which specify the order of the
partial derivative to be taken in that variable.

For the expression case the actual variable is designated by a bvar element that is a child of the containing apply
element. The bvar elements may also contain a degree element, which specifies the order of the derivative to be
taken.

Where a total degree of differentiation must be specified, this is indicated by use of a degree element at the top
level, i.e. without any associated bvar, as a child of the containing apply element.

Editor’s note:MiKoThe following text was left over from the CD

In pragmatic Content MathML, the partialdiff operator can be applied to an expression with bound variables
given by bvar elements, which are children of the containing apply element. The bvar elements may also contain
degree element, which specify the order of the partial derivative to be taken in that variable. In strict Content
MathML, the degrees are given as a list in the first argument of the partialdiff symbol.

<apply>
<partialdiff/>
<bvar>
<ci>x</ci>
<degree>
<ci>n</ci>

</degree>
</bvar>
<bvar>
<ci>y</ci>
<degree>
<ci>m</ci>

</degree>
</bvar>
<apply>
<sin/>
<apply>
<times/>
<ci>x</ci>
<ci>y</ci>

</apply>
</apply>

</apply>

Strict MathML equivlalent

<apply>
<csymbol cd="claculus1">partialdiff</csymbol>
<apply>
<csymbol cd="list1">list</csymbol>
<ci>n</ci>

4.3. Pragmatic Content MathML 185

<ci>m</ci>
</apply>
<bind>
<csymbol cd="fns1">lambda</csymbol>
<bvar>
<ci>x</ci>

</bvar>
<bvar>
<ci>y</ci>

</bvar>
<apply>
<csymbol cd="transc1">sin</csymbol>
<apply>
<csymbol cd="arith1">times</csymbol>
<ci>x</ci>
<ci>y</ci>

</apply>
</apply>

</bind>
</apply>

Where a total degree of differentiation must be specified, this is indicated by use of a degree element at the top
level, i.e. without any associated bvar, as a child of the containing apply element. Each degree schema used with
partialdiff is expected to contain a single child schema. For example,

<apply>
<partialdiff/>
<bvar>
<degree>
<cn>2</cn>

</degree>
<ci>x</ci>

</bvar>
<bvar>
<ci>y</ci>

</bvar>
<bvar>
<ci>x</ci>

</bvar>
<degree>
<cn>4</cn>

</degree>
<ci type="function">f</ci>

</apply>

denotes the mixed partial derivative (d4 / d2 x dy dx) f . In strict Content MathML, the overall degree cannot be
given.

4.3.13.4 Divergence (divergence)

The divergence element is the vector calculus divergence operator, often called div.

186 Chapter 4. Content Markup

This symbol is used to represent the divergence function. It takes one argument which should be a vector of scalar
valued functions, intended to represent a vector valued function and returns a scalar value. It should satisfy the
defining relation: divergence(F) = \partial(F_(x_1))/\partial(x_1) + ... + \partial(F_(x_n))/\partial(x_n)

Content MathML

<apply>
<divergence/>
<ci>a</ci>

</apply>

Default Rendering: Presentation MathML

<mrow>
<mo>div</mo><mo/><mfenced open="(" close=")" separators=","><mi>a</mi></mfenced>
</mrow>

Default Rendering: Image

div(a)

The functions defining the coordinates may be defined implicitly as expressions defined in terms of the coordinate
names, in which case the coordinate names must be provided as bound variables.

Content MathML

<apply>
<divergence/>
<ci type="vector">E</ci>

</apply>

Default Rendering: Presentation MathML

<mrow>
<mo>div</mo><mo/><mfenced open="(" close=")" separators=","><mi>E</mi></mfenced>
</mrow>

Default Rendering: Image

div(E)

Content MathML

<apply>
<divergence/>
<bvar>
<ci>x</ci>

</bvar>
<bvar>
<ci>y</ci>

</bvar>
<bvar>
<ci>z</ci>

</bvar>
<vector>

4.3. Pragmatic Content MathML 187

<apply>
<plus/>
<ci>x</ci>
<ci>y</ci>

</apply>
<apply>

<plus/>
<ci>x</ci>
<ci>z</ci>

</apply>
<apply>

<plus/>
<ci>z</ci>
<ci>y</ci>

</apply>
</vector>

</apply>

Default Rendering: Presentation MathML

<mrow>
<mo>div</mo><mo/><mfenced open="(" close=")" separators=",">
<mi>x</mi><mo>,</mo><mi>y</mi><mo>,</mo><mi>z</mi><mrow>
<mo>(</mo><mtable>
<mtr><mtd><mrow>

<mi>x</mi><mo>+</mo><mi>y</mi>
</mrow></mtd></mtr><mtr><mtd><mrow>
<mi>x</mi><mo>+</mo><mi>z</mi>
</mrow></mtd></mtr><mtr><mtd><mrow>
<mi>z</mi><mo>+</mo><mi>y</mi>
</mrow></mtd></mtr>

</mtable><mo>)</mo>
</mrow>
</mfenced>
</mrow>

Default Rendering: Image

div

x, , ,y, , ,z,

x+ y
x+ z
z+ y


Content MathML

<apply>
<eq/>
<apply>
<divergence/>
<ci type="vectorfield">a</ci>

</apply>
<apply>
<limit/>

188 Chapter 4. Content Markup

<bvar>
<ci>V</ci>

</bvar>
<condition>
<apply>
<tendsto/>
<ci>V</ci>
<cn>0</cn>

</apply>
</condition>
<apply>
<divide/>
<apply>
<int definitionURL="SurfaceIntegrals.htm" encoding="text"/>
<bvar>

<ci>S</ci>
</bvar>
<ci>a</ci>

</apply>
<ci>V</ci>

</apply>
</apply>

</apply>

Default Rendering: Presentation MathML

<mrow>
<mrow>
<mo>div</mo><mo/><mfenced open="(" close=")" separators=","><mi>a</mi></mfenced>
</mrow><mo>=</mo><mrow>
<munder>
<mi>lim</mi><mrow>
<mi>V</mi><mo>→</mo><mn>0</mn>
</mrow>

</munder><mrow>
<mrow>
<msubsup>
<mi>∫</mi><mrow/><mrow/>
</msubsup><mi>a</mi><mo>d</mo><mi>S</mi>
</mrow><mo>/</mo><mi>V</mi>
</mrow>
</mrow>
</mrow>

Default Rendering: Image

div(a) = lim
V→0

Z
adS/V

4.3.13.5 Gradient (grad)

The grad element is the vector calculus gradient operator, often called grad.

4.3. Pragmatic Content MathML 189

This symbol is used to represent the grad function. It takes one argument which should be a scalar valued function
and returns a vector of functions. It should satisfy the defining relation: grad(F) = (\partial(F)/\partial(x_1), ...
,\partial(F)/partial(x_n))

The functions defining the coordinates may be defined implicitly as expressions defined in terms of the coordinate
names, in which case the coordinate names must be provided as bound variables.

Content MathML

<apply>
<grad/>
<ci type="function"> f</ci>

</apply>

Default Rendering: Presentation MathML

<mrow>
<mo>grad</mo><mo/><mfenced open="(" close=")" separators=","><mi> f</mi></mfenced>
</mrow>

Default Rendering: Image

grad(f)

Content MathML

<apply>
<grad/>
<bvar>
<ci>x</ci>

</bvar>
<bvar>

<ci>y</ci>
</bvar>
<bvar>

<ci>z</ci>
</bvar>
<apply>

<times/>
<ci>x</ci>
<ci>y</ci>
<ci>z</ci>

</apply>
</apply>

Default Rendering: Presentation MathML

<mrow>
<mo>grad</mo><mo/><mfenced open="(" close=")" separators=",">
<mi>x</mi><mo>,</mo><mi>y</mi><mo>,</mo><mi>z</mi><mrow>
<mi>x</mi><mo/><mi>y</mi><mo/><mi>z</mi>
</mrow>
</mfenced>
</mrow>

190 Chapter 4. Content Markup

Default Rendering: Image

grad(x, , ,y, , ,z,xyz)

4.3.13.6 Curl (curl)

This symbol is used to represent the curl function. It takes one argument which should be a vector of scalar valued
functions, intended to represent a vector valued function and returns a vector of functions. It should satisfy the
defining relation: curl(F) = i X \partial(F)/\partial(x) + j X \partial(F)/\partial(y) + j X \partial(F)/\partial(Z)
where i,j,k are the unit vectors corresponding to the x,y,z axes respectively and the multiplication X is cross multi-
plication.

Content MathML

<apply>
<curl/>
<ci>a</ci>

</apply>

Default Rendering: Presentation MathML

<mrow>
<mo>curl</mo><mo/><mfenced open="(" close=")" separators=","><mi>a</mi></mfenced>
</mrow>

Default Rendering: Image

curl(a)

Content MathML

<apply>
<curl/>
<ci type="vector">f</ci>

</apply>

Default Rendering: Presentation MathML

<mrow>
<mo>curl</mo><mo/><mfenced open="(" close=")" separators=","><mi>f</mi></mfenced>
</mrow>

Default Rendering: Image

curl(f)

The functions defining the coordinates may be defined implicitly as expressions defined in terms of the coordinate
names, in which case the coordinate names must be provided as bound variables.

Editor’s note:MiKoWe do not seem to have a binding curl example, maybe we should come up with one

4.3. Pragmatic Content MathML 191

4.3.13.7 Laplacian (laplacian)

Content MathML

<apply>
<laplacian/>
<ci type="vector">E</ci>

</apply>

Default Rendering: Presentation MathML

<mrow>
<msup>
<mo>∇</mo><mn>2</mn>
</msup><mo/><mfenced open="(" close=")" separators=","><mi>E</mi></mfenced>
</mrow>

Default Rendering: Image

∇
2(E)

The functions defining the coordinates may be defined implicitly as expressions defined in terms of the coordinate
names, in which case the coordinate names must be provided as bound variables.

Content MathML

<apply>
<laplacian/>
<bvar>
<ci>x</ci>

</bvar>
<bvar>

<ci>y</ci>
</bvar>
<bvar>

<ci>z</ci>
</bvar>
<apply>

<ci>f</ci>
<ci>x</ci>
<ci>y</ci>

</apply>
</apply>

Default Rendering: Presentation MathML

<mrow>
<msup>
<mo>∇</mo><mn>2</mn>
</msup><mo/><mfenced open="(" close=")" separators=",">
<mi>x</mi><mo>,</mo><mi>y</mi><mo>,</mo><mi>z</mi><mrow>
<mi>f</mi><mo/><mfenced open="(" close=")" separators=",">
<mi>x</mi><mi>y</mi>
</mfenced>
</mrow>

192 Chapter 4. Content Markup

</mfenced>
</mrow>

Default Rendering: Image

∇
2(x, , ,y, , ,z, f (x,y))

Content MathML

<apply>
<eq/>
<apply>

<laplacian/>
<ci>f</ci>

</apply>
<apply>
<divergence/>
<apply>

<grad/>
<ci>f</ci>

</apply>
</apply>
</apply>

Default Rendering: Presentation MathML

<mrow>
<mrow>
<msup>
<mo>∇</mo><mn>2</mn>
</msup><mo/><mfenced open="(" close=")" separators=","><mi>f</mi></mfenced>
</mrow><mo>=</mo><mrow>
<mo>div</mo><mo/><mfenced open="(" close=")" separators=","><mrow>
<mo>grad</mo><mo/><mfenced open="(" close=")" separators=","><mi>f</mi></mfenced>
</mrow></mfenced>

</mrow>
</mrow>

Default Rendering: Image

∇
2(f) = div(grad(f))

4.3.14 Theory of Sets

4.3.14.1 Set (set)

This symbol represents the set construct. It is an n-ary function. The set entries are given explicitly. There is no
implied ordering to the elements of a set.

Content MathML

4.3. Pragmatic Content MathML 193

<set>
<ci>a</ci>
<ci>b</ci>
<ci>c</ci>

</set>

Default Rendering: Presentation MathML

<mrow>
<mo>{</mo><mi>a</mi><mo>,</mo><mi>b</mi><mo>,</mo><mi>c</mi><mo>}</mo>
</mrow>

Default Rendering: Image

{a,b,c}

In general a set can be constructed by providing a function and a domain of application. The elements of the set
correspond to the values obtained by evaluating the function at the points of the domain.

Content MathML

<set>
<bvar>

<ci>x</ci>
</bvar>
<condition>
<apply>

<lt/>
<ci>x</ci>
<cn>5</cn>

</apply>
</condition>
</set>

Default Rendering: Presentation MathML

<mrow>
<mo>{</mo><mi>x</mi><mo>|</mo><mrow>
<mi>x</mi><mo><</mo><mn>5</mn>
</mrow><mo>}</mo>

</mrow>

Default Rendering: Image

{x|x < 5}

Content MathML

<set>
<bvar>
<ci type="set">S</ci>

</bvar>
<condition>

194 Chapter 4. Content Markup

<apply>
<in/>
<ci>S</ci>
<ci type="list">T</ci>

</apply>
</condition>
<ci>S</ci>

</set>

Default Rendering: Presentation MathML

<mrow>
<mo>{</mo><mi>S</mi><mo>|</mo><mrow>
<mi>S</mi><mo>∈</mo><mi>T</mi>
</mrow><mo>}</mo>

</mrow>

Default Rendering: Image

{S|S ∈ T}

Content MathML

<set>
<bvar>
<ci> x </ci>

</bvar>
<condition>
<apply>
<and/>
<apply>
<lt/>
<ci> x </ci>
<cn> 5 </cn>

</apply>
<apply>
<in/>
<ci> x </ci>
<naturalnumbers/>

</apply>
</apply>

</condition>
<ci> x </ci>

</set>

Default Rendering: Presentation MathML

<mrow>
<mo>{</mo><mi> x </mi><mo>|</mo><mrow>
<mrow>
<mo>(</mo><mi> x </mi><mo><</mo><mn> 5 </mn><mo>)</mo>
</mrow><mo>∧</mo><mrow>
<mi> x </mi><mo>∈</mo><mi mathvariant="double-struck">N</mi>

4.3. Pragmatic Content MathML 195

</mrow>
</mrow><mo>}</mo>

</mrow>

Default Rendering: Image

{x|(x < 5) ∧ x ∈ N}

In strict MathML, this usage represented with the suchthat symbol from the set1 content dictionary.

If the type has value "multiset", then the set and suchthat from the multiset1 should be used instead.

4.3.14.2 List (list)

This symbol denotes the list construct which is an n-ary function. The list entries must be given explicitly.

Content MathML
<list>

<ci>a</ci>
<ci>b</ci>
<ci>c</ci>

</list>

Default Rendering: Presentation MathML
<mrow>
<mo>(</mo><mi>a</mi><mo>,</mo><mi>b</mi><mo>,</mo><mi>c</mi><mo>)</mo>
</mrow>

Default Rendering: Image

(a,b,c)

In general a list can be constructed by providing a function and a domain of application. The elements of the list
correspond to the values obtained by evaluating the function at the points of the domain.

This symbol represents the suchthat function which may be used to construct lists, it takes two arguments. The first
argument should be the set which contains the elements of the list, the second argument should be a predicate, that
is a function from the set to the booleans which describes if an element is to be in the list returned.

Content MathML
<list order="numeric">

<bvar>
<ci>x</ci>

</bvar>
<condition>
<apply>
<lt/>
<ci>x</ci>
<cn>5</cn>

</apply>
</condition>

</list>

http://svn.openmath.org/OpenMath3/cd/MathML/set1.xhtml#suchthat
http://svn.openmath.org/OpenMath3/cd/MathML/set1.xhtml
http://svn.openmath.org/OpenMath3/cd/MathML/multiset1.xhtml#set
http://svn.openmath.org/OpenMath3/cd/MathML/multiset1.xhtml#suchthat
http://svn.openmath.org/OpenMath3/cd/MathML/multiset1.xhtml

196 Chapter 4. Content Markup

Default Rendering: Presentation MathML

<mrow>
<mo>(</mo><mi>x</mi><mo>|</mo><mrow>
<mi>x</mi><mo><</mo><mn>5</mn>
</mrow><mo>)</mo>

</mrow>

Default Rendering: Image

(x|x < 5)

An order attribute can be used to specify what ordering is to be used. When the nature of the child elements
permits, the ordering defaults to a numeric or lexicographic ordering.

Lists differ from sets in that there is an explicit order to the elements. Two orders are supported: lexicographic and
numeric. The kind of ordering that should be used is specified by the order attribute.

4.3.14.3 Union (union)

This symbol is used to denote the n-ary union of sets. It takes sets as arguments, and denotes the set that contains
all the elements that occur in any of them.

Content MathML

<apply>
<union/>
<ci>A</ci>
<ci>B</ci>

</apply>

Default Rendering: Presentation MathML

<mrow>
<mi>A</mi><mo>∪</mo><mi>B</mi>
</mrow>

Default Rendering: Image

A∪B

The union operator element can be used as a binding operator in pragmatic Content MathML. This role is taken
over by the big_union symbol in strict Content MathML.

<apply>
<union/>
<bvar><ci>x</ci></bvar>
<apply><interval/><cn>0</cn><ci>x</ci></apply>

</apply>

Strict MathML equivlalent

4.3. Pragmatic Content MathML 197

<apply>
<csymbol cd="set1">big_union</csymbol>
<bind>
<csymbol cd="fns1">lambda</csymbol>
<bvar><ci>x</ci></bvar>
<apply><csymbol cd="interval1">integer_interval</csymbol><cn>0</cn><ci>x</ci></apply>

</bind>
</apply>

This n-ary operator is used to construct the union over a collection of sets.

Content MathML

<apply>
<union/>
<bvar>
<ci type="set">S</ci>

</bvar>
<domainofapplication>
<ci type="list">L</ci>

</domainofapplication>
<ci type="set"> S</ci>

</apply>

Default Rendering: Presentation MathML

<mrow>
<mi>S</mi><mo>∪</mo><merror/><mo>∪</mo><mi> S</mi>
</mrow>

Default Rendering: Image

S∪ ∪S

If the type has value "multiset", then the union and big_union from the multiset1 should be used instead.

4.3.14.4 Intersect (intersect)

This symbol is used to denote the n-ary intersection of sets. It takes sets as arguments, and denotes the set that
contains all the elements that occur in all of them.

Content MathML

<apply>
<intersect/>
<ci type="set"> A</ci>
<ci type="set"> B</ci>

</apply>

Default Rendering: Presentation MathML

<mrow>
<mi> A</mi><mo>∩</mo><mi> B</mi>
</mrow>

http://svn.openmath.org/OpenMath3/cd/MathML/multiset1.xhtml#union
http://svn.openmath.org/OpenMath3/cd/MathML/multiset1.xhtml#big_union
http://svn.openmath.org/OpenMath3/cd/MathML/multiset1.xhtml

198 Chapter 4. Content Markup

Default Rendering: Image

A∩B

The intersect operator element can be used as a binding operator in pragmatic Content MathML. This role is
taken over by the big_intersect symbol in strict Content MathML.
<apply>

<intersect/>
<bvar><ci>x</ci></bvar>
<apply><interval/><cn>0</cn><ci>x</ci></apply>

</apply>

Strict MathML equivlalent
<apply>

<csymbol cd="set1">big_intersect</csymbol>
<bind>
<csymbol cd="fns1">lambda</csymbol>
<bvar><ci>x</ci></bvar>
<apply><csymbol cd="interval1">integer_interval</csymbol><cn>0</cn><ci>x</ci></apply>

</bind>
</apply>

This n-ary operator is used to construct the intersection over a collection of sets.

Content MathML
<apply>

<intersect/>
<ci type="list">L</ci>
<bind>
<lambda/>
<bvar>
<ci type="set"> S</ci>

</bvar>
<ci type="set"> S</ci>

</bind>
</apply>

Default Rendering: Presentation MathML
<mrow>
<mi>L</mi><mo>∩</mo><mrow>
<mrow>
<mi>λ</mi><mrow/><mo>.</mo><mfenced/>
</mrow><mo>.</mo><mi> S</mi>
</mrow>
</mrow>

Default Rendering: Image

L∩λ.().S

If the type has value "multiset", then the intersect and big_intersect from the multiset1 should be used instead.

http://svn.openmath.org/OpenMath3/cd/MathML/multiset1.xhtml#intersect
http://svn.openmath.org/OpenMath3/cd/MathML/multiset1.xhtml#big_intersect
http://svn.openmath.org/OpenMath3/cd/MathML/multiset1.xhtml

4.3. Pragmatic Content MathML 199

4.3.14.5 Set inclusion (in)

This symbol has two arguments, an element and a set. It is used to denote that the element is in the given set.

Content MathML

<apply>
<in/>
<ci>a</ci>
<ci type="set">A</ci>

</apply>

Default Rendering: Presentation MathML

<mrow>
<mi>a</mi><mo>∈</mo><mi>A</mi>
</mrow>

Default Rendering: Image

a ∈ A

If the type has value "multiset", then the in from the multiset1 should be used instead.

4.3.14.6 Set exclusion (notin)

This symbol has two arguments, an element and a set. It is used to denote that the element is not in the given set.

Content MathML

<apply>
<notin/>
<ci>a</ci>
<ci type="set">A</ci>

</apply>

Default Rendering: Presentation MathML

<mrow>
<mi>a</mi><mo>∉</mo><mi>A</mi>
</mrow>

Default Rendering: Image

a 6∈ A

If the type has value "multiset", then the notin from the multiset1 should be used instead.

4.3.14.7 Subset (subset)

This symbol has two (set) arguments. It is used to denote that the first set is a subset of the second.

Content MathML

http://svn.openmath.org/OpenMath3/cd/MathML/multiset1.xhtml#in
http://svn.openmath.org/OpenMath3/cd/MathML/multiset1.xhtml
http://svn.openmath.org/OpenMath3/cd/MathML/multiset1.xhtml#notin
http://svn.openmath.org/OpenMath3/cd/MathML/multiset1.xhtml

200 Chapter 4. Content Markup

<apply>
<subset/>
<ci type="set">A</ci>
<ci type="set">B</ci>

</apply>

Default Rendering: Presentation MathML

<mrow>
<mi>A</mi><mo>⊆</mo><mi>B</mi>
</mrow>

Default Rendering: Image

A ⊆ B

If the type has value "multiset", then the subset from the multiset1 should be used instead.

Editor’s note:MiKoThere is a version with bvar here, what to do here?

4.3.14.8 Proper Subset (prsubset)

This symbol has two (set) arguments. It is used to denote that the first set is a proper subset of the second, that is a
subset of the second set but not actually equal to it.

Content MathML

<apply>
<prsubset/>
<ci type="set">A</ci>
<ci type="set">B</ci>

</apply>

Default Rendering: Presentation MathML

<mrow>
<mi>A</mi><mo>⊂</mo><mi>B</mi>
</mrow>

Default Rendering: Image

A ⊂ B

If the type has value "multiset", then the prsubset from the multiset1 should be used instead.

Editor’s note:MiKoThere is a version with bvar here, what to do here?

4.3.14.9 Not Subset (notsubset)

This symbol has two (set) arguments. It is used to denote that the first set is not a subset of the second.

Content MathML

http://svn.openmath.org/OpenMath3/cd/MathML/multiset1.xhtml#subset
http://svn.openmath.org/OpenMath3/cd/MathML/multiset1.xhtml
http://svn.openmath.org/OpenMath3/cd/MathML/multiset1.xhtml#prsubset
http://svn.openmath.org/OpenMath3/cd/MathML/multiset1.xhtml

4.3. Pragmatic Content MathML 201

<apply>
<notsubset/>
<ci type="set">A</ci>
<ci type="set">B</ci>

</apply>

Default Rendering: Presentation MathML

<mrow>
<mi>A</mi><mo>⊈</mo><mi>B</mi>
</mrow>

Default Rendering: Image

A 6⊆ B

If the type has value "multiset", then the notsubset from the multiset1 should be used instead.

4.3.14.10 Not Proper Subset (notprsubset)

This symbol has two (set) arguments. It is used to denote that the first set is not a proper subset of the second. A
proper subset of a set is a subset of the set but not actually equal to it.

Content MathML

<apply>
<notprsubset/>
<ci type="set">A</ci>
<ci type="set">B</ci>

</apply>

Default Rendering: Presentation MathML

<mrow>
<mi>A</mi><mo>⊄</mo><mi>B</mi>
</mrow>

Default Rendering: Image

A 6⊂ B

If the type has value "multiset", then the notprsubset from the multiset1 should be used instead.

4.3.14.11 Set Difference (setdiff)

This symbol is used to denote the set difference of two sets. It takes two sets as arguments, and denotes the set that
contains all the elements that occur in the first set, but not in the second.

Content MathML

<apply>
<setdiff/>
<ci type="set">A</ci>
<ci type="set">B</ci>

</apply>

http://svn.openmath.org/OpenMath3/cd/MathML/multiset1.xhtml#notsubset
http://svn.openmath.org/OpenMath3/cd/MathML/multiset1.xhtml
http://svn.openmath.org/OpenMath3/cd/MathML/multiset1.xhtml#notprsubset
http://svn.openmath.org/OpenMath3/cd/MathML/multiset1.xhtml

202 Chapter 4. Content Markup

Default Rendering: Presentation MathML

<mrow>
<mi>A</mi><mo>∖</mo><mi>B</mi>
</mrow>

Default Rendering: Image

A\B

If the type has value "multiset", then the setdiff from the multiset1 should be used instead.

4.3.14.12 Cardinality (card)

This symbol is used to denote the number of elements in a set. It is either a non-negative integer, or an infinite
cardinal number. The symbol infinity may be used for an unspecified infinite cardinal.

Content MathML

Default Rendering: Presentation MathML

Default Rendering: Image

If the type has value "multiset", then the size from the multiset1 should be used instead.

4.3.14.13 Cartesian product (cartesianproduct)

Content MathML

<apply>
<cartesianproduct/>
<ci>A</ci>
<ci>B</ci>

</apply>

Default Rendering: Presentation MathML

<mrow>
<mi>A</mi><mo>×</mo><mi>B</mi>
</mrow>

Default Rendering: Image

A×B

If the type has value "multiset", then the cartesianproduct from the multiset1 should be used instead.

Editor’s note:MiKoThere is a version with bvar here, what to do here?

http://svn.openmath.org/OpenMath3/cd/MathML/multiset1.xhtml#setdiff
http://svn.openmath.org/OpenMath3/cd/MathML/multiset1.xhtml
http://svn.openmath.org/OpenMath3/cd/MathML/multiset1.xhtml#size
http://svn.openmath.org/OpenMath3/cd/MathML/multiset1.xhtml
http://svn.openmath.org/OpenMath3/cd/MathML/multiset1.xhtml#cartesianproduct
http://svn.openmath.org/OpenMath3/cd/MathML/multiset1.xhtml

4.3. Pragmatic Content MathML 203

4.3.15 Sequences and Series

4.3.15.1 Sum (sum)

An operator taking two arguments, the first being the range of summation, e.g. an integral interval, the second
being the function to be summed. Note that the sum may be over an infinite interval.

In pragmatic Content MathML, the sum operator may used as the first child of an apply element, which is qualified
by providing a domainofapplication, an uplimit, lowlimit pair, condition element. The index for the
summation is specified by a bvar element.

If no bound variables are specified then terms of the sum correspond to those produced by evaluating the function
that is provided at the points of the domain, while if bound variables are present they are the index of summation
and they take on the values of points in the domain. In this case the terms of the sum correspond to the values of
the expression that is provided, evaluated at those points. Depending on the structure of the domain, the domain of
summation can be abbreviated by using uplimit and lowlimit to specify upper and lower limits for the sum.

A sum in pragmatic Content MathML is turned into strict Content MathML by supplying a lambda binder for the
expression to make it into a function. The range of integration is converted to an interval.

<apply>
<sum/>
<bvar><ci>i</ci></bvar>
<lowlimit><cn>0</cn></lowlimit>
<uplimit><cn>100</cn></uplimit>
<apply><power/><ci>x</ci><ci>i</ci></apply>

</apply>

Strict MathML equivlalent

<apply>
<csymbol cd="arith1">sum</csymbol>
<apply>
<csymbol cd="interval1">integer_interval</csymbol>
<cn>0</cn>
<cn>100</cn>

</apply>
<bind>
<csymbol cd="fns1">lambda</csymbol>
<bvar><ci>i</ci></bvar>
<apply><csymbol cd="arith1">power</csymbol><ci>x</ci><ci>i</ci></apply>

</bind>
</apply>

Content MathML

<apply>
<sum/>
<bind>

<lambda/>
<bvar>
<ci>x</ci>

</bvar>
<lowlimit>
<ci>a</ci>

</lowlimit>

204 Chapter 4. Content Markup

<uplimit>
<ci>b</ci>

</uplimit>
<apply>
<ci>f</ci>
<ci>x</ci>

</apply>
</bind>

</apply>

Default Rendering: Presentation MathML

<mrow>
<msubsup>
<mo>∑</mo><mrow/><mrow/>
</msubsup><mrow>
<mrow>
<mi>λ</mi><mrow/><mo>.</mo><mfenced/>
</mrow><mo>.</mo><mrow>
<mi>f</mi><mo/><mfenced open="(" close=")" separators=","><mi>x</mi></mfenced>
</mrow>
</mrow>
</mrow>

Default Rendering: Image

∑λ.(). f (x)

Content MathML

<apply>
<sum/>
<bind>

<lambda/>
<bvar>
<ci>x</ci>

</bvar>
<condition>
<apply>
<in/>
<ci>x</ci>
<ci type="set">B</ci>

</apply>
</condition>
<apply>
<ci type="function"> f</ci>
<ci>x</ci>

</apply>
</bind>

</apply>

Default Rendering: Presentation MathML

4.3. Pragmatic Content MathML 205

<mrow>
<msubsup>
<mo>∑</mo><mrow/><mrow/>
</msubsup><mrow>
<mrow>
<mi>λ</mi><mrow/><mo>.</mo><mfenced/>
</mrow><mo>.</mo><mrow>
<mi>x</mi><mo>∈</mo><mi>B</mi>
</mrow><mrow>
<mi> f</mi><mo/><mfenced open="(" close=")" separators=","><mi>x</mi></mfenced>
</mrow>
</mrow>
</mrow>

Default Rendering: Image

∑λ.().x ∈ B f (x)

Content MathML

<apply>
<sum/>
<domainofapplication>
<ci type="set">B</ci>

</domainofapplication>
<ci type="function">f</ci>

</apply>

Default Rendering: Presentation MathML

<mrow>
<msubsup>
<mo>∑</mo><mrow/><mrow/>
</msubsup><mi>f</mi>
</mrow>

Default Rendering: Image

∑ f

4.3.15.2 Product (product)

An operator taking two arguments, the first being the range of multiplication e.g. an integral interval, the second
being the function to be multiplied. Note that the product may be over an infinite interval.

In pragmatic Content MathML, the product Operator may used as the first child of an apply element, which is
qualified by providing a domainofapplication, an uplimit, lowlimit pair, condition element. The index is
specified by a bvar element.

If no bound variables are specified then terms of the product correspond to those produced by evaluating the
function that is provided at the points of the domain, while if bound variables are present they are the index and
they take on the values of points in the domain. In this case the terms of the product correspond to the values of

206 Chapter 4. Content Markup

the expression that is provided, evaluated at those points. Depending on the structure of the domain, the domain
of multiplication can be abbreviated by using uplimit and lowlimit to specify upper and lower limits for the
product.

A product in pragmatic Content MathML is turned into strict Content MathML by supplying a lambda binder
for the expression to make it into a function. The range of integration is converted to an interval.

<apply>
<product/>
<bvar><ci>i</ci></bvar>
<apply><power/><ci>x</ci><ci>i</ci></apply>

</apply>

Strict MathML equivlalent

<apply>
<csymbol cd="arith1">product</csymbol>
<apply>
<csymbol cd="interval1">integer_interval</csymbol>
<cn>0</cn>
<cn>100</cn>

</apply>
<bind>
<csymbol cd="fns1">lambda</csymbol>
<bvar><ci>i</ci></bvar>
<apply><csymbol cd="arith1">power</csymbol><ci>x</ci><ci>i</ci></apply>

</bind>
</apply>

Content MathML

<apply>
<product/>
<bind>
<lambda/>
<bvar>
<ci>x</ci>

</bvar>
<lowlimit>
<ci>a</ci>

</lowlimit>
<uplimit>
<ci>b</ci>

</uplimit>
<apply>
<ci type="function"> f</ci>
<ci>x</ci>

</apply>
</bind>

</apply>

Default Rendering: Presentation MathML

<mrow>
<msubsup>
<mo>∏</mo><mrow/><mrow/>

4.3. Pragmatic Content MathML 207

</msubsup><mrow>
<mrow>
<mi>λ</mi><mrow/><mo>.</mo><mfenced/>
</mrow><mo>.</mo><mrow>
<mi> f</mi><mo/><mfenced open="(" close=")" separators=","><mi>x</mi></mfenced>
</mrow>
</mrow>
</mrow>

Default Rendering: Image

∏λ.(). f (x)

Content MathML

<apply>
<product/>
<bind>
<lambda/>
<bvar>
<ci>x</ci>

</bvar>
<condition>
<apply>
<in/>
<ci>x</ci>
<ci type="set">B</ci>

</apply>
</condition>
<apply>
<ci>f</ci>
<ci>x</ci>

</apply>
</bind>

</apply>

Default Rendering: Presentation MathML

<mrow>
<msubsup>
<mo>∏</mo><mrow/><mrow/>
</msubsup><mrow>
<mrow>
<mi>λ</mi><mrow/><mo>.</mo><mfenced/>
</mrow><mo>.</mo><mrow>
<mi>x</mi><mo>∈</mo><mi>B</mi>
</mrow><mrow>
<mi>f</mi><mo/><mfenced open="(" close=")" separators=","><mi>x</mi></mfenced>
</mrow>
</mrow>
</mrow>

208 Chapter 4. Content Markup

Default Rendering: Image

∏λ.().x ∈ B f (x)

4.3.15.3 Limits (limit)

This symbol is used to denote the limit of a function. It takes 3 arguments: the limiting value of the argument, the
method of approach (either null, above, below or both_sides) and the function.

The limit element represents the operation of taking a limit of a sequence. The limit point is expressed by speci-
fying a lowlimit and a bvar, or by specifying a condition on one or more bound variables.

Content MathML

<apply>
<limit/>
<bvar>
<ci>x</ci>

</bvar>
<lowlimit>
<cn>0</cn>

</lowlimit>
<apply>
<sin/>
<ci>x</ci>

</apply>
</apply>

Default Rendering: Presentation MathML

<mrow>
<munder>
<mi>lim</mi><mrow>

<mi>x</mi>
<mo>→</mo>
<mn>0</mn>

</mrow>
</munder><mrow>
<mi>sin</mi><mi>x</mi>
</mrow>
</mrow>

Default Rendering: Image

lim
x→0

sinx

Content MathML

4.3. Pragmatic Content MathML 209

<apply>
<limit/>
<bvar>
<ci>x</ci>

</bvar>
<condition>
<apply>
<tendsto/>
<ci>x</ci>
<cn>0</cn>

</apply>
</condition>
<apply>
<sin/>
<ci>x</ci>

</apply>
</apply>

Default Rendering: Presentation MathML

<mrow>
<munder>
<mi>lim</mi><mrow>
<mi>x</mi><mo>→</mo><mn>0</mn>
</mrow>

</munder><mrow>
<mi>sin</mi><mi>x</mi>
</mrow>
</mrow>

Default Rendering: Image

lim
x→0

sinx

Content MathML

<apply>
<limit/>
<bvar>
<ci>x</ci>

</bvar>
<condition>

<apply>
<tendsto type="above"/>
<ci>x</ci>
<ci>a</ci>

</apply>
</condition>
<apply>
<sin/>
<ci>x</ci>

210 Chapter 4. Content Markup

</apply>
</apply>

Default Rendering: Presentation MathML
<mrow>
<munder>
<mi>lim</mi><mrow>
<mi>x</mi><mo>→</mo><mi>a</mi>
</mrow>

</munder><mrow>
<mi>sin</mi><mi>x</mi>
</mrow>
</mrow>

Default Rendering: Image

lim
x→a

sinx

The direction from which a limiting value is approached is given as an argument limit in strict content MathML,
which supplies the direction specifier symbols both_sides, above, and below for this purpose. The first correspond
to the values "all", "above", and "below" of the type attribute of the tendsto element below. The null symbol
corresponds to the case where no type attribute is present. We translate
<apply><limit/>

<bvar><ci>x</ci></bvar>
<condition>
<apply><tendsto/><ci>x</ci><cn>0</cn></apply>

</condition>
<apply><sin/><ci>x</ci></apply>

</apply>

Strict MathML equivlalent
<apply>

<csymbol cd="limit1">limit</csymbol>
<ci>0</ci>
<csymbol cd="limit">null</csymbol>
<bind>
<csymbol cd="fns1">lambda</csymbol>
<bvar><ci>x</ci></bvar>
<apply><csymbol cd="transc1">sin</csymbol><ci>x</ci></apply>

</bind>
</apply>

4.3.15.4 Tends To (tendsto)

This symbol is also used to express the relation that a quantity is tending to a specified value. While this is used
primarily as part of the statement of a mathematical limit, it exists as a construct on its own to allow one to capture
mathematical statements such as "As x tends to y," and to provide a building block to construct more general kinds
of limits.

The tendsto element takes the attributes type to set the direction from which the limiting value is approached.

Content MathML

http://svn.openmath.org/OpenMath3/cd/MathML/limit1.xhtml#limit
http://svn.openmath.org/OpenMath3/cd/MathML/limit1.xhtml#both_sides
http://svn.openmath.org/OpenMath3/cd/MathML/limit1.xhtml#above
http://svn.openmath.org/OpenMath3/cd/MathML/limit1.xhtml#below
http://svn.openmath.org/OpenMath3/cd/MathML/limit1.xhtml#null

4.3. Pragmatic Content MathML 211

<apply>
<tendsto type="above"/>
<apply>
<power/>
<ci>x</ci>
<cn>2</cn>

</apply>
<apply>
<power/>
<ci>a</ci>
<cn>2</cn>

</apply>
</apply>

Default Rendering: Presentation MathML

<mrow>
<msup>
<mi>x</mi><mn>2</mn>
</msup><mo>→</mo><msup>
<mi>a</mi><mn>2</mn>
</msup>
</mrow>

Default Rendering: Image

x2 → a2

Content MathML

<apply>
<tendsto/>
<vector>
<ci>x</ci>
<ci>y</ci>

</vector>
<vector>
<apply>
<ci type="function">f</ci>
<ci>x</ci>
<ci>y</ci>

</apply>
<apply>
<ci type="function">g</ci>
<ci>x</ci>
<ci>y</ci>

</apply>
</vector>

</apply>

Default Rendering: Presentation MathML

212 Chapter 4. Content Markup

<mrow>
<mrow>
<mo>(</mo><mtable>
<mtr><mtd><mi>x</mi></mtd></mtr><mtr><mtd><mi>y</mi></mtd></mtr>
</mtable><mo>)</mo>
</mrow><mo>→</mo><mrow>
<mo>(</mo><mtable>
<mtr><mtd><mrow>

<mi>f</mi><mo/><mfenced open="(" close=")" separators=",">
<mi>x</mi><mi>y</mi>
</mfenced>
</mrow></mtd></mtr><mtr><mtd><mrow>
<mi>g</mi><mo/><mfenced open="(" close=")" separators=",">
<mi>x</mi><mi>y</mi>
</mfenced>
</mrow></mtd></mtr>

</mtable><mo>)</mo>
</mrow>
</mrow>

Default Rendering: Image

(
x
y

)
→

(
f (x,y)
g(x,y)

)

4.3.16 Elementary classical functions

4.3.16.1 common trigonometric functions

The names of the common trigonometric functions supported by MathML are listed below. Since their standard
interpretations are widely known, they are discussed as a group.

sin cos tan
sec csc cot
sinh cosh tanh
sech csch coth
arcsin arccos arctan
arccosh arccot arccoth
arccsc arccsch arcsec
arcsech arcsinh arctanh

These operator elements denote the standard trigonometric functions.

Content MathML
<apply>

<sin/>
<ci>x</ci>

</apply>

Default Rendering: Presentation MathML
<mrow>
<mi>sin</mi><mi>x</mi>
</mrow>

4.3. Pragmatic Content MathML 213

Default Rendering: Image

sinx

Content MathML

<apply>
<sin/>
<apply>
<plus/>
<apply>
<cos/>
<ci>x</ci>

</apply>
<apply>
<power/>
<ci>x</ci>
<cn>3</cn>

</apply>
</apply>

</apply>

Default Rendering: Presentation MathML

<mrow>
<mi>sin</mi><mrow>
<mo>(</mo><mrow>
<mi>cos</mi><mi>x</mi>
</mrow><mo>+</mo><msup>
<mi>x</mi><mn>3</mn>
</msup><mo>)</mo>
</mrow>
</mrow>

Default Rendering: Image

sin
(
cosx+ x3)

4.3.16.2 Exponential (exp)

This symbol represents the exponentiation function associated with the inverse of the ln function as described in
Abramowitz and Stegun, section 4.2. It takes one argument.

Content MathML

<apply>
<exp/>
<ci>x</ci>

</apply>

Default Rendering: Presentation MathML

214 Chapter 4. Content Markup

<msup>
<mi>e</mi><mi>x</mi>
</msup>

Default Rendering: Image

ex

4.3.16.3 Natural Logarithm (ln)

This symbol represents the ln function (natural logarithm) as described in Abramowitz and Stegun, section 4.1.
It takes one argument. Note the description in the CMP/FMP of the branch cut. If signed zeros are in use, the
inequality needs to be non-strict.

Content MathML

<apply>
<ln/>
<ci>a</ci>

</apply>

Default Rendering: Presentation MathML

<mrow>
<mi>ln</mi><mi>a</mi>
</mrow>

Default Rendering: Image

lna

4.3.16.4 Logarithm (log)

This symbol represents a binary log function; the first argument is the base, to which the second argument is log’ed.
It is defined in Abramowitz and Stegun, Handbook of Mathematical Functions, section 4.1

Content MathML

<apply>
<log/>
<logbase>
<cn>3</cn>

</logbase>
<ci>x</ci>

</apply>

Default Rendering: Presentation MathML

<mrow>
<msub>
<mi>log</mi><mn>3</mn>
</msub><mi>x</mi>
</mrow>

4.3. Pragmatic Content MathML 215

Default Rendering: Image

log3x

Content MathML

<apply>
<log/>
<ci>x</ci>

</apply>

Default Rendering: Presentation MathML

<mrow>
<mi>log</mi><mi>x</mi>
</mrow>

Default Rendering: Image

logx

4.3.17 Statistics

4.3.17.1 Mean (mean)

mean is the operator element representing a mean or average of a data set or random variable. If it is used on a data
set, then the mean element corresponds to the mean from the s_data1 content dictionary, if it is used on a random
variable, then it corresponds to the mean from the s_dist1 CD.

Content MathML

<apply>
<mean/>
<cn>3</cn>
<cn>4</cn>
<cn>3</cn>
<cn>7</cn>
<cn>4</cn>

</apply>

Default Rendering: Presentation MathML

<mrow>
<mo>〈</mo><mn>3</mn><mo>,</mo><mn>4</mn><mo>,</mo><mn>3</mn><mo>,</mo><mn>7</mn><mo>,</mo><mn>4</mn><mo>〉</mo>
</mrow>

Default Rendering: Image

〈3,4,3,7,4〉

Content MathML

http://svn.openmath.org/OpenMath3/cd/MathML/s_data1.xhtml#mean
http://svn.openmath.org/OpenMath3/cd/MathML/s_data1.xhtml
http://svn.openmath.org/OpenMath3/cd/MathML/s_dist1.xhtml#mean
http://svn.openmath.org/OpenMath3/cd/MathML/s_dist1.xhtml

216 Chapter 4. Content Markup

<apply>
<mean/>
<ci type="discrete_random_variable">X</ci>

</apply>

Default Rendering: Presentation MathML

<mrow>
<mo>〈</mo><mi>X</mi><mo>〉</mo>
</mrow>

Default Rendering: Image

〈X〉

4.3.17.2 Standard Deviation (sdev)

mean is the operator element representing the standard deviation of a data set or random variable. If it is used on
a data set, then the sdev element corresponds to the sdev from the s_data1 content dictionary, if it is used on a
random variable, then it corresponds to the sdev from the s_dist1 CD.

Content MathML

<apply>
<sdev/>
<cn>3</cn>
<cn>4</cn>
<cn>2</cn>
<cn>2</cn>

</apply>

Default Rendering: Presentation MathML

<mrow>
<mo>σ</mo><mo/><mfenced open="(" close=")" separators=",">
<mn>3</mn><mn>4</mn><mn>2</mn><mn>2</mn>
</mfenced>
</mrow>

Default Rendering: Image

σ(3,4,2,2)

Content MathML

<apply>
<sdev/>
<ci type="discrete_random_variable">X</ci>

</apply>

Default Rendering: Presentation MathML

<mrow>
<mo>σ</mo><mo/><mfenced open="(" close=")" separators=","><mi>X</mi></mfenced>
</mrow>

http://svn.openmath.org/OpenMath3/cd/MathML/s_data1.xhtml#sdev
http://svn.openmath.org/OpenMath3/cd/MathML/s_data1.xhtml
http://svn.openmath.org/OpenMath3/cd/MathML/s_dist1.xhtml#sdev
http://svn.openmath.org/OpenMath3/cd/MathML/s_dist1.xhtml

4.3. Pragmatic Content MathML 217

Default Rendering: Image

σ(X)

4.3.17.3 Variance (variance)

variance is the operator element representing the standard deviation of a data set or random variable. If it is used
on a data set, then the variance element corresponds to the variance from the s_data1 content dictionary, if it is
used on a random variable, then it corresponds to the variance from the s_dist1 CD.

Content MathML

<apply>
<variance/>
<cn>3</cn>
<cn>4</cn>
<cn>2</cn>
<cn>2</cn>

</apply>

Default Rendering: Presentation MathML

<msup>
<mrow>
<mo>σ</mo><mo>(</mo><mn>3</mn><mo>)</mo>
</mrow><mn>2</mn>
</msup>

Default Rendering: Image

σ(3)2

Content MathML

<apply>
<variance/>
<ci type="discrete_random_variable"> X</ci>

</apply>

Default Rendering: Presentation MathML

<msup>
<mrow>
<mo>σ</mo><mo>(</mo><mi> X</mi><mo>)</mo>
</mrow><mn>2</mn>
</msup>

Default Rendering: Image

σ(X)2

http://svn.openmath.org/OpenMath3/cd/MathML/s_data1.xhtml#variance
http://svn.openmath.org/OpenMath3/cd/MathML/s_data1.xhtml
http://svn.openmath.org/OpenMath3/cd/MathML/s_dist1.xhtml#variance
http://svn.openmath.org/OpenMath3/cd/MathML/s_dist1.xhtml

218 Chapter 4. Content Markup

4.3.17.4 Median (median)

This symbol represents an n-ary function denoting the median of its arguments. That is, if the data were placed in
ascending order then it denotes the middle one (in the case of an odd amount of data) or the average of the middle
two (in the case of an even amount of data). See CRC Standard Mathematical Tables and Formulae, editor: Dan
Zwillinger, CRC Press Inc., 1996, section 7.7.1

Content MathML
<apply>

<median/>
<cn>3</cn>
<cn>4</cn>
<cn>2</cn>
<cn>2</cn>

</apply>

Default Rendering: Presentation MathML
<mrow>
<mo>median</mo><mo/><mfenced open="(" close=")" separators=",">
<mn>3</mn><mn>4</mn><mn>2</mn><mn>2</mn>
</mfenced>
</mrow>

Default Rendering: Image

median(3,4,2,2)

4.3.17.5 Mode (mode)

This symbol represents an n-ary function denoting the mode of its arguments. That is the value which occurs with
the greatest frequency. See CRC Standard Mathematical Tables and Formulae, editor: Dan Zwillinger, CRC Press
Inc., 1996, section 7.7.1

Content MathML
<apply>

<mode/>
<cn>3</cn>
<cn>4</cn>
<cn>2</cn>
<cn>2</cn>

</apply>

Default Rendering: Presentation MathML
<mrow>
<mo>mode</mo><mo/><mfenced open="(" close=")" separators=",">
<mn>3</mn><mn>4</mn><mn>2</mn><mn>2</mn>
</mfenced>
</mrow>

Default Rendering: Image

mode(3,4,2,2)

4.3. Pragmatic Content MathML 219

4.3.17.6 Moment (moment, momentabout)

moment s used to denote the i’th moment of a set of data set or random variable. If it is used on a data set, then the
moment element corresponds to the moment from the s_data1 content dictionary

This symbol is used to denote the i’th moment of a set of data. The first argument should be the degree of the
moment (that is, for the i’th moment the first argument should be i), the second argument should be the point about
which the moment is being taken and the rest of the arguments are treated as the data. For n data values x_1, x_2,
..., x_n the i’th moment about c is (1/n) ((x_1-c)^i + (x_2-c)^i + ... + (x_n-c)^i). See CRC Standard Mathematical
Tables and Formulae, editor: Dan Zwillinger, CRC Press Inc., 1996, section 7.7.1.

if it is used on a random variable, then it corresponds to the moment from the s_dist1 CD.

This symbol represents a ternary function to denote the i’th moment of a distribution. The first argument should
be the degree of the moment (that is, for the i’th moment the first argument should be i), the second argument is
the value about which the moment is to be taken and the third argument is a univariate function to describe the
distribution. That is, if f is the function which describe the distribution. The i’th moment of f about a is the integral
of (x-a)^i*f(x) with respect to x, over the interval (-infinity,infinity). See CRC Standard Mathematical Tables and
Formulae, editor: Dan Zwillinger, CRC Press Inc., 1996, section 7.7.1

In pragmatic content MathML we use the qualifier degree for the n in ‘ n-th moment’ and the qualifier
momentabout for the p in ‘moment about p’. We translate:

<apply>
<moment/>
<degree><cn>3</cn></degree>
<momentabout><ci>p</ci></momentabout>
<ci>X</ci>

</apply>

Strict MathML equivlalent

<apply>
<csymbol cd="s_dist">moment</csymbol>
<cn>3</cn>
<ci>p</ci>
<ci>X</ci>

</apply>

The moment function accepts the degree and momentabout schema. If present, the degree schema denotes the
order of the moment. Otherwise, the moment is assumed to be the first order moment. When used with moment,
the degree schema is expected to contain a single child schema; otherwise an error is generated. If present, the
momentabout schema denotes the point about which the moment is taken. Otherwise, the moment is assumed to
be the moment about zero.

Content MathML

<apply>
<moment/>
<degree>
<cn>3</cn>

</degree>
<momentabout>
<mean/>

</momentabout>
<cn>6</cn>
<cn>4</cn>

http://svn.openmath.org/OpenMath3/cd/MathML/s_data1.xhtml#moment
http://svn.openmath.org/OpenMath3/cd/MathML/s_data1.xhtml
http://svn.openmath.org/OpenMath3/cd/MathML/s_dist1.xhtml#moment
http://svn.openmath.org/OpenMath3/cd/MathML/s_dist1.xhtml

220 Chapter 4. Content Markup

<cn>2</cn>
<cn>2</cn>
<cn>5</cn>

</apply>

Default Rendering: Presentation MathML

<msub>
<mrow>
<mo>〈</mo><msup>
<mn>5</mn><mn>3</mn>
</msup><mo>〉</mo>
</mrow><mi>mean</mi>
</msub>

Default Rendering: Image

〈53〉mean

Content MathML

<apply>
<moment/>
<degree>
<cn>3</cn>

</degree>
<momentabout>
<ci>p</ci>

</momentabout>
<ci>X</ci>

</apply>

Default Rendering: Presentation MathML

<msub>
<mrow>
<mo>〈</mo><msup>
<mi>X</mi><mn>3</mn>
</msup><mo>〉</mo>
</mrow><mi>p</mi>
</msub>

Default Rendering: Image

〈X3〉p

4.3.18 Linear Algebra

4.3.18.1 Vector (vector)

A vector is an ordered n-tuple of values representing an element of an n-dimensional vector space. The "values"
are all from the same ring, typically real or complex. Where orientation is important, such as for pre or post

4.3. Pragmatic Content MathML 221

multiplication by a matrix a vector is treated as a row vector and its transpose is treated a column vector. See CRC
Standard Mathematical Tables and Formulae, editor: Dan Zwillinger, CRC Press Inc., 1996, [2.4]

For purposes of interaction with matrices and matrix multiplication, vectors are regarded as equivalent to a matrix
consisting of a single column, and the transpose of a vector behaves the same as a matrix consisting of a single
row. Note that vectors may be rendered either as a single column or row.

vector is a constructor element (see ???).

Content MathML

<vector>
<apply>
<plus/>
<ci>x</ci>
<ci>y</ci>

</apply>
<cn>3</cn>
<cn>7</cn>

</vector>

Default Rendering: Presentation MathML

<mrow>
<mo>(</mo><mtable>
<mtr><mtd><mrow>

<mi>x</mi><mo>+</mo><mi>y</mi>
</mrow></mtd></mtr><mtr><mtd><mn>3</mn></mtd></mtr><mtr><mtd><mn>7</mn></mtd></mtr>

</mtable><mo>)</mo>
</mrow>

Default Rendering: Image

x+ y
3
7


In general a vector can be constructed by providing a function and a 1-dimensional domain of application. The
entries of the vector correspond to the values obtained by evaluating the function at the points of the domain.

The vector element constructs vectors from an n-dimensional vector space so that its n child elements typically
represent real or complex valued scalars as in the three-element vector

This symbol allows to construct a vector by providing a function and a 1-dimensional domain of application. The
entries of the vector correspond to the values obtained by evaluating the function at the points of the domain.

Content MathML

Default Rendering: Presentation MathML

Default Rendering: Image

222 Chapter 4. Content Markup

4.3.18.2 Matrix (matrix)

A vector is an ordered n-tuple of values representing an element of an n-dimensional vector space. The "values"
are all from the same ring, typically real or complex. Where orientation is important, such as for pre or post
multiplication by a matrix a vector is treated as a row vector and its transpose is treated a column vector. See CRC
Standard Mathematical Tables and Formulae, editor: Dan Zwillinger, CRC Press Inc., 1996, [2.4]

For purposes of interaction with matrices and matrix multiplication, vectors are regarded as equivalent to a matrix
consisting of a single column, and the transpose of a vector behaves the same as a matrix consisting of a single
row. Note that vectors may be rendered either as a single column or row.

Note that the behavior of the matrix and matrixrow elements is substantially different from the mtable and mtr
presentation elements.

matrix is a constructor element (see ???).

In general a matrix can be constructed by providing a function and a 2-dimensional domain of application. The
entries of the matrix correspond to the values obtained by evaluating the function at the points of the domain. The
qualifications defined by a domainofapplication element can also be abbreviated in several ways including a
condition element placing constraints directly on bound variables and an expression in those variables.

This symbol allows to construct a matrix by providing a function and a 2-dimensional domain of application. The
entries of the matrix correspond to the values obtained by evaluating the function at the points of the domain.

Content MathML

Default Rendering: Presentation MathML

Default Rendering: Image

4.3.18.3 Matrix row (matrixrow)

This symbol is an n-ary constructor used to represent rows of matrices. Its arguments should be members of a ring.

Matrix rows are not directly rendered by themselves outside of the context of a matrix.

4.3.18.4 Determinant (determinant)

This symbol denotes the unary function which returns the determinant of its argument, the argument should be a
square matrix.

Content MathML

<apply>
<determinant/>
<ci type="matrix">A</ci>

</apply>

Default Rendering: Presentation MathML

<mrow>
<mi>det</mi><mi>A</mi>
</mrow>

4.3. Pragmatic Content MathML 223

Default Rendering: Image

detA

4.3.18.5 Transpose (transpose)

This symbol represents a unary function that denotes the transpose of the given matrix or vector.

Content MathML

<apply>
<transpose/>
<ci type="matrix">A</ci>

</apply>

Default Rendering: Presentation MathML

<msup>
<mi>A</mi><mi>T</mi>
</msup>

Default Rendering: Image

AT

4.3.18.6 Selector (selector)

The selector element is the operator for indexing into vectors matrices and lists. It accepts one or more argu-
ments. The first argument identifies the vector, matrix or list from which the selection is taking place, and the
second and subsequent arguments, if any, indicate the kind of selection taking place.

When selector is used with a single argument, it should be interpreted as giving the sequence of all elements in
the list, vector or matrix given. The ordering of elements in the sequence for a matrix is understood to be first by
column, then by row. That is, for a matrix (ai, j), where the indices denote row and column, the ordering would be
a 1,1, a 1,2, ... a 2,1, a2,2 ... etc.

When three arguments are given, the last one is ignored for a list or vector, and in the case of a matrix, the second
and third arguments specify the row and column of the selected element.

When two arguments are given, and the first is a vector or list, the second argument specifies an element in the list
or vector.

Content MathML

Default Rendering: Presentation MathML

Default Rendering: Image

Content MathML

224 Chapter 4. Content Markup

<apply>
<selector/>
<ci type="vector">V</ci>
<cn>1</cn>

</apply>

Default Rendering: Presentation MathML

<msub>
<mi>V</mi><mn>1</mn>
</msub>

Default Rendering: Image

V1

Content MathML

<apply>
<eq/>
<apply>
<selector/>
<matrix>
<matrixrow>
<cn>1</cn>
<cn>2</cn>

</matrixrow>
<matrixrow>

<cn>3</cn>
<cn>4</cn>

</matrixrow>
</matrix>
<cn>1</cn>

</apply>
<matrixrow>
<cn>1</cn>
<cn>2</cn>

</matrixrow>
</apply>

Default Rendering: Presentation MathML

<mrow>
<msub>
<mrow>
<mo>(</mo><mtable>
<mtr>
<mtd><mn>1</mn></mtd><mtd><mn>2</mn></mtd>
</mtr><mtr>
<mtd><mn>3</mn></mtd><mtd><mn>4</mn></mtd>
</mtr>
</mtable><mo>)</mo>
</mrow><mn>1</mn>

4.3. Pragmatic Content MathML 225

</msub><mo>=</mo><mtable><mtr>
<mtd><mn>1</mn></mtd><mtd><mn>2</mn></mtd>
</mtr></mtable>

</mrow>

Default Rendering: Image

(
1 2
3 4

)
1
= 1 2

4.3.18.7 Vector product (vectorproduct)

This symbol represents the vector product function. It takes two three dimensional vector arguments and returns a
three dimensional vector.

Content MathML

<apply>
<eq/>
<apply>
<vectorproduct/>
<ci type="vector"> A</ci>
<ci type="vector"> B</ci>

</apply>
<apply>
<times/>
<ci>a</ci>
<ci>b</ci>
<apply>
<sin/>
<ci>θ</ci>

</apply>
<ci type="vector"> N</ci>

</apply>
</apply>

Default Rendering: Presentation MathML

<mrow>
<mrow>
<mi> A</mi><mo>×</mo><mi> B</mi>
</mrow><mo>=</mo><mrow>
<mi>a</mi><mo/><mi>b</mi><mo/><mrow>
<mi>sin</mi><mi>θ</mi>
</mrow><mo/><mi> N</mi>
</mrow>
</mrow>

Default Rendering: Image

A×B = absinθN

226 Chapter 4. Content Markup

4.3.18.8 Scalar product (scalarproduct)

This symbol represents the scalar product function. It takes two vector arguments and returns a scalar value.

Content MathML

<apply>
<eq/>
<apply>
<scalarproduct/>
<ci type="vector"> A</ci>
<ci type="vector">B</ci>

</apply>
<apply>
<times/>
<ci>a</ci>
<ci>b</ci>
<apply>
<cos/>
<ci>θ</ci>

</apply>
</apply>

</apply>

Default Rendering: Presentation MathML

<mrow>
<mrow>
<mi> A</mi><mo>.</mo><mi>B</mi>
</mrow><mo>=</mo><mrow>
<mi>a</mi><mo/><mi>b</mi><mo/><mrow>
<mi>cos</mi><mi>θ</mi>
</mrow>
</mrow>
</mrow>

Default Rendering: Image

A.B = abcosθ

4.3.18.9 Outer product (outerproduct)

This symbol represents the outer product function. It takes two vector arguments and returns a matrix.

Content MathML

<apply>
<outerproduct/>
<ci type="vector">A</ci>
<ci type="vector">B</ci>

</apply>

Default Rendering: Presentation MathML

4.3. Pragmatic Content MathML 227

<mrow>
<mi>A</mi><mo>⊗</mo><mi>B</mi>
</mrow>

Default Rendering: Image

A⊗B

4.3.19 Constant and Symbol Elements

This section explains the use of the Constant and Symbol elements.

4.3.19.1 integers (integers)

This symbol represents the set of integers, positive, negative and zero.

Content MathML

Default Rendering: Presentation MathML

Default Rendering: Image

4.3.19.2 reals (reals)

This symbol represents the set of real numbers.

Content MathML

<apply>
<in/>
<cn type="real"> 44.997</cn>
<reals/>

</apply>

Default Rendering: Presentation MathML

<mrow>
<mn> 44.997</mn><mo>∈</mo><mi mathvariant="double-struck">R</mi>
</mrow>

Default Rendering: Image

44.997 ∈ R

228 Chapter 4. Content Markup

4.3.19.3 Rational Numbers (rationals)

This symbol represents the set of rational numbers.

Content MathML
<apply>

<in/>
<cn type="rational"> 22 <sep/>7</cn>
<rationals/>

</apply>

Default Rendering: Presentation MathML
<mrow>
<mrow>
<mn> 22 </mn><mo>/</mo><mn>7</mn>
</mrow><mo>∈</mo><mi mathvariant="double-struck">Q</mi>
</mrow>

Default Rendering: Image

22/7 ∈Q

4.3.19.4 Natural Numbers (naturalnumbers)

This symbol represents the set of natural numbers (including zero).

Content MathML

Default Rendering: Presentation MathML

Default Rendering: Image

4.3.19.5 complexes (complexes)

This symbol represents the set of complex numbers.

Content MathML
<apply>

<in/>
<cn type="complex">17<sep/>29</cn>
<complexes/>

</apply>

Default Rendering: Presentation MathML
<mrow>
<mn>1729</mn><mo>∈</mo><mi mathvariant="double-struck">C</mi>
</mrow>

Default Rendering: Image

17sep29 ∈ C

4.3. Pragmatic Content MathML 229

4.3.19.6 primes (primes)

This symbol represents the set of positive prime numbers.

Content MathML

<apply>
<in/>
<cn type="integer">17</cn>
<primes/>

</apply>

Default Rendering: Presentation MathML

<mrow>
<mn>17</mn><mo>∈</mo><mi mathvariant="double-struck">P</mi>
</mrow>

Default Rendering: Image

17 ∈ P

4.3.19.7 Exponential e (exponentiale)

This symbol represents the base of the natural logarithm, approximately 2.718. See Abramowitz and Stegun, Hand-
book of Mathematical Functions, section 4.1.

Content MathML

<apply>
<eq/>
<apply>
<ln/>
<exponentiale/>

</apply>
<cn>1</cn>

</apply>

Default Rendering: Presentation MathML

<mrow>
<mrow>
<mi>ln</mi><mi>e</mi>
</mrow><mo>=</mo><mn>1</mn>
</mrow>

Default Rendering: Image

lne = 1

4.3.19.8 Imaginary i (imaginaryi)

This symbol represents the mathematical constant which is the square root of -1, commonly written i

Content MathML

230 Chapter 4. Content Markup

<apply>
<eq/>
<apply>
<power/>
<imaginaryi/>
<cn>2</cn>

</apply>
<cn>-1</cn>

</apply>

Default Rendering: Presentation MathML

<mrow>
<msup>
<mi>i</mi><mn>2</mn>
</msup><mo>=</mo><mn>-1</mn>
</mrow>

Default Rendering: Image

i2 =−1

4.3.19.9 Not A Number (notanumber)

A symbol to convey the notion of not-a-number. The result of an ill-posed floating computation. See IEEE standard
for floating point representations.

Content MathML

Default Rendering: Presentation MathML

Default Rendering: Image

4.3.19.10 True (true)

This symbol represents the boolean value true, i.e. the logical constant for truth.

Content MathML

<apply>
<eq/>
<apply>
<or/>
<true/>
<ci type="boolean">P</ci>

</apply>
<true/>

</apply>

4.3. Pragmatic Content MathML 231

Default Rendering: Presentation MathML

<mrow>
<mrow>
<mi>true</mi><mo>∨</mo><mi>P</mi>
</mrow><mo>=</mo><mi>true</mi>
</mrow>

Default Rendering: Image

true∨P = true

4.3.19.11 False (false)

This symbol represents the boolean value false, i.e. the logical constant for falsehood.

Content MathML

<apply>
<eq/>
<apply>
<and/>
<false/>
<ci type="boolean">P</ci>

</apply>
<false/>

</apply>

Default Rendering: Presentation MathML

<mrow>
<mrow>
<mi>false</mi><mo>∧</mo><mi>P</mi>
</mrow><mo>=</mo><mi>false</mi>
</mrow>

Default Rendering: Image

false∧P = false

4.3.19.12 Empty Set (emptyset)

This symbol is used to represent the empty set, that is the set which contains no members. It takes no parameters.

The emptyset element takes an optional attribute type. If its value is "multiset", then the emptyset corre-
sponds to the emptyset symbol from the multiset1 CD.

Content MathML

<apply>
<neq/>
<integers/>
<emptyset/>

</apply>

http://svn.openmath.org/OpenMath3/cd/MathML/multiset1.xhtml#emptyset
http://svn.openmath.org/OpenMath3/cd/MathML/multiset1.xhtml

232 Chapter 4. Content Markup

Default Rendering: Presentation MathML
<mrow>
<mi mathvariant="double-struck">Z</mi><mo>≠</mo><mi>∅</mi>
</mrow>

Default Rendering: Image

Z 6= ∅

4.3.19.13 pi (pi)

A symbol to convey the notion of pi, approximately 3.142. The ratio of the circumference of a circle to its diameter.

Content MathML
<apply>

<approx/>
<pi/>
<cn type="rational">22<sep/>7</cn>

</apply>

Default Rendering: Presentation MathML
<mrow>
<mi>π</mi><mo>≃</mo><mrow>
<mn>22</mn><mo>/</mo><mn>7</mn>
</mrow>
</mrow>

Default Rendering: Image

π ' 22/7

4.3.19.14 Euler gamma (eulergamma)

A symbol to convey the notion of the gamma constant as defined in Abramowitz and Stegun, Handbook of Math-
ematical Functions, section 6.1.3. It is the limit of 1 + 1/2 + 1/3 + ... + 1/m - ln m as m tends to infinity, this is
approximately 0.5772 15664.

Content MathML
<apply>

<approx/>
<eulergamma/>
<cn>0.5772156649</cn>

</apply>

Default Rendering: Presentation MathML
<mrow>
<mi>γ</mi><mo>≃</mo><mn>0.5772156649</mn>
</mrow>

Default Rendering: Image

γ ' 0.5772156649

4.4. Deprecated content Elements 233

4.3.19.15 infinity (infinity)

A symbol to represent the notion of infinity.

Content MathML

<infinity/>

Default Rendering: Presentation MathML

<mi>∞</mi>

Default Rendering: Image

∞

4.4 Deprecated content Elements

4.4.1 Declare (declare)

Editor’s note:MiKoThis should maybe be moved into a general section about changes or deprecated elements.
Also Stan thinks the text should be improved.

MathML2 provided the declare element that allowed to bind properties like types to symbols and variables and to
define abbreviations for structure sharing. This element is deprecated in MathML 3. Structure sharing can obtained
via the share element (see Section 4.2.7 for details).

4.5 Rendering of Content Elements

Editor’s note:MiKoThe material in this section is highly provisional

While the primary role of the MathML content element set is to directly encode the mathematical structure of
expressions independent of the notation used to present the objects, rendering issues cannot be ignored. There are
different approaches for rendering content MathML formulae, ranging from from native implementations of the
K-14 element set over declarative notation definitions

Editor’s note:mikocite note here

to XSLT style sheets. The MathML 3 Recommendation will not make one of these normative, but only specify the
default notations of the content MathML elements by way of examples.

Editor’s note:MiKomaybe it is best to distribute these sections into the sections where the elements are defined.

4.5.1 Numbers

The default rendering of a simple cn-tagged object is the same as for the presentation element mn with some
provision for overriding the presentation of the PCDATA by providing explicit mn tags. This is described in detail in
Section 4.2.3.

4.5.2 Symbols and Identifiers

If the content of a ci or csymbol element is tagged using presentation tags, that presentation is used. If no such
tagging is supplied then the PCDATA content is rendered as if it were the content of an mi element. In particular if an
application supports bidirectional text rendering, then the rendering follows the Unicode bidirectional rendering.

234 Chapter 4. Content Markup

4.5.3 Applications

If F is the rendering of f and Ai those of ai, then the default rendering of an application element of the form

<apply> f a1 ... an</apply>

is

<mrow>
F
<mo fence="true">(</mo>
A1
<mo separator="true">,</mo>
...
<mo separator="true">,</mo>
An
<mo fence="true">)</mo>

</mrow>

4.5.4 Binders

If b, c, xi, c, and s render to B, C, Xi, C, and S, then the default rendering of a binding element of the form

<bind>b<bvar>x1 ... xn</bvar>S</bind>

is

<mrow>
B
x1
<mo separator="true">,</mo>
...
<mo separator="true">,</mo>
xn
<mo separator="true">.</mo>
S

</mrow>

4.5.5 Attributions

The default rendering of a semantics element is the default rendering of its first child: the annotation and
annotation-xml are not rendered. When a presentation MathML annotation is provided, a MathML renderer
may optionally use this information to render the MathML construct. This would typically be the case when the
first child is a MathML content construct and the annotation is provided to give a preferred rendering differing
from the default for the content elements.

4.5.6 Structure Sharing

The default rendering of a share is that of the MathML element pointed to by the URI in the href attribute.

4.5.7 Rest

Editor’s note:MiKodo all the rest

Chapter 5

Mixing Several Markups

The semantic annotation elements provide an important tool for making associations between alternate represen-
tations of an expression, as well as for associating semantic adornments and other attributions with a MathML
expression. These elements allow presentation markup and content markup to be combined in several different
ways. One method, known as mixed markup, is to intersperse content and presentation elements in what is essen-
tially a single tree. Another method, known as parallel markup, is to provide both explicit presentation markup and
content markup in a pair of markup expressions, combined by a single semantics element.

5.1 Semantic Annotations

An important concern of MathML is to represent associations between presentation and content markup forms for
an expression, and of associations between MathML markup forms and other representations for an expression.
An additional concern is the preservation of semantic attributions that are associated with MathML presentation
or content forms. These associations are known collectively as semantic annotations. A semantic annotation dec-
orates a MathML expression with a sequence of pairs made up of a symbol, known as the annotation key, and an
associated entity, the annotation value.

5.1.1 Annotation elements

MathML uses the semantics, annotation, and annotation-xml elements to represent semantic annotations.
The semantics element provides the container for an annotated element and a sequence of annotations, represent-
ed by annotation elements, for character data annotations, and by annotation-xml elements, for XML markup
annotations, that represent the annotation key/value pairs.

<semantics>
<mrow>
<mrow>
<mo>sin</mo>
<mfenced><mi>x</mi></mfenced>

</mrow>
<mo>+</mo>
<mn>5</mn>

</mrow>
<annotation cd="TeX" name="plainTeXrep" encoding="TeX">
\sin x + 5

</annotation>
<annotation-xml cd="openmath" name="XMLencoding" encoding="OpenMath">
<OMA xmlns="http://www.openmath.org/OpenMath">

235

236 Chapter 5. Mixing Several Markups

<OMS cd="arith1" name="plus"/>
<OMA><OMS cd="transc1" name="sin"/><OMV name="x"/></OMA>
<OMI>5</OMI>

</OMA>
</annotation-xml>

</semantics>

A semantic annotation may provide an alternate representation for a MathML expression, either as another MathML
or XML expression, or as character data represented in some other markup language. An annotation may provide
an equivalent representation that captures all of the relevant semantic behavior of the expression, or it may extend
the object with additional semantic properties that change the expression in an essential way, or it may simply
provide additional rendering or other associations that are incidental to the semantics of the expression.

The relationship between the expression to be annotated and the annotation value is identified by a symbol, known
as the annotation key. The annotation key is the primary identifier that an application should use to determine if
it understands the associated annotation value. If the annotation key is not specified, it defaults to a distinguished
annotation key that specifies that the annotation provides an alternate representation for the annotated expression. In
this case, an application should use the value of the encoding attribute to determine if it understands the alternate
representation.

Each annotation element provides a reference to its annotation key via the cdbase, cd, and name attributes. Taken
together, these attributes identify a named symbol from a specific content dictionary that describes the nature
of the annotation. The definitionURL attribute provides an alternative way to reference the key symbol for an
annotation. If none of these attributes are specified, the annotation key is assumed to be the symbol alternate-
representation from the mathmlkeys content dictionary.

The semantics element is considered to be both a presentation element and a content element, and may be used
in either context. All MathML processors should process the semantics element, even if they only process one of
these two subsets of MathML.

5.1.2 Annotation references

In the usual case, each annotation element includes either character data content (in the case of annotation) or
XML markup data (in the case of annotation-xml) that represents the annotation value. There is no restriction
on the type of annotation that may appear within a semantics element. For example, an annotation could provide
a TEX encoding, a linear input form for a computer algebra system, a rendered image, or detailed mathematical
type information.

In some cases the alternative children of a semantics element are not an essential part of the behavior of the
annotated expression, but may be useful to specialized processors. To enable the availability of several annotation
formats in a more efficient manner, a semantics element may contain empty annotation and
annotation-xml elements that provide encoding and href attributes to specify an external location for the
annotation value associated with the annotation. This type of annotation is known as an annotation reference.

<semantics>
<mfrac><mi>a</mi><mrow><mi>a</mi><mo>+</mo><mi>b</mi></mrow></mfrac>
<annotation encoding="image/png" href="333/formula56.png"/>
<annotation encoding="text/maple" href="333/formula56.ms"/>

</semantics>

Processing agents that anticipate that consumers of exported markup may not be able to retrieve the external entity
referenced by such annotations should request the content of the external entity at the indicated location and replace
the annotation with its expanded form.

http://svn.openmath.org/OpenMath3/cd/MathML/mathmlkeys.xhtml#alternate-representation
http://svn.openmath.org/OpenMath3/cd/MathML/mathmlkeys.xhtml#alternate-representation
http://svn.openmath.org/OpenMath3/cd/MathML/mathmlkeys.xhtml

5.1. Semantic Annotations 237

An annotation reference follows the same rules as for other annotations to determine the annotation key that
specifies the relationship between the annotated object and the annotation value.

5.1.3 Alternate representations

A semantic annotation may provide an alternate representation for a MathML expression. For example, in the
MathML representation

<semantics>
<mrow>
<mrow>
<mo>sin</mo>
<mfenced open="(" close=")"><mi>x</mi></mfenced>

</mrow>
<mo>+</mo>
<mn>5</mn>

</mrow>
<annotation-xml cd="mathml" name="contentequiv" encoding="MathML Content">
<apply>
<csymbol cd="algebra-logic" name="plus"/>
<apply><sin/><ci>x</ci></apply>
<cn>5</cn>

</apply>
</annotation-xml>
<annotation cd="maple" name="nativerep" encoding="text/maple">sin(x) + 5</annotation>
<annotation cd="mathematica" name="nativerep" encoding="Mathematica">Sin[x] + 5</annotation>
<annotation cd="TeX" name="plainTeXrep" encoding="TeX"> \sin x + 5</annotation>
<annotation-xml cd="openmath" name="XMLencoding" encoding="OpenMath">
<OMA xmlns="http://www.openmath.org/OpenMath">
<OMA>
<OMS cd="arith1" name="plus"/>
<OMA><OMS cd="transc1" name="sin"/><OMV name="x"/></OMA>

<OMI>5</OMI>
</OMA>

</annotation-xml>
</semantics>

the semantics element binds together various representations of the sum of the sine function applied to a vari-
able x and the number 5. Essentially, we annotate the presentation element in the first child of the semantics
element with various content-oriented representations. Each annotation and annotation-xml element specifies
the nature of the annotation by referencing a key symbol in an appropriate content dictionary. For instance, the
first annotation-xml element references the key symbol "contentequiv" from the attribution-keys con-
tent dictionary that specifies that the content MathML expression it provides is mathematically equivalent to the
annotated presentation MathML expression.

Using a decoder for the encoding specified by the encoding attribute, the content is interpreted as a value for the
attribute given by the annotation key. For example:

<annotation encoding="text/latex">
<![CDATA[\documentclass{article}
\begin{document}
\title{E}
\maketitle

238 Chapter 5. Mixing Several Markups

The base of the natural logarithms, approximately 2.71828.
\end{document}]]>

</annotation>

5.1.4 Flattening semantic annotations

One consequence of the syntax for semantic annotation is that annotations may be applied to markup elements
that are themselves annotations of other elements. In other words, a semantics element may contain another
semantics element as its first child element, as in the sketch below:
<semantics>
<semantics>A A_1 A_k</semantics>
A_k +1 ... A_n

</semantics>

where the Ai represent annotation or annotation-xml elements. This expression is equivalent to a single
semantics element that contains the union of the annotations from the original semantics elements.
<semantics>

A
A_1 ... A_n

</semantics>

The operation that produces an expression with a single layer of semantic annotations is called flattening. Multiple
annotations with the same key symbol are allowed. While the order of the given attributes does not imply any
notion of priority, it potentially could be significant.

5.2 Elements for Semantic Annotations
This section explains the semantic mapping elements semantics, annotation, and annotation-xml. These
elements associate alternate representations for a presentation or content expression, or associate semantic or other
attributions that may modify the meaning of the annotated expression.

5.2.1 The semantics element

The semantics element is the container element that associates annotations with a MathML expression. The
sementics element has as its first child the expression to be annotated. Subsequent children provide the annota-
tions.

An annotation whose representation is XML based is enclosed in an annotation-xml element. An annotation
whose representation is parsed character data is enclosed in an annotation element.

The semantics element takes the definitionURL and encoding attributes, which reference an external source
for some or all of the semantic information for the annotated element, as modified by the annotation.

Alternatively, the semantics element takes the attributes cdbase, cd, and name. Taken together, these attributes
reference an external symbol that provides some or all of the semantic information for the annotated element, as
modified by the annotation.

Attributes of the semantics element
Name values default
definitionURL a URI pointing to an equivalent formulation
encoding the encoding of that equivalent formulation
cdbase a URI (see ??)
cd the content-dictionary name of the equivalent symbol
name the name of the equivalent symbol

5.2. Elements for Semantic Annotations 239

<semantics>
<mrow>
<mrow>
<mo>sin</mo>
<mfenced><mi>x</mi></mfenced>

</mrow>
<mo>+</mo>
<mn>5</mn>

</mrow>
<annotation-xml cd="mathml" name="contentequiv" encoding="MathML Content">
<apply>
<plus/>
<apply><sin/><ci>x</ci></apply>
<cn>5</cn>

</apply>
</annotation-xml>
<annotation cd="maple" name="nativerep" encoding="Maple">
sin(x) + 5

</annotation>
<annotation cd="mathematica" name="nativerep" encoding="Mathematica">
Sin[x] + 5

</annotation>
<annotation cd="TeX" name="plainTeXrep" encoding="TeX">
\sin x + 5

</annotation>
<annotation-xml cd="openmath" name="XMLencoding" encoding="OpenMath">
<OMA xmlns="http://www.openmath.org/OpenMath">
<OMS cd="arith1" name="plus"/>
<OMA><OMS cd="transc1" name="sin"/><OMV name="x"/></OMA>
<OMI>5</OMI>

</OMA>
</annotation-xml>

</semantics>

The default rendering of a semantics element is the default rendering of its first child. A renderer may use the
information contained in the annotations to customize its rendering of the annotated element.

5.2.2 The annotation element

The annotation element is the container element for a semantic annotation whose representation is parsed char-
acter data in a non-XML format. The annotation element should contain the character data for the annotation,
and should not contain XML markup elements. If the annotation contains one of the XML reserved characters &,
<, >, ’, or ", then these characters must be encoded using an XML entity reference or an XML CDATA section.

The annotation element takes the attributes cdbase, cd, and name. Taken together, these attributes reference the
key symbol that identifies the relation between the annotated element and the annotation.

The annotation element takes the definitionURL attribute, which provides an alternative way to reference the
key symbol that identifies the relation between the annotated element and the annotation.

If none of these attributes are specified, the key symbol for the annotation is the symbol
alternate-representation from the attribution-keys content dictionary.

240 Chapter 5. Mixing Several Markups

The annotation element takes the encoding attribute, which describes the content type of the annotation. The
value of the encoding attribute may contain a MIME type that identifies the data format for the encoding data.
For data formats that do not have an associated MIME type, implementors may choose a self-describing character
string to identify their content type.

The annotation element allows the href attribute, which provides a mechanism to attach external entities as
annotations on MathML expressions.

<annotation cd="TeX" name="plainTeXrep" encoding="TeX">
\sin x + 5

</annotation>

<annotation encoding="image/png" href="333/formula56.png"/>

The annotation element is a semantic mapping element that may only be used as a child of the semantics
element. While there is no default rendering for the annotation element, a renderer may use the information
contained in an annotation to customize its rendering of the annotated element.

Attributes of the annotation and annotation-xml elements
Name values default
definitionURL a URI pointing to the meaning of the annotation relationship
encoding an encoding name of the alternate representation contained in the annotation
cdbase a URI (see ??)
cd the content-dictionary name of the symbol denoting the annotation relationship attribution-keys
name the name of the equivalent symbol alternate-representation
href the (relative) URL to the content of the annotation
clipboardFlavor the (standardized or platform specific) flavor name indicating that this annotation should provide a clipboard flavor, see Section 7.2.2

5.2.3 The annotation-xml element

The annotation-xml element is the container element for a semantic annotation whose representation is struc-
tured markup in an XML format. The annotation-xml element should contain the markup elements, attributes,
and character data for the annotation.

The annotation-xml element takes the attributes cdbase, cd, and name. Taken together, these attributes reference
the key symbol that identifies the relation between the annotated element and the annotation.

The annotation-xml element takes the definitionURL attribute, which provides an alternative way to reference
the key symbol that identifies the relation between the annotated element and the annotation.

If none of these attributes are specified, the key symbol for the annotation is the symbol
alternate-representation from the attribution-keys content dictionary.

The annotation-xml element allows the encoding attribute, which describes the content type of the annotation.
The value of the encoding attribute may contain a MIME type that identifies the data format for the encoding
data. For data formats that do not have an associated MIME type, implementors may choose a self-describing
character string to identify their content type. For example, Section 7.1.3 identifies the strings MathML, MathML
Presentation, and MathML Content as predefined values for the encoding attribute that may be used to identify
MathML markup in an annotation-xml element.

The annotation-xml element allows the href attribute, which provides a mechanism to attach external XML
entities as annotations on MathML expressions.

<annotation-xml cd="mathml" name="contentequiv" encoding="MathML Content">

5.3. Combining Presentation and Content Markup 241

<apply>
<plus/>
<apply><sin/><ci>x</ci></apply>
<cn>5</cn>

</apply>
</annotation-xml>

<annotation-xml cd="openmath" name="XMLencoding" encoding="OpenMath">
<OMA xmlns="http://www.openmath.org/OpenMath">
<OMS cd="arith1" name="plus"/>
<OMA><OMS cd="transc1" name="sin"/><OMV name="x"/></OMA>
<OMI>5</OMI>

</OMA>
</annotation-xml>

When the annotation value is represented in an XML dialect other than MathML, the namespace for the XML
markup for the annotation should be identified by means of namespace attributes and/or namespace prefixes on the
annotation value. For instance:

<annotation-xml encoding="application/xhtml+xml">
<html xmlns="http://www.w3.org/1999/xhtml">
<head><title>E</title></head>
<body><p>The base of the natural logarithms, approximately 2.71828.</p></body>

</html>
</annotation-xml>

The annotation-xml element is a semantic mapping element that may only be used as a child of the semantics
element. While there is no default rendering for the annotation-xml element, a renderer may use the information
contained in an annotation to customize its rendering of the annotated element.

5.3 Combining Presentation and Content Markup

Presentation markup encodes the notational structure of an expression. Content markup encodes the functional
structure of an expression. In certain cases, a particular application of MathML may require a combination of both
presentation and content markup. This section describes specific constraints that govern the use of presentation
markup within content markup, and vice versa.

5.3.1 Presentation Markup in Content Markup

Presentation markup may be embedded within content markup so long as the resulting expression retains an un-
ambiguous function application structure. Specifically, presentation markup may only appear in content markup in
three ways:

1. within ci and cn token elements
2. within the csymbol element
3. within the semantics element

Any other presentation markup occurring within content markup is a MathML error. More detailed discussion of
these three cases follows:

Presentation markup within token elements. The token elements ci and cn are permitted to contain any se-
quence of MathML characters (defined in Chapter 6) and/or presentation elements. Contiguous blocks

242 Chapter 5. Mixing Several Markups

of MathML characters in ci or cn elements are treated as if wrapped in mi or mn elements, as appropri-
ate, and the resulting collection of presentation elements is rendered as if wrapped in an implicit mrow
element.

Presentation markup within the csymbol element. The csymbol element may contain either MathML charac-
ters interspersed with presentation markup, or content markup. It is a MathML error for a csymbol
element to contain both presentation and content elements. When the csymbol element contains char-
acter data and presentation markup, the same rendering rules that apply to the token elements ci and cn
should be used.

Presentation markup within the semantics element. One of the main purposes of the semantics element is to
provide a mechanism for incorporating arbitrary MathML expressions into content markup in a seman-
tically meaningful way. In particular, any valid presentation expression can be embedded in a content
expression by placing it as the first child of a semantics element. The meaning of this wrapped expres-
sion should be indicated by one or more annotation elements also contained in the semantics element.

5.3.2 Content Markup in Presentation Markup

Content markup may be embedded within presentation markup so long as the resulting expression has an unam-
biguous rendering. That is, it must be possible, in principle, to produce a presentation markup fragment for each
content markup fragment that appears in the combined expression. The replacement of each content markup frag-
ment by its corresponding presentation markup should produce a well-formed presentation markup expression. A
presentation engine should then be able to process this presentation expression without reference to the content
markup bits included in the original expression.

In general, this constraint means that each embedded content expression must be well-formed, as a content expres-
sion, and must be able to stand alone outside the context of any containing content markup element. As a result,
the following content elements may not appear as an immediate child of a presentation element: annotation,
annotation-xml, bvar, condition, degree, logbase, lowlimit, uplimit.

In addition, within presentation markup, content markup may not appear within presentation token elements.

5.4 Parallel Markup

Some applications are able to use both presentation and content information. Parallel markup is a way to combine
two or more markup trees for the same mathematical expression. Parallel markup is achieved with the semantics
element. Parallel markup for an expression may appear on its own, or as part of a larger content or presentation
tree.

5.4.1 Top-level Parallel Markup

In many cases, the goal is to provide presentation markup and content markup for a mathematical expression as a
whole. A single semantics element may be used to pair two markup trees, where one child element provides the
presentation markup, and the other child element provides the content markup.

The following example encodes the boolean arithmetic expression (a+b)(c+d) in this way.

<semantics>
<mrow>
<mrow><mo>(</mo><mi>a</mi> <mo>+</mo> <mi>b</mi><mo>)</mo></mrow>
<mo>⁢</mo>
<mrow><mo>(</mo><mi>c</mi> <mo>+</mo> <mi>d</mi><mo>)</mo></mrow>

5.4. Parallel Markup 243

</mrow>
<annotation-xml encoding="MathML Content">
<apply><and/>
<apply><xor/><ci>a</ci> <ci>b</ci></apply>
<apply><xor/><ci>c</ci> <ci>d</ci></apply>

</apply>
</annotation-xml>

</semantics>

Note that the above markup annotates the presentation markup as the first child element, with the content markup
as part of the annotation-xml element. An equivalent form could be given that annotates the content markup as
the first child element, with the presentation markup as part of the annotation-xml element.

5.4.2 Parallel Markup via Cross-References

To accommodate applications that must process sub-expressions of large objects, MathML supports cross-references
between the branches of a semantics element to identify corresponding sub-structures. These cross-references are
established by the use of the id and xref attributes within a semantics element. This application of the id and
xref attributes within a semantics element should be viewed as best practice to enable a recipient to select ar-
bitrary sub-expressions in each alternative branch of a semantics element. The id and xref attributes may be
placed on MathML elements of any type.

The id and xref attributes are supported by MathML to provide cross-references for those applications that do
not otherwise require the use of namespaces or validation. Those applications that support namespaces may use
the xml:id attribute in the same manner as is described for the id attribute. Similarly, those applications that
support validation may use other attributes declared of type ID and IDREF to establish cross-references between
corresponding sub-expressions. Of course, cross-references that use custom attributes in this way rely on prior
agreement between the producing and consuming applications to preserve the cross-references.

The following example demonstrates cross-references for the boolean arithmetic expression (a+b)(c+d).

<semantics>
<mrow id="E">
<mrow id="E.1">
<mo id="E.1.1">(</mo>
<mi id="E.1.2">a</mi>
<mo id="E.1.3">+</mo>
<mi id="E.1.4">b</mi>
<mo id="E.1.5">)</mo>

</mrow>
<mo id="E.2">⁢</mo>
<mrow id="E.3">
<mo id="E.3.1">(</mo>
<mi id="E.3.2">c</mi>
<mo id="E.3.3">+</mo>
<mi id="E.3.4">d</mi>
<mo id="E.3.5">)</mo>

</mrow>
</mrow>

<annotation-xml encoding="MathML Content">

244 Chapter 5. Mixing Several Markups

<apply xref="E">
<and xref="E.2"/>
<apply xref="E.1">
<xor xref="E.1.3"/><ci xref="E.1.2">a</ci><ci xref="E.1.4">b</ci>

</apply>
<apply xref="E.3">
<xor xref="E.3.3"/><ci xref="E.3.2">c</ci><ci xref="E.3.4">d</ci>

</apply>
</apply>

</annotation-xml>
</semantics>

An id attribute and associated xref attributes that appear within the same semantics element establish the cross-
references between corresponding sub-expressions.

All of the id attributes referenced by any xref attribute must be in the same branch of an enclosing semantics
element. This constraint guarantees that the cross-references do not create unintentional cycles. This restriction
does not exclude the use of id attributes within other branches of the enclosing semantics element. It does,
however, exclude references to these other id attributes originating from the same semantics element.

There is no restriction on which branch of the semantics element may contain the destination id attributes. It is
up to the application to determine which branch to use.

In general, there will not be a one-to-one correspondence between nodes in parallel branches. For example, a
presentation tree may contain elements, such as parentheses, that have no correspondents in the content tree. It is
therefore often useful to put the id attributes on the branch with the finest-grained node structure. Then all of the
other branches will have xref attributes to some subset of the id attributes.

In absence of other criteria, the first branch of the semantics element is a sensible choice to contain the
id attributes. Applications that add or remove annotations will then not have to re-assign these attributes as the
annotations change.

In general, the use of id and xref attributes allows a full correspondence between sub-expressions to be given in
text that is at most a constant factor larger than the original. The direction of the references should not be taken to
imply that sub-expression selection is intended to be permitted only on one child of the semantics element. It is
equally feasible to select a subtree in any branch and to recover the corresponding subtrees of the other branches.

Parallel markup with cross-references may be used in any XML-encoded branch of the semantic annotations, as
shown by the following example where the boolean expression of the previous section is annotated with OpenMath
markup that includes cross-references:

<semantics>
<mrow id="E">
<mrow id="E.1">
<mo id="E.1.1">(</mo>
<mi id="E.1.2">a</mi>
<mo id="E.1.3">+</mo>
<mi id="E.1.4">b</mi>
<mo id="E.1.5">)</mo>

</mrow>
<mo id="E.2">⁢</mo>
<mrow id="E.3">
<mo id="E.3.1">(</mo>

5.4. Parallel Markup 245

<mi id="E.3.2">c</mi>
<mo id="E.3.3">+</mo>
<mi id="E.3.4">d</mi>
<mo id="E.3.5">)</mo>

</mrow>
</mrow>

<annotation-xml encoding="MathML Content">
<apply xref="E">
<and xref="E.2"/>
<apply xref="E.1">
<xor xref="E.1.3"/><ci xref="E.1.2">a</ci><ci xref="E.1.4">b</ci>

</apply>
<apply xref="E.3">
<xor xref="E.3.3"/><ci xref="E.3.2">c</ci><ci xref="E.3.4">d</ci>

</apply>
</apply>

</annotation-xml>

<annotation-xml encoding="OpenMath"
xmlns:om="http://www.openmath.org/OpenMath">

<om:OMA href="E">
<om:OMS name="and" cd="logic1" href="E.2"/>

<om:OMA href="E.1">
<om:OMS name="xor" cd="logic1" href="E.1.3"/>
<om:OMV name="a" href="E.1.2"/>
<om:OMV name="b" href="E.1.4"/>

</om:OMA>

<om:OMA href="E.3">
<om:OMS name="xor" cd="logic1" href="E.3.3"/>
<om:OMV name="c" href="E.3.2"/>
<om:OMV name="d" href="E.3.4"/>

</om:OMA>
</om:OMA>

</annotation-xml>
</semantics>

Here OMA, OMS and OMV are elements defined in the OpenMath standard for representing application, symbol, and
variable, respectively. The references from the OpenMath annotation are given by the href attributes.

Chapter 6

Characters, Entities and Fonts

6.1 Introduction
Issue ():Many of the tables in chapter 6 need to be updated and regenerated. In this draft references to tables in
chapter 6 link to the published MathML2 Recommendation, and are marked [MathML2]
Resolution: Separate xml-entity-names WD
Notation and symbols have proved very important for mathematics. Mathematics has grown in part because its
notation continually changes toward being succinct and suggestive. There have been many new signs developed for
use in mathematical notation, and mathematicians have not held back from making use of many symbols originally
introduced elsewhere. The result is that mathematics makes use of a very large collection of symbols. It is difficult
to write mathematics fluently if these characters are not available for use. It is difficult to read mathematics if
corresponding glyphs are not available for presentation on specific display devices.

The W3C Math Working Group therefore took on directly the task of specifying part of the full mechanism needed
to proceed from notation to final presentation, and has collaborated with the STIX Fonts Project and Unicode
Technical Committee (UTC) in undertaking specification of the rest.

This chapter of the MathML specification contains a listing of character names for use with MathML, recommen-
dations for their use, and warnings to pay attention to the correct form of the corresponding code points given in
the UCS (Universal Character Set) as codified in Unicode and ISO 10646 [Unicode] and the Unicode Web site. For
simplicity we refer to this character set by the short name Unicode. Though Unicode changes from time to time so
that it is specified exactly by using version numbers, unless this brings clarity on some point we do not use them.
MathML 2.0 (Second Edition) is based on Unicode 4.0, and MathML 3.0 on Unicode 5.1.)

While a long process of review and adoption by UTC and ISO/IEC of the characters of special interest to mathemat-
ics and MathML is now complete, more characters may be added in the future. To ensure any possible corrections
to relevant standards are taken into account, and for the latest character tables and font information, see the W3C
Entities page and the Unicode site, notably Unicode Work in Progress and Unicode Technical Report #25 “Unicode
Support for Mathematics”.

A MathML token element (see Section 3.2, Section 4.2.3, Section 4.2.4) takes as content a sequence of MathML
Characters. MathML Characters are defined to be either Unicode characters legal in XML documents or
mglyph elements. The latter are used to represent characters that do not have a Unicode encoding, as described
in Section 3.2.9. Because the Unicode UCS provided approximately one thousand special alphabetic characters
for the use of mathematics with Unicode 3.1, and over 900 further special symbols in Unicode 3.2, the need for
mglyph should be rare.

6.2 Unicode Character Data
Any character allowed by XML may be used in MathML in an XML document. The legal characters have the
hexadecimal code numbers 09 (tab = U+0009), 0A (line feed = U+000A), 0D (carriage return = U+000D), 20-

246

http://www.stixfonts.org/
http://www.unicode.org/
http://www.unicode.org/
http://www.unicode.org/
http://www.w3.org/2003/entities/
http://www.w3.org/2003/entities/
http://www.unicode.org/
http://www.unicode.org/unicode/alloc/Pipeline.html
http://www.unicode.org/reports/tr25/tr25-8.html
http://www.unicode.org/reports/tr25/tr25-8.html

6.3. Entity Declarations 247

D7FF (U+0020..U+D7FF), E000-FFFD (U+E000..U+FFFD), and 10000-10FFFF (U+010000..U+10FFFF). The
notation, just introduced in parentheses, beginning with U+ is that recommended by Unicode for referring to
Unicode characters [see [Unicode], page xxviii]. The exclusions above code number D7FF are of the blocks used
in surrogate pairs, and the two characters guaranteed not to be Unicode characters at all. U+FFFE is excluded to
allow determination of byte order in certain encodings.

There are essentially three different ways of encoding character data.

• Using characters directly: For example, an A may be entered as ’A’ from a keyboard (character U+0041).
This option is only available if the character encoding specified for the XML document includes the
character. Most commonly used encodings will have ’A’ in the ASCII position. In many encodings,
characters may need more than one byte. Note that if the document is, for example, encoded in Latin-1
(ISO-8859-1) then only the characters in that encoding are available directly. Using UTF-8 or UTF-16,
the only two encodings that all XML processors are required to accept, mathematical symbols can be
encoded as character data.

• Using numeric XML character references: Using this notation, ’A’ may be represented as A (dec-
imal) or A (hex). Note that the numbers always refer to the Unicode encoding (and not to the
character encoding used in the XML file). By using character references it is always possible to access
the entire Unicode range. For a general XML vocabulary, there is a disadvantage to this approach: char-
acter references may not be used in XML element or attribute names. However, this is not an issue for
MathML, as all element names in MathML are restricted to ASCII characters.

• Using entity references: The MathML DTD defines internal entities that expand to character data. Thus
for example the entity reference é may be used rather than the character reference "é or,
if, for example, the document is encoded in ISO-8859-1, the character \’e. An XML fragment that uses
an entity reference which is not defined in a DTD is not well-formed; therefore it will be rejected by an
XML parser. For this reason every fragment using entity references must use a DOCTYPE declaration
which specifies the MathML DTD, or a DTD that at least declares any entity reference used in the
MathML instance. The need to use a DOCTYPE complicates inclusion of MathML in some documents.
However, entity references are very useful for small illustrative examples, and are used in most examples
in this document.

6.3 Entity Declarations

Earlier versions of this MathML specification included detailed listings of the entity definitions to be used with
the MathML DTD. These entity definitions are of more general use, and have now been separated into a separate
document, [Entities]. That document describes several entity sets, not all of them are used in the MathML DTD,
although an XML document that includes MathML may reference any entity definitions. The standard MathML
DTD references the following entity sets:

• isobox Box and Line Drawing
• isocyr1 Russian Cyrillic
• isocyr2 Non-Russian Cyrillic
• isodia Diacritical Marks
• isolat1 Added Latin 1
• isolat2 Added Latin 2
• isonum Numeric and Special Graphic
• isopub Publishing
• isoamsa Added Math Symbols: Arrow Relations
• isoamsb Added Math Symbols: Binary Operators
• isoamsc Added Math Symbols: Delimiters
• isoamsn Added Math Symbols: Negated Relations

http://www.w3.org/TR/xml-entity-names/isobox.html
http://www.w3.org/TR/xml-entity-names/isocyr1.html
http://www.w3.org/TR/xml-entity-names/isocyr2.html
http://www.w3.org/TR/xml-entity-names/isodia.html
http://www.w3.org/TR/xml-entity-names/isolat1.html
http://www.w3.org/TR/xml-entity-names/isolat2.html
http://www.w3.org/TR/xml-entity-names/isonum.html
http://www.w3.org/TR/xml-entity-names/isopub.html
http://www.w3.org/TR/xml-entity-names/isoamsa.html
http://www.w3.org/TR/xml-entity-names/isoamsb.html
http://www.w3.org/TR/xml-entity-names/isoamsc.html
http://www.w3.org/TR/xml-entity-names/isoamsn.html

248 Chapter 6. Characters, Entities and Fonts

• isoamso Added Math Symbols: Ordinary
• isoamsr Added Math Symbols: Relations
• isogrk3 Greek Symbols
• isomfrk Math Alphabets: Fraktur
• isomopf Math Alphabets: Open Face
• isomscr Math Alphabets: Script
• isotech General Technical
• mmlextra Additional MathML Symbols
• mmlalias MathML Aliases

6.4 Special Characters Not in Unicode

For special purposes, one may need to use a character which is not in Unicode. In these cases one may use the
mglyph element for direct access to a glyph as an image, or (in some systems) from a font that uses a non-uniocde
encoding. All MathML token elements that accept character data also accept an mglyph in their content. Beware,
however, that use of mglyph to access a font is deprecated and the mechanism may not work in all systems. The
mglyph element should always supply an alternatve representation in its alt attribute.

6.5 Mathematical Alphanumeric Symbols

A noticeable feature of mathematical and scientific writing is the use of single letters to denote variables and con-
stants in a given context. The increasing complexity of science has led to the use of certain common alphabet and
font variations to provide enough special symbols of this letter-like type. These denotations are in fact not letters
that may be used to make up words with recognized meanings, but individual carriers of semantics themselves.
Writing a string of such symbols is usually interpreted in terms of some composition law, for instance, multiplica-
tion. Many letter-like symbols may be quickly interpreted by specialists in a given area as of a certain mathematical
type: for instance, bold symbols, whether based on Latin or Greek letters, as vectors in physics or engineering, or
fraktur symbols as Lie algebras in part of pure mathematics. To this end the STIX Fonts Project defined a set of
mathematical characters all of which are included in Unicode 5.0.

The additional Mathematical Alphanumeric Symbols provided in Unicode 3.1 have code points U+1D400..U+1D7FF
in Plane 1, that is, in the first plane with Unicode values higher than 216. This plane of characters is also known as
the Secondary Multilingual Plane (SMP), in contrast to the Basic Multilingual Plane (BMP) which was originally
the entire extent of Unicode. Support for Plane 1 characters in currently deployed software is not always reliable,
but it should be possible in multilingual operating systems, since Plane 2 has many Chinese characters that must
be displayable in East Asian locales.

As discussed in Section 3.2.2, MathML offers an alternative mechanism to specify mathematical alphabetic char-
acters. This alternative spans the gap between the specification of Unicode 3.1 and its associated deployment in
software and fonts. Namely, one uses the mathvariant attribute on the surrounding token element, which will
most commonly be mi. In this section we detail the correspondence that a MathML processor should apply be-
tween certain characters in Plane 0 (BMP) of Unicode, modified by the mathvariant attribute, and the Plane 1
Mathematical Alphanumeric Symbol characters.

The basic idea of the correspondence is fairly simple. For example, a Mathematical Fraktur alphabet is in Plane 1,
and the code point for Mathematical Fraktur A is U+1D504. Thus using these characters, a typical example might
be

<mi>𝔄</mi>

http://www.w3.org/TR/xml-entity-names/isoamso.html
http://www.w3.org/TR/xml-entity-names/isoamsr.html
http://www.w3.org/TR/xml-entity-names/isogrk3.html
http://www.w3.org/TR/xml-entity-names/isomfrk.html
http://www.w3.org/TR/xml-entity-names/isomopf.html
http://www.w3.org/TR/xml-entity-names/isomscr.html
http://www.w3.org/TR/xml-entity-names/isotech.html
http://www.w3.org/TR/xml-entity-names/mmlextra.html
http://www.w3.org/TR/xml-entity-names/mmlalias.html

6.6. Non-Marking Characters 249

However, an alternative, equivalent markup would be to use the standard A and modify the identifier using the
mathvariant attribute, as follows:

<mi mathvariant="fraktur">A</mi>

The exact correspondence between a mathematical alphabetic character and an unstyled character is complicated
by the fact that certain characters that were already present in Unicode are not in the ’expected’ sequence.

Mathematical Alphanumeric Symbol characters should not be used for styled text. For example, Mathematical
Fraktur A must not be used to just select a blackletter font for an uppercase A. Doing this sort of thing would
create problems for searching, restyling (e.g. for accessibility), and many other kinds of processing.

6.6 Non-Marking Characters

Some characters, although important for the quality of print or alternative rendering, do not have glyph marks that
correspond directly to them. They are called here non-marking characters. Their roles are discussed in Chapter 3
and Chapter 4.

In MathML 2 control of page composition, such as line-breaking, is effected by the use of the proper attributes on
the mspace element.

The characters below are not simple spacers. They are especially important new additions to the UCS because they
provide textual clues which can increase the quality of print rendering, permit correct audio rendering, and allow
the unique recovery of mathematical semantics from text which is visually ambiguous.

Unicode codepoint Unicode name Description
02061 FUNCTION APPLICATION character showing function application in presentation tag-

ging (Section 3.2.5
02062 INVISIBLE TIMES marks multiplication when it is understood without a mark

(Section 3.2.5
02063 INVISIBLE SEPARATOR used as a separator, e.g., in indices (Section 3.2.5
02064∗ INVISIBLE PLUS marks addition, especialy in constructs such a 1 1

2 (Sec-
tion 3.2.5

∗Character U+2064 has been accepted by the UTC and ISO for inclusion into the next revision of Unicode, 5.1

Chapter 7

MathML interactions with the Wide World

Because MathML is, typically, embedded in a wider context, it is important to describe the conditions that pro-
cessors should acknowledge in order to recognize XML fragments as MathML. This chapter describes the funda-
mental mechanisms to recognize and transfer MathML markup fragments within a larger environment such as an
XML document or a desktop file-system, it raises the issues of combining external markup within MathML, then
indicates how cascading style sheets can be used within MathML.
Issue (names-without-dashes):So as to conclude the thread atClipboard section implementation?, we need to
correct all occurrences of annotation and annotation-xml elements to replace MathML-Content by MathML
Content.This is now achieved with the space being unbreakable instead of the plain space.
This chapter applies to both content and presentation MathML and indicates a particular processing model to the
semantics, annotation and annotation-xml elements defined in Section 5.1.

7.1 Invoking MathML Processors: namespace, extensions, and mime-types

7.1.1 Recognizing MathML in an XML Model

Within an XML document supporting namespaces [XML], [Namespaces], the preferred method to recognize
MathML markup is by the identification of the math element in the appropriate namespace, i.e. that of URI
http://www.w3.org/1998/Math/MathML.

This is the recommended method to embed MathML within [XHTML] documents. Some user-agents’ setup may
require supplementary information to be available.

Markup-language specifications that wish to embed MathML may provide special conditions independent of this
recommendation. The conditions should be equivalent and the elements’ local-names should remain the same.

7.1.2 Resource Types for MathML Documents

Although rendering MathML expressions often occurs in place in a Web browser, other MathML processing func-
tions take place more naturally in other applications. Particularly common tasks include opening a MathML ex-
pression in an equation editor or computer algebra system. It is important therefore to specify the encoding-names
that MathML fragments should be called with:

MIME types [RFC2045], [RFC2046] offer a strategy that can be used in current user agents to invoke a MathML
processor. This is primarily useful when referencing separate files containing MathML markup from an embed or
object element, or within a desktop environment.

[RFC3023] assigns MathML the MIME type application/mathml+xml which is the official mime-type. The
W3C Math Working Group recommends the standard file extension .mml within a registry associating file formats
to file-extension. In MathML 1.0, text/mathml was given as the suggested MIME type. This has been superceded
by RFC3023. In the next section, alternate encoding names are provided for the purposes of desktop transfers.

250

http://www.w3.org/mid/47AAD8AB-60D9-4B6C-A004-AC26C94916E7@activemath.org

7.2. Transferring MathML in Desktop Environments 251

7.1.3 Names of MathML Encodings

MathML contains two distinct vocabularies: one for encoding mathematical semantics called Chapter 4 and one
for encoding visual presentation called Chapter 3. Some MathML-aware applications import and export only one
of these vocabularies, while other may be capable of producing and consuming both. Consequently, we propose
three distinct MathML encoding names:

Flavor Name Description Deprecated
MathML Content Instance contains content MathML

markup only
MathML-Content, Content MathML,
cMathML

MathML Presentation Instance contains presentation MathML
markup only

MathML-Presentation, Presentation
MathML, pMathML

MathML Any well-formed MathML instance pre-
sentation markup, content markup, or a
mixture of the two is allowed

Any application producing one of the encodings above should ensure to output the values of the first column but
should accept encoding names of the deprecated column.

7.2 Transferring MathML in Desktop Environments

MathML expressions are often exchanged between applications using the familiar copy-and-paste or drag-and-drop
paradigms. This section provides recommended ways to process MathML while applying these paradigms.

Applying them will transfer MathML fragments between the contexts of two applications by making them available
in several flavors, often called clipboard formats or data flavors. The copy-and-paste paradigm lets application place
content in a central clipboard, one data-stream per clipboard format ; consuming applications negotiate by choose
to read the data of the format they elect. The drag-and-drop pardigm lets application offer content by declaring
the available formats and potential recipients accept or reject a drop based on this list; the drop action then lets
the receiving application request the delivery of the format in the indicated format. The list of flavors is generally
ordered, going from the most wishable to the least wishable flavor.

Current desktop platforms offer both of these transfer paradigms using similar transfer architectures. In this section
we specify what applications should provide as transfer-flavors, how they should be named, and how they should
handle the special semantics, annotation, and annotation-xml elements.

To summarize the two negotiation mechanisms, we shall, here, be talking of flavors, each having a name (a char-
acter string) and a content (a stream of binary data), which are exported.

7.2.1 Basic Transfer Flavors’ Names and Contents

Note that MathML Content, MathML Presentation and MathML are the exact strings that should be used to
describe the flavors corresponding to the encodings in Section 7.1.3. On operating systems that allow such, appli-
cations should register such names (e.g. Windows’ RegisterClipboardFormat).

When transferring MathML, for example when placing it within a clipboard, an application MUST ensure the
content is a well-formed XML instance of a MathML schema. Specifically:

1. The instance MUST begin with a XML processing instruction, e.g. <?xml version="1.0">
2. The instance MUST contain exactly one root math element.
3. Since MathML is frequently embedded within other XML document types, the instance MUST declare

the MathML namespace on the root math element. In addition, the instance SHOULD use a
schemaLocation attribute on the math element to indicate the location of MathML schema documents

http://www.w3.org/TR/2004/REC-xml-20040204/#dt-wellformed

252 Chapter 7. MathML interactions with the Wide World

against which the instance is valid. Note that the presence of the schemaLocation attribute does not
require a consumer of the MathML instance to obtain or use the cited schema documents.

4. The instance MUST use numeric character references (e.g. α) rather than character entity names
(e.g. α) for greater interoperability.

5. The character encoding for the instance MUST be either specified in the XML header, UTF-16, or UTF-
8. UTF-16-encoded data MUST begin with a byte-order mark (BOM). If no BOM or encoding is given,
the character encoding will be assumed to be UTF-8.

7.2.2 Recommended Behaviors when Transferring

Applications that transfer MathML SHOULD adhere to the following conventions:

1. Applications that have pure presentation markup and/or pure content markup versions of an expression
SHOULD offer as many of these two flavors as are available.

2. Applications that only export one MathML flavor should name it "MathML" independent of the nature
of the fragments they export. Applications that export the two flavours should export the the "MathML
Content" and "MathML Presentation" flavors as well as the "MathML" flavor which combines the two
others using a top-level MathML’s semantics element (see Section 5.4.1).

3. When an application exports a MathML fragment whose root element is a semantics element, it
SHOULD offer, after the flavors above, a flavor for each annotation or annotation-xml element that
has a clipboardFlavor attribute: the flavor name should be given by the clipboardFlavor attribute
value of the annotation or annotation-xml element, and the content should be the child text in the
surrounding encoding (if the annotation element contains only textual data), a valid XML fragment
(if the annotation-xml element contains children), or the data resulting of requesting the URL given
by the href attribute.User-agents implementors should be aware that some clipboard flavors, when put
in the platform’s clipboard or transferred through such a gesture as drag-and-drop maybe be used in a
way that executes the programmes contained in the transferred content and this without the traditional
security restrictions of web-content; they should, thus, only allow transfer only of safe content flavors.

4. As a final fallback applications MAY export a version of the data in plain-text flavor (such as CF_UNICODETEXT,
UnicodeText, NSStringPboardType, text/plain, ...). When an application has multiple versions of an
expression available, it may choose the version to export as text at its discretion. Since some older
MathML-aware programs expect MathML instances transferred as text to begin with a math element,
the text version should generally omit the XML processing instruction, DOCTYPE declaration and other
XML prolog material before the math element. Similarly, the BOM should be omitted for Unicode text
encoded as UTF-16. Note, the Unicode text version of the data should always be the last flavor exported,
following the principle that exported flavors should be ordered with the most specific flavor first and the
least specific flavor last.

7.2.3 Discussion

For purposes of determining whether a MathML instance is pure content markup or pure presentation markup, the
math element and the semantics, annotation and annotation-xml elements should be regarded as belonging
to both the presentation and content markup vocabularies. This is obvious for the root math element which is
required for all MathML expressions. However, the semantics element and its child annotation elements comprise
an arbitrary annotation mechanism within MathML, and are not tied to either presentation or content markup.
Consequently, applications consuming MathML should always process these four elements even if the application
only implements one of the two vocabularies.

It is worth noting that the above recommendations allow agents producing MathML to provide binary data for the
clipboard, for example as an image or an application-specific format. The sole method to do so is to reference the
binary data by the href attribute since XML character data does not allow arbitrary byte-streams.

7.2. Transferring MathML in Desktop Environments 253

While the above recommendations are intended to improve interoperability between MathML-aware applications
utilizing the transfer flavors, it should be noted that they do not guarantee interoperablility. For example, refer-
ences to external resources (e.g. stylesheets, etc.) in MathML data can also cause interoperability problems if the
consumer of the data is unable to locate them, just as can happen when cutting and pasting HTML or many other
data types. Applications that make use of references to external resources are encouraged to make users aware of
potential problems and provide alternate ways for obtaining the referenced resources. In general, consumers of
MathML data containing references they cannot resolve or do not understand should ignore them.

7.2.4 Examples

7.2.4.1 Example 1

An e-Learning application has a database of quiz questions, some of which contain MathML. The MathML comes
from multiple sources, and the e-Learning application merely passes the data on for display, but does not have
sophisticated MathML analysis capabilities. Consequently, the application is not aware whether a given MathML
instance is pure presentation or pure content markup, nor does it know whether the instance is valid with respect to
a particular version of the MathML schema. It therefore places the following data formats on the clipboard:

Flavor Name Flavor Content
MathML <?xml version="1.0"?> <math

xmlns="http://www.w3.org/1998/Math/MathML">...</math>
Unicode Text $...$

7.2.4.2 Example 2

An equation editor is able to generate pure presentation markup, valid with respect to MathML 2.0, 2nd Edition.
Consequently, it exports the following flavors:

Flavor Name Flavor Content
MathML Presentation <?xml version="1.0"?> <math

xmlns="http://www.w3.org/1998/Math/MathML">...</math>
Tiff (a rendering sample)
Unicode Text $...$

7.2.4.3 Example 3

A schema-based content management system contains multiple MathML representations of a collection of math-
ematical expressions, including mixed markup from authors, pure content markup for interfacing to symbolic
computation engines, and pure presentation markup for print publication. Due to the system’s use of schemas,
markup is stored with a namespace prefix. The system therefore can transfer the following data:

254 Chapter 7. MathML interactions with the Wide World

Flavor Name Flavor Content
MathML Presentation <?xml version="1.0"?> <mml:math

xmlns:mml="http://www.w3.org/1998/Math/MathML"
xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
xsi:schemaLocation="http://www.w3.org/Math/XMLSchema/mathml2/mathml2.xsd">
<mml:mrow> ... <mml:mrow> </mml:math>

MathML Content <?xml version="1.0"?> <mml:math
xmlns:mml="http://www.w3.org/1998/Math/MathML"
xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
xsi:schemaLocation="http://www.w3.org/Math/XMLSchema/mathml2/mathml2.xsd">
<mml:apply> ... <mml:apply> </mml:math>

MathML <?xml version="1.0"?> <mml:math
xmlns:mml="http://www.w3.org/1998/Math/MathML"
xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
xsi:schemaLocation="http://www.w3.org/Math/XMLSchema/mathml2/mathml2.xsd">
<mml:mrow> <mml:apply> ... content markup
within presentation markup ... </mml:apply> ...
</mml:mrow> </mml:math>

TeX x \over x-1
Unicode Text <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"

xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
xsi:schemaLocation="http://www.w3.org/Math/XMLSchema/mathml2/mathml2.xsd">
<mml:mrow> ... <mml:mrow> </mml:math>

7.2.4.4 Example 4

A similar content management system is web-based and delivers MathML representations of mathematiacly ex-
pressions. The system is able to produce presentation MathML, content MathML, TeX and pictures in PNG format.
In web-pages being browsed, it could produce a MathML fragment such as the following:

<mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML">
<mml:semantics>
<mml:mrow>...</mml:mrow>
<mml:annotation-xml encoding="MathML Content">...</mml:annotation-xml>
<mml:annotation clipboardFlavor="TeX">{1 \over x}</mml:annotation>
<mml:annotation clipboardFlavor="image/png" href="formula3848.png"/>

</mml:semantics>
</mml:math>

A web-browser that receives such a fragment and tries to export it as part of a drag-and-drop action, can offer the
following flavors:

7.3. Combining MathML and Other Formats 255

Flavor Name Flavor Content
MathML Presentation <?xml version="1.0"?> <mml:math

xmlns:mml="http://www.w3.org/1998/Math/MathML"
xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
xsi:schemaLocation="http://www.w3.org/Math/XMLSchema/mathml2/mathml2.xsd">
<mml:mrow> ... <mml:mrow> </mml:math>

MathML Content <?xml version="1.0"?> <mml:math
xmlns:mml="http://www.w3.org/1998/Math/MathML"
xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
xsi:schemaLocation="http://www.w3.org/Math/XMLSchema/mathml2/mathml2.xsd">
<mml:apply> ... <mml:apply> </mml:math>

MathML <?xml version="1.0"?> <mml:math
xmlns:mml="http://www.w3.org/1998/Math/MathML"
xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
xsi:schemaLocation="http://www.w3.org/Math/XMLSchema/mathml2/mathml2.xsd">
<mml:mrow> <mml:apply> ... content markup
within presentation markup ... </mml:apply> ...
</mml:mrow> </mml:math>

TeX x \over x-1
image/png (the content of the picture file, requested from formula3848.png
Unicode Text <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"

xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
xsi:schemaLocation="http://www.w3.org/Math/XMLSchema/mathml2/mathml2.xsd">
<mml:mrow> ... <mml:mrow> </mml:math>

7.3 Combining MathML and Other Formats

Since MathML is most often generated by authoring tools, it is particularly important that opening a MathML
expression in an editor should be easy to do and to implement. In many cases, it will be desirable for an authoring
tool to record some information about its internal state along with a MathML expression, so that an author can pick
up editing where he or she left off. The following markup is proposed:

1. For any extra information that is encoded in signficantly more than an attribute value, MathML-3 pro-
poses the usage of the semantics element presented in Section 5.1.

2. For any extra information that cannot be declared as such, and is, expectedly, private to the application.
MathML-3 suggests to use the maction, see Section 3.6.1.

7.3.1 Mixing MathML and HTML

Issue (well-specified-embedding):This section should not fully prohibit children of MathML markup containing
foreign markup as it does currently. We should leave it possible for specifications to define how embedded foreign
markup in MathML token elements can work (expectedly XSL:FO and HTML5) while suggesting processors that
cannot do anything with such markup to ignore it. Moreover, the schema should exist in strict versions,
prohibiting foreign markup and in lax or parametrized version to open support for external formats. (type
parametrization in XML-schema, entity redifinition in DTD, something in RelaxNG)

In order to fully integrate MathML into XHTML, it should be possible not only to embed MathML in XHTML, as
described in Section 7.1.1, but also to embed XHTML in MathML. However, the problem of supporting XHTML in
MathML presents many difficulties. Therefore, at present, the MathML specification does not permit any XHTML
elements within a MathML expression, although this may be subject to change in a future revision of MathML.

256 Chapter 7. MathML interactions with the Wide World

In most cases, XHTML elements (headings, paragraphs, lists, etc.) either do not apply in mathematical contexts,
or MathML already provides equivalent or better functionality specifically tailored to mathematical content (ta-
bles, mathematics style changes, etc.). However, there are two notable exceptions, the XHTML anchor and image
elements. For this functionality, MathML relies on the general XML linking and graphics mechanisms being de-
veloped by other W3C Activities.

7.3.2 Linking

Issue (and-marking-ids):We wish to stop using xlink for links since it seems unimplemented and add the
necessary attributes at presentation elements.

MathML has no element that corresponds to the XHTML anchor element a. In XHTML, anchors are used both to
make links, and to provide locations to which a link can be made. MathML, as an XML application, defines links
by the use of the mechanism described in the W3C Recommendation "XML Linking Language" [XLink].

A MathML element is designated as a link by the presence of the attribute xlink:href. To use the attribute
xlink:href, it is also necessary to declare the appropriate namespace. Thus, a typical MathML link might look
like:

<mrow xmlns:xlink="http://www.w3.org/1999/xlink"
xlink:href="sample.xml">

...
</mrow>

MathML designates that almost all elements can be used as XML linking elements. The only elements that cannot
serve as linking elements are those which exist primarily to disambiguate other MathML constructs and in general
do not correspond to any part of a typical visual rendering. The full list of exceptional elements that cannot be used
as linking elements is given in the table below.

MathML elements that cannot be linking elements
mprescripts none
malignmark maligngroup

Note that the XML Linking [XLink] and XML Pointer Language [XPointer] specifications also define how to link
into a MathML expressions. Be aware, however, that such links may or may not be properly interpreted in current
software.

7.3.3 Images

The img element has no MathML equivalent. The decision to omit a general mechanism for image inclusion
from MathML was based on several factors. However, the main reason for not providing an image facility is that
MathML takes great pains to make the notational structure and mathematical content it encodes easily available
to processors, whereas information contained in images is only available to a human reader looking at a visual
representation. Thus, for example, in the MathML paradigm, it would be preferable to introduce new glyphs via
the mglyph element which at a minimum identifies them as glyphs, rather than simply including them as images.

7.3.4 MathML and Graphical Markup

Apart from the introduction of new glyphs, many of the situations where one might be inclined to use an image
amount to displaying labeled diagrams. For example, knot diagrams, Venn diagrams, Dynkin diagrams, Feynman
diagrams and commutative diagrams all fall into this category. As such, their content would be better encoded
via some combination of structured graphics and MathML markup. However, at the time of this writing, it is
beyond the scope of the W3C Math Activity to define a markup language to encode such a general concept as

7.4. Using CSS with MathML 257

‘labeled diagrams.’ (See http://www.w3.org/Math for current W3C activity in mathematics and http://www.w3.org/
Graphics for the W3C graphics activity.)

One mechanism for embedding additional graphical content is via the semantics element, as in the following
example:

<semantics>
<apply>
<intersect/>
<ci>A</ci>
<ci>B</ci>

</apply>
<annotation-xml encoding="SVG1.1">
<svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 290 180">
<clipPath id="a">
<circle cy="90" cx="100" r="60"/>
</clipPath>
<circle fill="#AAAAAA" cy="90" cx="190"

r="60" style="clip-path:url(#a)"/>
<circle stroke="black" fill="none" cy="90" cx="100" r="60"/>
<circle stroke="black" fill="none" cy="90" cx="190" r="60"/>

</svg>
</annotation-xml>
<annotation-xml encoding="application/xhtml+xml">

</annotation-xml>
</semantics>

Here, the annotation-xml elements are used to indicate alternative representations of the Content MathML
depiction of the intersection of two sets. The first one is in the ‘Scalable Vector Graphics’ format [SVG1.1] (see
[XHTML-MathML-SVG] for the definition of an XHTML profile integrating MathML and SVG), the second one
uses the XHTML img element embedded as an XHTML fragment. In this situation, a MathML processor can use
any of these representations for display, perhaps producing a graphical format such as the image below.

Note that the semantics representation of this example is given in Content MathML markup, as the first child of the
semantics element. In this regard, it is the representation most analogous to the alt attribute of the img element
in XHTML, and would likely be the best choice for non-visual rendering.

7.4 Using CSS with MathML

When MathML is rendered in an environment that supports [CSS2], controlling mathematics style properties with a
CSS stylesheet is obviously desirable. MathML 2.0 has significantly redesigned the way presentation element style
properties are organized to facilitate better interaction between MathML renderers and CSS style mechanisms. It
introduces four new mathematics style attributes with logical values. Roughly speaking, these attributes can be
viewed as the proper selectors for CSS rules that affect MathML.

http://www.w3.org/Math/
http://www.w3.org/Graphics/
http://www.w3.org/Graphics/

258 Chapter 7. MathML interactions with the Wide World

Controlling mathematics styling is not as simple as it might first appear because mathematics styling and text
styling are quite different in character. In text, meaning is primarily carried by the relative positioning of characters
next to one another to form words. Thus, although the font used to render text may impart nuances to the meaning,
transforming the typographic properties of the individual characters leaves the meaning of text basically intact.
By contrast, in mathematical expressions, individual characters in specific typefaces tend to function as atomic
symbols. Thus, in the same equation, a bold italic ’x’ and a normal italic ’x’ are almost always intended to be two
distinct symbols that mean different things. In traditional usage, there are eight basic typographical categories of
symbols. These categories are described by mathematics style attributes, primarily the mathvariant attribute.

Text and mathematics layout also obviously differ in that mathematics uses 2-dimensional layout. As a result, many
of the style parameters that affect mathematics layout have no textual analogs. Even in cases where there are analo-
gous properties, the sensible values for these properties may not correspond. For example, traditional mathematical
typography usually uses italic fonts for single character identifiers, and upright fonts for multicharacter identifier.
In text, italicization does not usually depend on the number of letters in a word. Thus although a font-slant property
makes sense for both mathematics and text, the natural default values are quite different.

Because of the difference between text and mathematics styling, only the styling aspects that do not affect layout
are good candidates for CSS control. MathML 3.0 captures the most important properties with the new mathematics
style attributes, and users should try to use them whenever possible over more direct, but less robust, approaches.
A sample CSS stylesheet illustrating the use of the mathematical style attributes is available in Appendix C. Users
should not count on MathML implementations to implement any other properties than those in the Font, Colors, and
Outlines families of properties described in [CSS2] and implementations should only implement these properties
within MathML elements. Note that these prohibitions do not apply to CSS stylesheets that implement the MathML
for CSS profile [MathMLforCSS].

Generally speaking, the model for CSS interaction with the math style attributes runs as follows. A CSS style sheet
might provide a style rule such as:

math *.[mathsize="small"] {
font-size: 80%

}

This rule sets the CSS font-size properties for all children of the math element that have the mathsize attribute
set to small. A MathML renderer would then query the style engine for the CSS environment, and use the values
returned as input to its own layout algorithms. MathML does not specify the mechanism by which style information
is inherited from the environment. However, some suggested rendering rules for the interaction between properties
of the ambient style environment and MathML-specific rendering rules are discussed in Section 3.2.2, and more
generally throughout Chapter 3.

It should be stressed, however, that some caution is required in writing CSS stylesheets for MathML. Because
changing typographic properties of mathematics symbols can change the meaning of an equation, stylesheet should
be written in a way such that changes to document-wide typographic styles do not affect embedded MathML ex-
pressions. By using the MathML mathematics style attributes as selectors for CSS rules, this danger is minimized.

Another pitfall to be avoided is using CSS to provide typographic style information necessary to the proper under-
standing of an expression. Expressions dependent on CSS for meaning will not be portable to non-CSS environ-
ments such as computer algebra systems. By using the logical values of the new MathML 3.0 mathematics style
attributes as selectors for CSS rules, it can be assured that style information necessary to the sense of an expression
is encoded directly in the MathML.

MathML 3.0 does not specify how a user agent should process style information, because there are many non-CSS
MathML environments, and because different users agents and renderers have widely varying degrees of access
to CSS information. In general, however, developers are urged to provide as much CSS support for MathML as
possible.

Chapter 8

MathML3 Content Dictionaries

Issue (cds):The new OpenMath/MathML CDs are being developed at http://svn.openmath.org. It is planned to
give an overview of the format in this chapter once it has stabilised.

259

Appendix A

Parsing MathML

A.1 Use of MathML as Well-Formed XML

Issue ():DTD and W3C XML Schema need updating to MathML3

Issue ():Should we add a (normative?) Relax NG schema.

Resolution: We make it normative

A MathML document must be a well-formed XML document using elements in the MathML namespace as defined
by this specification, however it is not required that the document refer to any specific Document Type Definition
(DTD) or schema that specifies MathML. It is sometimes advantagous not to specify such a language definition as
these files are large, often much larger than the MathML expression and unless they have been previously cached
by the MathML application, the time taken to fetch the DTD or schema may have an appreciable effect on the
processing of the MathML document.

Note also that if no DTD is specified with a DOCTYPE declaration, that entity references (for example to refer
to MathML characters by name) may not be used. The document should be encoded in an encoding (for example
UTF-8) in which all needed characters may be encoded as character data, or characters may be referenced using
numeric character references, for example ∫ rather than ∫

If a MathML fragment is parsed without a DTD, in other words as a well-formed XML fragment, it is the respon-
sibility of the processing application to treat the white space characters occurring outside of token elements as not
significant.

However, in many circumstances, especially while producing or editing MathML, it is useful to use a language
definition, to constrain the editing process or to check the correctness of generated files. The following section,
Section A.2, discusses the RelaxNG Schema for MathML3 [RelaxNG], which forms a normative part of the spec-
ification. Following that, Section A.4, and Section A.3 discuss alternative languages definition using the document
type definitions (DTD) and the W3C XML schema language, [XMLSchemas], both of which are derived from the
normative RelaxNG schema automatically. One should note that the schema definitions of the language is current-
ly stricter than the DTD version. That is, a schema validating processor will declare invalid documents that are
declared valid by a (DTD) validating XML parser. This is partly due to the fact that the XML schema language
may express additional constraints not expressable in the DTD, and partly due to the fact that for reasons of com-
patibility with earlier releases, the DTD is intentionally forgiving in some places and does not enforce constraints
that are specified in the text of this specification.

A.2 Using the RelaxNG Schema for MathML3

MathML documents should be validated using the RelaxNG Schema for MathML, either in the XML encod-
ing (http://www.w3.org/Math/RelaxNG/mathml3/mathml3.rng) or in compact notation (http://www.w3.
org/Math/RelaxNG/mathml3/mathml3.rnc) which is also shown below.

260

http://www.w3.org/Math/RelaxNG/mathml3/mathml3.rng
http://www.w3.org/Math/RelaxNG/mathml3/mathml3.rnc
http://www.w3.org/Math/RelaxNG/mathml3/mathml3.rnc

A.2. Using the RelaxNG Schema for MathML3 261

In contrast to DTDs there is no in-document method to associate a RelaxNG schema with a document.

We provide five RelaxNG schemata for sub-languages of MathML3:

• The grammar for full MathML
• The grammar for Presentation MathML without content elements mixed in
• The grammar for strict Content MathML3
• The grammar for pragmatic Content MathML3 without presentation MathML in token elements
• The grammar for the deprecated parts of MathML

we will present them in detail in the next sections below. As the compact notation for RelaxNG grammars is more
readable, we will use this format here.

Note that the RelaxNG grammars here are considerably more strict than the MathML2 DTDs (even in strict mode).

A.2.1 Full MathML

The RelaxNG schema for full MathML builds on the schema describing the various arts of teh language which are
given in the following sections. It can be found at http://www.w3.org/Math/RelaxNG/mathml3/mathml3.
rnc.

This is the Mathematical Markup Language (MathML) 3.0, an XML
application for describing mathematical notation and capturing
both its structure and content.
#
Copyright 1998-2008 W3C (MIT, ERCIM, Keio)
#
Use and distribution of this code are permitted under the terms
W3C Software Notice and License
http://www.w3.org/Consortium/Legal/2002/copyright-software-20021231
#
#
Revision: $Id: mathml3.rnc,v 1.7 2008/11/09 00:24:40 dcarlis Exp $
#
Update to MathML3 and Relax NG: David Carlisle and Michael Kohlhase

default namespace m = "http://www.w3.org/1998/Math/MathML"

the core, strict Content MathML
include "mathml3-strict.rnc"

Content Expressions now allow pMathML in ci and csymbol
include "mathml3-pragmatic.rnc" {

}

Presentation Expressions allow Content Expressions mixed in everywhere
include "mathml3-presentation.rnc"

include the relevant content dictionaries
include "mathml3-cds-pragmatic.rnc"

http://www.w3.org/Math/RelaxNG/mathml3/mathml3.rnc
http://www.w3.org/Math/RelaxNG/mathml3/mathml3.rnc

262 Appendix A. Parsing MathML

deprecated constucts
include "mathml3-deprecated.rnc"
{

}

ContInPres |= ContExp

A.2.2 The Grammar for Presentation MathML

This is the Mathematical Markup Language (MathML) 3.0, an XML
application for describing mathematical notation and capturing
both its structure and content.
#
Copyright 1998-2008 W3C (MIT, ERCIM, Keio)
#
Use and distribution of this code are permitted under the terms
W3C Software Notice and License
http://www.w3.org/Consortium/Legal/2002/copyright-software-20021231
#
#
Revision: $Id: mathml3-presentation.rnc,v 1.8 2008/11/09 11:15:50 mkohlhas2 Exp $
#
Update to MathML3 and Relax NG: David Carlisle and Michael Kohlhase

default namespace m = "http://www.w3.org/1998/Math/MathML"

math.content |= ContInPres*

MathML.Common.attrib |= attribute class {xsd:NMTOKENS}?,attribute style {xsd:string}?

Browser-interface.attrib = attribute baseline {xsd:string}?,
attribute overflow {"scroll" | "elide" | "truncate" | "scale" | "linebreak"}?,
attribute altimg {xsd:anyURI}?,
attribute alttext {xsd:string}?,

attribute type {xsd:string}?,
attribute name {xsd:string}?,
attribute height {xsd:string}?,
attribute width {xsd:string}?

math.attlist |= Browser-interface.attrib,attribute display {"block" | "inline"}?,
attribute dir {"ltr" | "rtl"}?,
linebreak.attrib

A.2. Using the RelaxNG Schema for MathML3 263

simple-size = "small" | "normal" | "big"

centering.values = "left" | "center" | "right"

named-space = "veryverythinmathspace" | "verythinmathspace" | "thinmathspace" |
"mediummathspace" |
"thickmathspace" | "verythickmathspace" | "veryverythickmathspace"

thickness = "thin" | "medium" | "thick"

number with units used to specified lengths

length-with-unit =
xsd:string #{pattern="(-?([0-9]+|[0-9]*\.[0-9]+)(em|ex|px|in|cm|mm|pt|pc|%))|0"}

length-with-optional-unit =
xsd:string #{pattern="-?([0-9]+|[0-9]*\.[0-9]+)(em|ex|px|in|cm|mm|pt|pc|%)?"}

This is just "infinity" that can be used as a length
infinity = "infinity"

colors defined as RGB
RGB-color = xsd:string {pattern="#(([0-9]|[a-f]){3}|([0-9]|[a-f]){6})"}

The mathematics style attributes. These attributes are valid on all
presentation token elements except "mspace" and "mglyph", and on no
other elements except "mstyle".

Token-style.attrib = attribute mathvariant
{"normal" | "bold" | "italic" | "bold-italic" | "double-struck" |

"bold-fraktur" | "script" | "bold-script" | "fraktur" |
"sans-serif" | "bold-sans-serif" | "sans-serif-italic" |

"sans-serif-bold-italic" | "monospace" |
"initial" | "tailed" | "looped" | "stretched"}?,

attribute mathsize {simple-size | length-with-unit}?,

attribute mathcolor {xsd:string}?,
attribute mathbackground {xsd:string}?

truefalse = "true" | "false"

Operator.attrib =
this attribute value is normally inferred from the position of
the operator in its "<mrow">

attribute form {"prefix" | "infix" | "postfix"}?,
set by dictionary, else it is "thickmathspace"
attribute lspace {length-with-unit | named-space}?,
set by dictionary, else it is "thickmathspace"
attribute rspace {length-with-unit | named-space}?,
set by dictionnary, else it is "false"
attribute fence {truefalse}?,
set by dictionnary, else it is "false"

264 Appendix A. Parsing MathML

attribute separator {truefalse}?,
set by dictionnary, else it is "false"
attribute stretchy {truefalse}?,
set by dictionnary, else it is "true"
attribute symmetric {truefalse}?,
set by dictionnary, else it is "false"
attribute movablelimits {truefalse}?,
set by dictionnary, else it is "false"
attribute accent {truefalse}?,
set by dictionnary, else it is "false"
attribute largeop {truefalse}?,
attribute minsize {length-with-unit | named-space}?,
attribute maxsize {length-with-unit | named-space | infinity | xsd:float}?

mglyph = element {mglyph} {MathML.Common.attrib,
attribute alt {xsd:string}?,
(attribute src {xsd:anyURI}| attribute fontfamily {xsd:string}),

attribute width {xsd:string}?,
attribute height {xsd:string}?,
attribute baseline {xsd:string}?,
attribute index {xsd:positiveInteger}?}

linethickness.attrib = attribute linethickness {length-with-optional-unit|thickness}
mline = element {mline} {MathML.Common.attrib,

linethickness.attrib?,
attribute spacing {xsd:string}?,
attribute length {length-with-unit | named-space}?}

Glyph-alignmark = malignmark|mglyph

mi = element {mi} {MathML.Common.attrib,Token-style.attrib,(Glyph-alignmark|text)*}

mo = element {mo} {MathML.Common.attrib,Operator.attrib,Token-style.attrib,
linebreak.attrib,
(text|Glyph-alignmark)*}

mn = element {mn} {MathML.Common.attrib,Token-style.attrib,(text|Glyph-alignmark)*}

mtext = element {mtext} {MathML.Common.attrib,Token-style.attrib,(text|Glyph-alignmark)*}

ms = element {ms} {MathML.Common.attrib,Token-style.attrib,
attribute lquote {xsd:string}?,

attribute rquote {xsd:string}?,
(text|Glyph-alignmark)*}

And the group of any token
Pres-token = mi | mo | mn | mtext | ms

A.2. Using the RelaxNG Schema for MathML3 265

msub = element {msub} {MathML.Common.attrib,
attribute subscriptshift {length-with-unit}?,
ContInPres,ContInPres}

msup = element {msup} {MathML.Common.attrib,
attribute supscriptshift {length-with-unit}?,
ContInPres,ContInPres}

msubsup = element {msubsup} {MathML.Common.attrib,
attribute subscriptshift {length-with-unit}?,
attribute supscriptshift {length-with-unit}?,
ContInPres,ContInPres,ContInPres}

munder = element {munder} {MathML.Common.attrib,
attribute accentunder {truefalse}?,
ContInPres,ContInPres}

mover = element {mover} {MathML.Common.attrib,
attribute accent {truefalse}?,
ContInPres,ContInPres}

munderover = element {munderover} {MathML.Common.attrib,
attribute accentunder {truefalse}?,
attribute accent {truefalse}?,
ContInPres,ContInPres,ContInPres}

PresExp-or-none = ContInPres | none
mmultiscripts = element {mmultiscripts}{MathML.Common.attrib,

ContInPres,
(PresExp-or-none,PresExp-or-none)*,
(mprescripts,(PresExp-or-none,PresExp-or-none)*)?}

none = element {none} {empty}
mprescripts = element {mprescripts} {empty}

Pres-script = msub|msup|msubsup|munder|mover|munderover|mmultiscripts
linebreak-values = "auto" | "newline" | "indentingnewline" | "nobreak" | "goodbreak" | "badbreak"
mspace = element {mspace} {MathML.Common.attrib,

attribute width {length-with-unit | named-space}?,
attribute height {length-with-unit}?,
attribute depth {length-with-unit}?,

attribute spacing {text}?,
linebreak.attrib}

mrow = element {mrow} {MathML.Common.attrib,ContInPres*}

mfrac = element {mfrac} {MathML.Common.attrib,
attribute bevelled {truefalse}?,
attribute denomalign {centering.values}?,

attribute numalign {centering.values}?,
linethickness.attrib?,

266 Appendix A. Parsing MathML

ContInPres,ContInPres}
msqrt = element {msqrt} {MathML.Common.attrib,ContInPres*}

mroot = element {mroot} {MathML.Common.attrib,ContInPres,ContInPres}

mpadded-space = xsd:string {pattern="(\+|-)?([0-9]+|[0-9]*\.[0-9]+)(((%?)*(width|lspace|height|depth))|(em|ex|px|in|cm|mm|pt|pc))"}

mpadded-width-space = xsd:string {pattern="((\+|-)?([0-9]+|[0-9]*\.[0-9]+)(((%?) *(width|lspace|height|depth)?)|(width|lspace|height|depth)|(em|ex|px|in|cm|mm|pt|pc)))|((veryverythin|verythin|thin|medium|thick|verythick|veryverythick)mathspace)|0"}

mpadded = element {mpadded} {MathML.Common.attrib,
attribute width {mpadded-width-space}?,

attribute lspace {mpadded-space}?,
attribute height {mpadded-space}?,
attribute depth {mpadded-space}?,
ContInPres*}

mphantom = element {mphantom} {MathML.Common.attrib,ContInPres*}

mfenced = element {mfenced} {MathML.Common.attrib,
attribute open {xsd:string}?,

attribute close {xsd:string}?,
attribute separators {xsd:string}?,

ContInPres*}

notation-values = "actuarial"|"longdiv"|"radical"|
"box"|"roundedbox"|"circle"|
"left"|"right"|"top"|"bottom"|
"updiagonalstrike"|"downdiagonalstrike"|
"verticalstrike"|"horizontalstrike" | "madruwb"

menclose = element {menclose} {MathML.Common.attrib,
attribute notation {list{notation-values*}}?,

ContInPres*}

And the group of everything
Pres-layout = mrow|mfrac|msqrt|mroot|mpadded|mphantom|mfenced|menclose

Table-alignment.attrib = attribute rowalign
{xsd:string {pattern="(top|bottom|center|baseline|axis)(top|bottom|center|baseline|axis)*"}}?,
attribute columnalign {xsd:string {pattern="(left|center|right)((left|center|right))*"}}?,
attribute groupalign {xsd:string}?

mtr.content = mtd
mtr = element {mtr} {Table-alignment.attrib, MathML.Common.attrib,(mtr.content)+}

mlabeledtr = element {mlabeledtr} {Table-alignment.attrib,MathML.Common.attrib,(mtr.content)*}

mtd = element {mtd} {MathML.Common.attrib,
Table-alignment.attrib,

A.2. Using the RelaxNG Schema for MathML3 267

attribute columnspan {xsd:positiveInteger}?,
attribute rowspan {xsd:positiveInteger}?,

ContInPres*}

mtable.content = mtr|mlabeledtr
mtable = element {mtable} {Table-alignment.attrib,

attribute align {xsd:string}?,
attribute alignmentscope {xsd:string {pattern="(true|false)(true| false)*"}}?,
attribute columnwidth {xsd:string}?,

attribute width {xsd:string}?,
attribute rowspacing {xsd:string}?,
attribute columnspacing {xsd:string}?,
attribute rowlines {xsd:string}?,
attribute columnlines {xsd:string}?,
attribute frame {"none" | "solid" | "dashed"}?,
attribute framespacing {xsd:string}?,
attribute equalrows {truefalse}?,
attribute equalcolumns {truefalse}?,
attribute displaystyle {truefalse}?,

attribute side {"left"|"right"|"leftoverlap"|"rightoverlap"}?,
attribute minlabelspacing {length-with-unit}?,
MathML.Common.attrib,

(mtable.content)*}

maligngroup = element {maligngroup} {MathML.Common.attrib,
attribute groupalign {"left" | "center" | "right" | "decimalpoint"}?}

malignmark = element {malignmark} {MathML.Common.attrib,attribute edge {"left" | "right"}?}

Pres-table = mtable|maligngroup|malignmark

mcolumn = element {mcolumn} {MathML.Common.attrib,
attribute align {"left" | "right"}?,ContInPres*}

mstyle = element {mstyle} {MathML.Common.attrib,
linebreak.attrib,
attribute scriptlevel {xsd:integer}?,
attribute displaystyle {truefalse}?,

attribute scriptsizemultiplier {xsd:decimal}?,
attribute scriptminsize {length-with-unit}?,
attribute background {xsd:string}?,
attribute veryverythinmathspace {length-with-unit}?,
attribute verythinmathspace {length-with-unit}?,

attribute thinmathspace {length-with-unit}?,
attribute mediummathspace {length-with-unit}?,
attribute thickmathspace {length-with-unit}?,
attribute verythickmathspace {length-with-unit}?,
attribute veryverythickmathspace {length-with-unit}?,
linethickness.attrib?,

Operator.attrib,Token-style.attrib,

268 Appendix A. Parsing MathML

ContInPres*}

merror = element {merror} {MathML.Common.attrib,ContInPres*}

maction = element {maction} {MathML.Common.attrib,
attribute actiontype {xsd:string}?,

attribute selection {xsd:positiveInteger}?,
ContInPres*}

semantics-pmml = element {semantics} {semantics.attribs,PresExp, semantics-annotation*}

PresExp = Pres-token | Pres-layout | Pres-script | Pres-table
| mspace | mline | mcolumn | maction | merror | mstyle
| semantics-pmml

ContInPres |= PresExp

Issue ():David wrote in an e-mail: length-with-unit doesn’t allow white space (anywhere) which (if any) of
the following do we want to allow " 2em ", "2 em", "- 2 em". Also it insists on starting with a digit or -, but do we
want to allow ".5em" "-.5em"However we do claim css compatibility here which may suggest some answers to
the above http://www.w3.org/TR/CSS21/syndata.html#length-units.css allows an optional leading + as
well +2em css requires number to "immediately" follow any sign and the unit to "immediately" follow the number,
which I think means no intervening white space. css <number> are allowed to start with a . so .5em is allowed.
css insists on a digit following a . so 5.em is not allowed.Once we have firm answers to the above it should be
easy to drop the regexp back in, and make the text match.I think we should not allow white space except at
beginning and end but allow a leading + (a change from mathml2) and allow no digits before the ., but insist on
digits after a . which would be
[\-\+]?([0-9]+(\.[0-9]+)?|\.[0-9]+)(em|ex|px|in|cm|mm|pt|pc|%))|0 as written this doesn’t allow
" 2em " but I think we can set white space trim properties to apply before the regex is checked (I’ll check)

A.2.3 The Grammar for Strict Content MathML3

The grammar for Strict Content MathML3 can be found at http://www.w3.org/Math/RelaxNG/mathml3/
mathml3-strict.rnc.

This is the Mathematical Markup Language (MathML) 3.0, an XML
application for describing mathematical notation and capturing
both its structure and content.
#
Copyright 1998-2008 W3C (MIT, ERCIM, Keio)
#
Use and distribution of this code are permitted under the terms
W3C Software Notice and License
http://www.w3.org/Consortium/Legal/2002/copyright-software-20021231
#
#
Revision: $Id: mathml3-strict.rnc,v 1.8 2008/11/09 11:15:50 mkohlhas2 Exp $
#
Update to MathML3 and Relax NG: David Carlisle and Michael Kohlhase

http://www.w3.org/Math/RelaxNG/mathml3/mathml3-strict.rnc
http://www.w3.org/Math/RelaxNG/mathml3/mathml3-strict.rnc

A.2. Using the RelaxNG Schema for MathML3 269

#
This is the RelaxNG schema module for the strict content part of MathML.

default namespace m = "http://www.w3.org/1998/Math/MathML"

include "mathml3-common.rnc"

math.content |= ContExp

opel.content = text

we want to extend this in pragmatic CMathML, so we introduce abbrevs here.

cn.content = text |(cn,cn)
cn.type.vals = "integer"|"real"|"double"

cn = element {cn} {attribute base {text}?,
attribute type {cn.type.vals}?,

Definition.attrib,
MathML.Common.attrib,

(cn.content)*}

ci = element {ci} {attribute type {xsd:string}?,
attribute nargs {xsd:string}?,

attribute occurrence {xsd:string}?,
Definition.attrib,

MathML.Common.attrib,
opel.content,
name.attrib?}

cdname.attrib = attribute cd {xsd:NCName}

csymbol = element {csymbol} {MathML.Common.attrib,
Definition.attrib,cdname.attrib?,cdbase.attrib?,

opel.content}

the content of the apply element, leave it empty and extend it later
apply = element {apply} {MathML.Common.attrib,cdbase.attrib?,apply.content}
apply-head = apply|bind|ci|csymbol|semantics-apply
apply.content = apply-head,ContExp*
semantics-apply = element {semantics} {semantics.attribs,apply-head, semantics-annotation*}

qualifier = notAllowed

the content of the bind element, leave it empty and extend it later
bind = element {bind} {MathML.Common.attrib,cdbase.attrib?,bind.content}
bind-head = apply|csymbol|semantics-bind
bind.content = bind-head,bvar*,qualifier?,ContExp
semantics-bind = element {semantics} {semantics.attribs,bind-head, semantics-annotation*}

270 Appendix A. Parsing MathML

bvar = element {bvar} {MathML.Common.attrib,cdbase.attrib?,bvar-head}
bvar-head = ci|semantics-bvar
semantics-bvar = element {semantics} {semantics.attribs,bvar-head, semantics-annotation*}

share = element {share} {MathML.Common.attrib,attribute href {xsd:anyURI}}

the content of the cerror element, leave it empty and extend it later
cerror = element {cerror} {MathML.Common.attrib,cdbase.attrib?,cerror.content}
cerror-head = csymbol|apply|semantics-cerror
cerror.content = cerror-head,ContExp*
semantics-cerror = element {semantics} {semantics.attribs,cerror-head, semantics-annotation*}

semantics-cmml = element {semantics} {semantics.attribs,ContExp, semantics-annotation*}

ContExp = cn| ci | csymbol | apply | bind | share | cerror | semantics-cmml

A.2.4 The Grammar for Pragmatic MathML

The grammar for pragmatic MathML3 can be found at http://www.w3.org/Math/RelaxNG/mathml3/mathml3-pragmatic.
rnc.
This is the Mathematical Markup Language (MathML) 3.0, an XML
application for describing mathematical notation and capturing
both its structure and content.
#
Copyright 1998-2008 W3C (MIT, ERCIM, Keio)
#
Use and distribution of this code are permitted under the terms
W3C Software Notice and License
http://www.w3.org/Consortium/Legal/2002/copyright-software-20021231
#
#
Revision: $Id: mathml3-pragmatic.rnc,v 1.10 2008/11/09 17:55:28 dcarlis Exp $
#
Update to MathML3 and Relax NG: David Carlisle and Michael Kohlhase
#
This is the RelaxNG schema module for the pragmatic content part of
MathML (but without the presentation in token elements).

default namespace m = "http://www.w3.org/1998/Math/MathML"

the content of "cn" may have <sep> elements in it
sep = element {sep} {empty}
cn.content |= (sep|text|Glyph-alignmark)*
cn.type.vals |= "e-notation"|"rational"|"complex-cartesian"|"complex-polar"|"constant"

http://www.w3.org/Math/RelaxNG/mathml3/mathml3-pragmatic.rnc
http://www.w3.org/Math/RelaxNG/mathml3/mathml3-pragmatic.rnc

A.2. Using the RelaxNG Schema for MathML3 271

allow degree in bvar
degree = element {degree} {MathML.Common.attrib,ContExp}
logbase = element {logbase} {MathML.Common.attrib,ContExp}
momentabout = element {momentabout} {MathML.Common.attrib,ContExp}
bvar-head |= (degree?,ci)|(ci,degree?)

allow degree to modify <root/>
apply.content |= root_arith1_elt,degree,ContExp*
apply.content |= moment_s_data1_elt,(degree? & momentabout?),ContInPres*
apply.content |= log_transc1_elt,logbase,ContExp*

##allow apply to act as a binder
apply.content |= bind.content

domainofapplication = element {domainofapplication} {Definition.attrib,MathML.Common.attrib,cdbase.attrib?,ContExp}

lowlimit = element {lowlimit} {Definition.attrib,MathML.Common.attrib,cdbase.attrib?,ContExp+}
uplimit = element {uplimit} {Definition.attrib,MathML.Common.attrib,cdbase.attrib?,ContExp+}

condition = element {condition} {Definition.attrib,cdbase.attrib?,ContExp}

allow the non-strict qualifiers
qualifier |= domainofapplication|(uplimit,lowlimit?)|(lowlimit,uplimit?)|degree|condition

we collect the operator elements by role
opel.constant = notAllowed
opel.binder = notAllowed
opel.application = notAllowed
opel.semantic-attribution = notAllowed
opel.attribution = notAllowed
opel.error = notAllowed

opels = opel.constant | opel.binder | opel.application |
opel.semantic-attribution | opel.attribution |

opel.error
container = notAllowed

the values of the MathML type attributes;
MathMLType |= "real" | "complex" | "function" | "algebraic" | "integer"

we instantiate the strict content model by structure checking
apply-binder-head = semantics-apply-binder|opel.binder
apply.content |= apply-binder-head,bvar*,qualifier?,ContExp*
semantics-apply-binder = element {semantics} {semantics.attribs,apply-binder-head, semantics-annotation*}

apply-head |= opel.application
bind-head |= opel.binder
cerror-head |= opel.error

272 Appendix A. Parsing MathML

allow all functions, constants, and containers to be content expressions on their own
ContExp |= opel.constant|opel.application|container

allow no body
bind.content |= bind-head,bvar*,qualifier?

not sure what a sequence of things is supposed to map to in strict/OM
but is definitely allowed in pragmatic
see Content/SequencesAndSeries/product/rec-product3
math.content |= ContExp*

opel.content |= PresExp|Glyph-alignmark

This is the Mathematical Markup Language (MathML) 3.0, an XML
application for describing mathematical notation and capturing
both its structure and content.
#
Copyright 1998-2008 W3C (MIT, ERCIM, Keio)
#
Use and distribution of this code are permitted under the terms
W3C Software Notice and License
http://www.w3.org/Consortium/Legal/2002/copyright-software-20021231
#
#
Revision: $Id: mathml3-pragmatic.rnc,v 1.10 2008/11/09 17:55:28 dcarlis Exp $
#
Update to MathML3 and Relax NG: David Carlisle and Michael Kohlhase
#
This is the RelaxNG schema module for the pragmatic content part of
MathML (but without the presentation in token elements).

default namespace m = "http://www.w3.org/1998/Math/MathML"

the content of "cn" may have <sep> elements in it
sep = element {sep} {empty}
cn.content |= (sep|text|Glyph-alignmark)*
cn.type.vals |= "e-notation"|"rational"|"complex-cartesian"|"complex-polar"|"constant"

allow degree in bvar
degree = element {degree} {MathML.Common.attrib,ContExp}
logbase = element {logbase} {MathML.Common.attrib,ContExp}
momentabout = element {momentabout} {MathML.Common.attrib,ContExp}
bvar-head |= (degree?,ci)|(ci,degree?)

allow degree to modify <root/>
apply.content |= root_arith1_elt,degree,ContExp*
apply.content |= moment_s_data1_elt,(degree? & momentabout?),ContInPres*
apply.content |= log_transc1_elt,logbase,ContExp*

A.2. Using the RelaxNG Schema for MathML3 273

##allow apply to act as a binder
apply.content |= bind.content

domainofapplication = element {domainofapplication} {Definition.attrib,MathML.Common.attrib,cdbase.attrib?,ContExp}

lowlimit = element {lowlimit} {Definition.attrib,MathML.Common.attrib,cdbase.attrib?,ContExp+}
uplimit = element {uplimit} {Definition.attrib,MathML.Common.attrib,cdbase.attrib?,ContExp+}

condition = element {condition} {Definition.attrib,cdbase.attrib?,ContExp}

allow the non-strict qualifiers
qualifier |= domainofapplication|(uplimit,lowlimit?)|(lowlimit,uplimit?)|degree|condition

we collect the operator elements by role
opel.constant = notAllowed
opel.binder = notAllowed
opel.application = notAllowed
opel.semantic-attribution = notAllowed
opel.attribution = notAllowed
opel.error = notAllowed

opels = opel.constant | opel.binder | opel.application |
opel.semantic-attribution | opel.attribution |

opel.error
container = notAllowed

the values of the MathML type attributes;
MathMLType |= "real" | "complex" | "function" | "algebraic" | "integer"

we instantiate the strict content model by structure checking
apply-binder-head = semantics-apply-binder|opel.binder
apply.content |= apply-binder-head,bvar*,qualifier?,ContExp*
semantics-apply-binder = element {semantics} {semantics.attribs,apply-binder-head, semantics-annotation*}

apply-head |= opel.application
bind-head |= opel.binder
cerror-head |= opel.error

allow all functions, constants, and containers to be content expressions on their own
ContExp |= opel.constant|opel.application|container

allow no body
bind.content |= bind-head,bvar*,qualifier?

not sure what a sequence of things is supposed to map to in strict/OM
but is definitely allowed in pragmatic
see Content/SequencesAndSeries/product/rec-product3

274 Appendix A. Parsing MathML

math.content |= ContExp*

opel.content |= PresExp|Glyph-alignmark

This grammar focuses on the pragmatic extensions in , , , , and .

Editor’s note:MiKocheck this again

The pragmatic extensions in , , , , , rely on information that is specified in the MathML content dictionaries. This
is handled in the schema http://www.w3.org/Math/RelaxNG/mathml3/mathml3-cds-pragmatic.rnc.

Finally, the pragmatic extensions given in are not covered in this schema, but will be left for full MathML in the
next section.

A.2.5 Deprecated Features

The grammar for the deprecated features in MathML3 can be found at http://www.w3.org/Math/RelaxNG/
mathml3/mathml3-deprecated.rnc.

This is the Mathematical Markup Language (MathML) 3.0, an XML
application for describing mathematical notation and capturing
both its structure and content.
#
Copyright 1998-2008 W3C (MIT, ERCIM, Keio)
#
Use and distribution of this code are permitted under the terms
W3C Software Notice and License
http://www.w3.org/Consortium/Legal/2002/copyright-software-20021231
#
#
Revision: $Id: mathml3-deprecated.rnc,v 1.8 2008/11/09 00:24:40 dcarlis Exp $
#
Update to MathML3 and Relax NG: David Carlisle and Michael Kohlhase

default namespace m = "http://www.w3.org/1998/Math/MathML"

Token-style.attrib &=
attribute fontsize {xsd:string}? ,
attribute fontstyle {xsd:string}? ,
attribute fontweight {xsd:string}? ,
attribute color {xsd:string}? ,
attribute fontfamily {xsd:string}? ,
attribute fontweight {xsd:string}?

#Deprecated Content Elements
dep-content =
element {reln} {ContExp*}|
element {fn} {ContExp}

http://www.w3.org/Math/RelaxNG/mathml3/mathml3-cds-pragmatic.rnc
http://www.w3.org/Math/RelaxNG/mathml3/mathml3-deprecated.rnc
http://www.w3.org/Math/RelaxNG/mathml3/mathml3-deprecated.rnc

A.3. Using the MathML DTD 275

ContExp |= dep-content

apply-head |= dep-content

declare = element {declare} {attribute type {xsd:string}?,
attribute scope {xsd:string}?,
attribute nargs {xsd:nonNegativeInteger}?,
attribute occurrence {"prefix"|"infix"|"function-model"}?,
Definition.attrib,cdbase.attrib?,
ContExp+}

ContExp |= declare

mtr.content |= ContInPres

A.2.6 MathML as a module in a RelaxNG Schema

Normally, a MathML expression does not constitute an entire XML document. MathML is designed to be used
as the mathematics fragment of larger markup languages. In particular it is designed to be used as a module in
documents marked up with the XHTML family of markup languages. As RelaxNG directly supports modular
development, this is usually very easy: an XHTML+MathML schema can be specified as simply as

A RelaxNG Schema for XHTML+MathML
include "xhtml.rnc"
math = external "mathml3.rnc"
Inline.class |= math
Block.class |= math

assuming that we have access to a modular RelaxNG schema for xhtml that uses Inline.class and Block.class
to collect the the content models for inline and block-level elements.

Editor’s note:Mikocheck this and reference an external schema

Specilizing the MathML3 schema so that we can check the content of annotation-xml elements is similarly
simple:

A RelaxNG Schema for MathML with OpenMath3 annotations
omobj = external "openmath3.rnc"
include "mathml3.rnc" {anotation-xml.model = omobj}

For details about RelaxNG grammars and modularization see [RelaxNG] or [RelaxNGBook].

Editor’s note:Mikocheck this and reference an external schema; I think we can even tie the OpenMath model to
the value OpenMath in the encoding attribute.

A.3 Using the MathML DTD

Editor’s note:DavidDTD to be generated from Relax NG

A.4 Using the MathML XML Schema

Editor’s note:DavidXSD schema to be generated from Relax NG

Appendix B

Operator Dictionary (Non-Normative)

Issue ():The current appendix describes MathML2, it may need to be updated in later drafts.

The following table gives the suggested dictionary of rendering properties for operators, fences, separators, and
accents in MathML, all of which are represented by mo elements. For brevity, all such elements will be called
simply ‘operators’ in this Appendix.

B.1 Format of operator dictionary entries

The operators are divided into groups, which are separated by blank lines in the listing below. The grouping, and
the order of the groups, is significant for the proper grouping of sub-expressions using <mrow> (Section 3.3.1);
the rule described there is especially relevant to the automatic generation of MathML by conversion from other
formats for displayed mathematics, such as TEX, which do not always specify how sub-expressions nest.

The format of the table entries is: the <mo> element content between double quotes (start and end tags not shown),
followed by the attribute list in XML format, starting with the form attribute, followed by the default rendering
attributes which should be used for mo elements with the given content and form attribute.

Any attribute not listed for some entry has its default value, which is given in parentheses in the table of attributes
in Section 3.2.5.

Note that the characters & and < are represented in the following table entries by the entity references & and
< respectively, as would be necessary if they appeared in the content of an actual mo element (or any other
MathML or XML element).

For example, the first entry,

"(" form="prefix" fence="true" stretchy="true" lspace="0em" rspace="0em"

could be expressed as an mo element by:

<mo form="prefix" fence="true" stretchy="true" lspace="0em" rspace="0em"> (</mo>

(note the lack of double quotes around the content, and the whitespace added around the content for readability,
which is optional in MathML).

This entry means that, for MathML renderers which use this suggested operator dictionary, giving the element <mo
form="prefix"> (</mo> alone, or simply <mo> (</mo> in a position for which form="prefix" would be
inferred (see below), is equivalent to giving the element with all attributes as shown above.

276

B.2. Indexing of operator dictionary 277

B.2 Indexing of operator dictionary

Note that the dictionary is indexed not just by the element content, but by the element content and form attribute
value, together. Operators with more than one possible form have more than one entry. The MathML specifica-
tion describes how the renderer chooses (‘infers’) which form to use when no form attribute is given; see Sec-
tion 3.2.5.7.

Having made that choice, or with the form attribute explicitly specified in the <mo> element’s start tag, the MathML
renderer uses the remaining attributes from the dictionary entry for the appropriate single form of that operator,
ignoring the entries for the other possible forms.

B.3 Choice of entity names

Extended characters in MathML (and in the operator dictionary below) are represented by XML-style entity ref-
erences using the syntax &character-name; the complete list of characters and character names is given in
Chapter 6. Many characters can be referred to by more than one name; often, memorable names composed of full
words have been provided in MathML, as well as one or more names used in other standards, such as Unicode.
The characters in the operators in this dictionary are generally listed under their full-word names when these exist.
For example, the integral operator is named below by the one-character sequence ∫, but could equally
well be named ∫. The choice of name for a given character in MathML has no effect on its rendering.

It is intended that every entity named below appears somewhere in Chapter 6. If this is not true, it is an error in
this specification. If such an error exists, the abovementioned chapter should be taken as definitive, rather than this
appendix.

B.4 Notes on lspace and rspace attributes

The values for lspace and rspace given here range from 0 to "verythickmathspace", which has a default
value of 6/18 em. For the invisible operators whose content is ⁢ or ⁡, it is
suggested that MathML renderers choose spacing in a context-sensitive way (which is an exception to the static
values given in the following table). For <mo>⁡</mo>, the total spacing ("lspace"+"rspace")
in expressions such as ‘sin x’ (where the right operand doesn’t start with a fence) should be greater than zero; for
<mo>⁢</mo>, the total spacing should be greater than zero when both operands (or the nearest
tokens on either side, if on the baseline) are identifiers displayed in a non-slanted font (i.e. under the suggested
rules, when both operands are multi-character identifiers).

Some renderers may wish to use no spacing for most operators appearing in scripts (i.e. when scriptlevel is
greater than 0; see Section 3.3.4), as is the case in TEX.

B.5 Operator dictionary entries

278 Appendix B. Operator Dictionary (Non-Normative)
"
(
"

f
o
r
m
=
"
p
r
e
f
i
x
"

f
e
n
c
e
=
"
t
r
u
e
"
s
t
r
e
t
c
h
y
=
"
t
r
u
e
"

l
s
p
a
c
e
=
"
0
e
m
"
r
s
p
a
c
e
=
"
0
e
m
"

"
)
"

f
o
r
m
=
"
p
o
s
t
f
i
x
"
f
e
n
c
e
=
"
t
r
u
e
"
s
t
r
e
t
c
h
y
=
"
t
r
u
e
"

l
s
p
a
c
e
=
"
0
e
m
"
r
s
p
a
c
e
=
"
0
e
m
"

"
[
"

f
o
r
m
=
"
p
r
e
f
i
x
"

f
e
n
c
e
=
"
t
r
u
e
"
s
t
r
e
t
c
h
y
=
"
t
r
u
e
"

l
s
p
a
c
e
=
"
0
e
m
"
r
s
p
a
c
e
=
"
0
e
m
"

"
]
"

f
o
r
m
=
"
p
o
s
t
f
i
x
"
f
e
n
c
e
=
"
t
r
u
e
"
s
t
r
e
t
c
h
y
=
"
t
r
u
e
"

l
s
p
a
c
e
=
"
0
e
m
"
r
s
p
a
c
e
=
"
0
e
m
"

"
{
"

f
o
r
m
=
"
p
r
e
f
i
x
"

f
e
n
c
e
=
"
t
r
u
e
"
s
t
r
e
t
c
h
y
=
"
t
r
u
e
"

l
s
p
a
c
e
=
"
0
e
m
"
r
s
p
a
c
e
=
"
0
e
m
"

"
}
"

f
o
r
m
=
"
p
o
s
t
f
i
x
"
f
e
n
c
e
=
"
t
r
u
e
"
s
t
r
e
t
c
h
y
=
"
t
r
u
e
"

l
s
p
a
c
e
=
"
0
e
m
"
r
s
p
a
c
e
=
"
0
e
m
"

"
&
C
l
o
s
e
C
u
r
l
y
D
o
u
b
l
e
Q
u
o
t
e
;
"

f
o
r
m
=
"
p
o
s
t
f
i
x
"
f
e
n
c
e
=
"
t
r
u
e
"

l
s
p
a
c
e
=
"
0
e
m
"
r
s
p
a
c
e
=
"
0
e
m
"

"
&
C
l
o
s
e
C
u
r
l
y
Q
u
o
t
e
;
"

f
o
r
m
=
"
p
o
s
t
f
i
x
"
f
e
n
c
e
=
"
t
r
u
e
"

l
s
p
a
c
e
=
"
0
e
m
"
r
s
p
a
c
e
=
"
0
e
m
"

"
&
L
e
f
t
A
n
g
l
e
B
r
a
c
k
e
t
;
"

f
o
r
m
=
"
p
r
e
f
i
x
"

f
e
n
c
e
=
"
t
r
u
e
"
s
t
r
e
t
c
h
y
=
"
t
r
u
e
"

l
s
p
a
c
e
=
"
0
e
m
"
r
s
p
a
c
e
=
"
0
e
m
"
"

"
&
L
e
f
t
C
e
i
l
i
n
g
;
"

f
o
r
m
=
"
p
r
e
f
i
x
"

f
e
n
c
e
=
"
t
r
u
e
"
s
t
r
e
t
c
h
y
=
"
t
r
u
e
"

l
s
p
a
c
e
=
"
0
e
m
"
r
s
p
a
c
e
=
"
0
e
m
"

"
&
L
e
f
t
D
o
u
b
l
e
B
r
a
c
k
e
t
;
"

f
o
r
m
=
"
p
r
e
f
i
x
"

f
e
n
c
e
=
"
t
r
u
e
"
s
t
r
e
t
c
h
y
=
"
t
r
u
e
"

l
s
p
a
c
e
=
"
0
e
m
"
r
s
p
a
c
e
=
"
0
e
m
"

"
&
L
e
f
t
F
l
o
o
r
;
"

f
o
r
m
=
"
p
r
e
f
i
x
"

f
e
n
c
e
=
"
t
r
u
e
"
s
t
r
e
t
c
h
y
=
"
t
r
u
e
"

l
s
p
a
c
e
=
"
0
e
m
"
r
s
p
a
c
e
=
"
0
e
m
"

"
&
O
p
e
n
C
u
r
l
y
D
o
u
b
l
e
Q
u
o
t
e
;
"

f
o
r
m
=
"
p
r
e
f
i
x
"

f
e
n
c
e
=
"
t
r
u
e
"

l
s
p
a
c
e
=
"
0
e
m
"
r
s
p
a
c
e
=
"
0
e
m
"

"
&
O
p
e
n
C
u
r
l
y
Q
u
o
t
e
;
"

f
o
r
m
=
"
p
r
e
f
i
x
"

f
e
n
c
e
=
"
t
r
u
e
"

l
s
p
a
c
e
=
"
0
e
m
"
r
s
p
a
c
e
=
"
0
e
m
"

"
&
R
i
g
h
t
A
n
g
l
e
B
r
a
c
k
e
t
;
"

f
o
r
m
=
"
p
o
s
t
f
i
x
"
f
e
n
c
e
=
"
t
r
u
e
"
s
t
r
e
t
c
h
y
=
"
t
r
u
e
"

l
s
p
a
c
e
=
"
0
e
m
"
r
s
p
a
c
e
=
"
0
e
m
"

"
&
R
i
g
h
t
C
e
i
l
i
n
g
;
"

f
o
r
m
=
"
p
o
s
t
f
i
x
"
f
e
n
c
e
=
"
t
r
u
e
"
s
t
r
e
t
c
h
y
=
"
t
r
u
e
"

l
s
p
a
c
e
=
"
0
e
m
"
r
s
p
a
c
e
=
"
0
e
m
"

"
&
R
i
g
h
t
D
o
u
b
l
e
B
r
a
c
k
e
t
;
"

f
o
r
m
=
"
p
o
s
t
f
i
x
"
f
e
n
c
e
=
"
t
r
u
e
"
s
t
r
e
t
c
h
y
=
"
t
r
u
e
"

l
s
p
a
c
e
=
"
0
e
m
"
r
s
p
a
c
e
=
"
0
e
m
"

"
&
R
i
g
h
t
F
l
o
o
r
;
"

f
o
r
m
=
"
p
o
s
t
f
i
x
"
f
e
n
c
e
=
"
t
r
u
e
"
s
t
r
e
t
c
h
y
=
"
t
r
u
e
"

l
s
p
a
c
e
=
"
0
e
m
"
r
s
p
a
c
e
=
"
0
e
m
"

"
&
I
n
v
i
s
i
b
l
e
C
o
m
m
a
;
"

f
o
r
m
=
"
i
n
f
i
x
"

s
e
p
a
r
a
t
o
r
=
"
t
r
u
e
"

l
s
p
a
c
e
=
"
0
e
m
"
r
s
p
a
c
e
=
"
0
e
m
"

"
,
"

f
o
r
m
=
"
i
n
f
i
x
"

s
e
p
a
r
a
t
o
r
=
"
t
r
u
e
"

l
s
p
a
c
e
=
"
0
e
m
"
r
s
p
a
c
e
=
"
v
e
r
y
t
h
i
c
k
m
a
t
h
s
p
a
c
e
"

"
&
H
o
r
i
z
o
n
t
a
l
L
i
n
e
;
"

f
o
r
m
=
"
i
n
f
i
x
"

s
t
r
e
t
c
h
y
=
"
t
r
u
e
"
m
i
n
s
i
z
e
=
"
0
"

l
s
p
a
c
e
=
"
0
e
m
"
r
s
p
a
c
e
=
"
0
e
m
"

"
&
V
e
r
t
i
c
a
l
L
i
n
e
;
"

f
o
r
m
=
"
i
n
f
i
x
"

s
t
r
e
t
c
h
y
=
"
t
r
u
e
"
m
i
n
s
i
z
e
=
"
0
"

l
s
p
a
c
e
=
"
0
e
m
"
r
s
p
a
c
e
=
"
0
e
m
"

"
;
"

f
o
r
m
=
"
i
n
f
i
x
"

s
e
p
a
r
a
t
o
r
=
"
t
r
u
e
"

l
s
p
a
c
e
=
"
0
e
m
"
r
s
p
a
c
e
=
"
t
h
i
c
k
m
a
t
h
s
p
a
c
e
"

"
;
"

f
o
r
m
=
"
p
o
s
t
f
i
x
"
s
e
p
a
r
a
t
o
r
=
"
t
r
u
e
"

l
s
p
a
c
e
=
"
0
e
m
"
r
s
p
a
c
e
=
"
0
e
m
"

"
:
=
"

f
o
r
m
=
"
i
n
f
i
x
"

l
s
p
a
c
e
=
"
t
h
i
c
k
m
a
t
h
s
p
a
c
e
"
r
s
p
a
c
e
=
"
t
h
i
c
k
m
a
t
h
s
p
a
c
e
"

"
&
A
s
s
i
g
n
;
"

f
o
r
m
=
"
i
n
f
i
x
"

l
s
p
a
c
e
=
"
t
h
i
c
k
m
a
t
h
s
p
a
c
e
"
r
s
p
a
c
e
=
"
t
h
i
c
k
m
a
t
h
s
p
a
c
e
"

"
&
B
e
c
a
u
s
e
;
"

f
o
r
m
=
"
i
n
f
i
x
"

l
s
p
a
c
e
=
"
t
h
i
c
k
m
a
t
h
s
p
a
c
e
"
r
s
p
a
c
e
=
"
t
h
i
c
k
m
a
t
h
s
p
a
c
e
"

"
&
T
h
e
r
e
f
o
r
e
;
"

f
o
r
m
=
"
i
n
f
i
x
"

l
s
p
a
c
e
=
"
t
h
i
c
k
m
a
t
h
s
p
a
c
e
"
r
s
p
a
c
e
=
"
t
h
i
c
k
m
a
t
h
s
p
a
c
e
"

"
&
V
e
r
t
i
c
a
l
S
e
p
a
r
a
t
o
r
;
"

f
o
r
m
=
"
i
n
f
i
x
"

s
t
r
e
t
c
h
y
=
"
t
r
u
e
"

l
s
p
a
c
e
=
"
t
h
i
c
k
m
a
t
h
s
p
a
c
e
"
r
s
p
a
c
e
=
"
t
h
i
c
k
m
a
t
h
s
p
a
c
e
"

"
/
/
"

f
o
r
m
=
"
i
n
f
i
x
"

l
s
p
a
c
e
=
"
t
h
i
c
k
m
a
t
h
s
p
a
c
e
"
r
s
p
a
c
e
=
"
t
h
i
c
k
m
a
t
h
s
p
a
c
e
"

B.5. Operator dictionary entries 279
"
&
C
o
l
o
n
;
"

f
o
r
m
=
"
i
n
f
i
x
"

l
s
p
a
c
e
=
"
t
h
i
c
k
m
a
t
h
s
p
a
c
e
"
r
s
p
a
c
e
=
"
t
h
i
c
k
m
a
t
h
s
p
a
c
e
"

"
&
a
m
p
;
"

f
o
r
m
=
"
p
r
e
f
i
x
"

l
s
p
a
c
e
=
"
0
e
m
"
r
s
p
a
c
e
=
"
t
h
i
c
k
m
a
t
h
s
p
a
c
e
"

"
&
a
m
p
;
"

f
o
r
m
=
"
p
o
s
t
f
i
x
"

l
s
p
a
c
e
=
"
t
h
i
c
k
m
a
t
h
s
p
a
c
e
"
r
s
p
a
c
e
=
"
0
e
m
"

"
*
=
"

f
o
r
m
=
"
i
n
f
i
x
"

l
s
p
a
c
e
=
"
t
h
i
c
k
m
a
t
h
s
p
a
c
e
"
r
s
p
a
c
e
=
"
t
h
i
c
k
m
a
t
h
s
p
a
c
e
"

"
-
=
"

f
o
r
m
=
"
i
n
f
i
x
"

l
s
p
a
c
e
=
"
t
h
i
c
k
m
a
t
h
s
p
a
c
e
"
r
s
p
a
c
e
=
"
t
h
i
c
k
m
a
t
h
s
p
a
c
e
"

"
+
=
"

f
o
r
m
=
"
i
n
f
i
x
"

l
s
p
a
c
e
=
"
t
h
i
c
k
m
a
t
h
s
p
a
c
e
"
r
s
p
a
c
e
=
"
t
h
i
c
k
m
a
t
h
s
p
a
c
e
"

"
/
=
"

f
o
r
m
=
"
i
n
f
i
x
"

l
s
p
a
c
e
=
"
t
h
i
c
k
m
a
t
h
s
p
a
c
e
"
r
s
p
a
c
e
=
"
t
h
i
c
k
m
a
t
h
s
p
a
c
e
"

"
-
>
"

f
o
r
m
=
"
i
n
f
i
x
"

l
s
p
a
c
e
=
"
t
h
i
c
k
m
a
t
h
s
p
a
c
e
"
r
s
p
a
c
e
=
"
t
h
i
c
k
m
a
t
h
s
p
a
c
e
"

"
:
"

f
o
r
m
=
"
i
n
f
i
x
"

l
s
p
a
c
e
=
"
t
h
i
c
k
m
a
t
h
s
p
a
c
e
"
r
s
p
a
c
e
=
"
t
h
i
c
k
m
a
t
h
s
p
a
c
e
"

"
.
.
"

f
o
r
m
=
"
p
o
s
t
f
i
x
"

l
s
p
a
c
e
=
"
m
e
d
i
u
m
m
a
t
h
s
p
a
c
e
"
r
s
p
a
c
e
=
"
0
e
m
"

"
.
.
.
"

f
o
r
m
=
"
p
o
s
t
f
i
x
"

l
s
p
a
c
e
=
"
m
e
d
i
u
m
m
a
t
h
s
p
a
c
e
"
r
s
p
a
c
e
=
"
0
e
m
"

"
&
S
u
c
h
T
h
a
t
;
"

f
o
r
m
=
"
i
n
f
i
x
"

l
s
p
a
c
e
=
"
t
h
i
c
k
m
a
t
h
s
p
a
c
e
"
r
s
p
a
c
e
=
"
t
h
i
c
k
m
a
t
h
s
p
a
c
e
"

"
&
D
o
u
b
l
e
L
e
f
t
T
e
e
;
"

f
o
r
m
=
"
i
n
f
i
x
"

l
s
p
a
c
e
=
"
t
h
i
c
k
m
a
t
h
s
p
a
c
e
"
r
s
p
a
c
e
=
"
t
h
i
c
k
m
a
t
h
s
p
a
c
e
"

"
&
D
o
u
b
l
e
R
i
g
h
t
T
e
e
;
"

f
o
r
m
=
"
i
n
f
i
x
"

l
s
p
a
c
e
=
"
t
h
i
c
k
m
a
t
h
s
p
a
c
e
"
r
s
p
a
c
e
=
"
t
h
i
c
k
m
a
t
h
s
p
a
c
e
"

"
&
D
o
w
n
T
e
e
;
"

f
o
r
m
=
"
i
n
f
i
x
"

l
s
p
a
c
e
=
"
t
h
i
c
k
m
a
t
h
s
p
a
c
e
"
r
s
p
a
c
e
=
"
t
h
i
c
k
m
a
t
h
s
p
a
c
e
"

"
&
L
e
f
t
T
e
e
;
"

f
o
r
m
=
"
i
n
f
i
x
"

l
s
p
a
c
e
=
"
t
h
i
c
k
m
a
t
h
s
p
a
c
e
"
r
s
p
a
c
e
=
"
t
h
i
c
k
m
a
t
h
s
p
a
c
e
"

"
&
R
i
g
h
t
T
e
e
;
"

f
o
r
m
=
"
i
n
f
i
x
"

l
s
p
a
c
e
=
"
t
h
i
c
k
m
a
t
h
s
p
a
c
e
"
r
s
p
a
c
e
=
"
t
h
i
c
k
m
a
t
h
s
p
a
c
e
"

"
&
I
m
p
l
i
e
s
;
"

f
o
r
m
=
"
i
n
f
i
x
"

s
t
r
e
t
c
h
y
=
"
t
r
u
e
"

l
s
p
a
c
e
=
"
t
h
i
c
k
m
a
t
h
s
p
a
c
e
"
r
s
p
a
c
e
=
"
t
h
i
c
k
m
a
t
h
s
p
a
c
e
"

"
&
R
o
u
n
d
I
m
p
l
i
e
s
;
"

f
o
r
m
=
"
i
n
f
i
x
"

l
s
p
a
c
e
=
"
t
h
i
c
k
m
a
t
h
s
p
a
c
e
"
r
s
p
a
c
e
=
"
t
h
i
c
k
m
a
t
h
s
p
a
c
e
"

"
|
"

f
o
r
m
=
"
i
n
f
i
x
"

s
t
r
e
t
c
h
y
=
"
t
r
u
e
"

l
s
p
a
c
e
=
"
t
h
i
c
k
m
a
t
h
s
p
a
c
e
"
r
s
p
a
c
e
=
"
t
h
i
c
k
m
a
t
h
s
p
a
c
e
"

"
|
|
"

f
o
r
m
=
"
i
n
f
i
x
"

l
s
p
a
c
e
=
"
m
e
d
i
u
m
m
a
t
h
s
p
a
c
e
"
r
s
p
a
c
e
=
"
m
e
d
i
u
m
m
a
t
h
s
p
a
c
e
"

"
&
O
r
;
"

f
o
r
m
=
"
i
n
f
i
x
"

s
t
r
e
t
c
h
y
=
"
t
r
u
e
"

l
s
p
a
c
e
=
"
m
e
d
i
u
m
m
a
t
h
s
p
a
c
e
"
r
s
p
a
c
e
=
"
m
e
d
i
u
m
m
a
t
h
s
p
a
c
e
"

"
&
a
m
p
;
&
a
m
p
;
"

f
o
r
m
=
"
i
n
f
i
x
"

l
s
p
a
c
e
=
"
t
h
i
c
k
m
a
t
h
s
p
a
c
e
"
r
s
p
a
c
e
=
"
t
h
i
c
k
m
a
t
h
s
p
a
c
e
"

"
&
A
n
d
;
"

f
o
r
m
=
"
i
n
f
i
x
"

s
t
r
e
t
c
h
y
=
"
t
r
u
e
"

l
s
p
a
c
e
=
"
m
e
d
i
u
m
m
a
t
h
s
p
a
c
e
"
r
s
p
a
c
e
=
"
m
e
d
i
u
m
m
a
t
h
s
p
a
c
e
"

"
&
a
m
p
;
"

f
o
r
m
=
"
i
n
f
i
x
"

l
s
p
a
c
e
=
"
t
h
i
c
k
m
a
t
h
s
p
a
c
e
"
r
s
p
a
c
e
=
"
t
h
i
c
k
m
a
t
h
s
p
a
c
e
"

"
!
"

f
o
r
m
=
"
p
r
e
f
i
x
"

l
s
p
a
c
e
=
"
0
e
m
"
r
s
p
a
c
e
=
"
t
h
i
c
k
m
a
t
h
s
p
a
c
e
"

"
&
N
o
t
;
"

f
o
r
m
=
"
p
r
e
f
i
x
"

l
s
p
a
c
e
=
"
0
e
m
"
r
s
p
a
c
e
=
"
t
h
i
c
k
m
a
t
h
s
p
a
c
e
"

"
&
E
x
i
s
t
s
;
"

f
o
r
m
=
"
p
r
e
f
i
x
"

l
s
p
a
c
e
=
"
0
e
m
"
r
s
p
a
c
e
=
"
t
h
i
c
k
m
a
t
h
s
p
a
c
e
"

280 Appendix B. Operator Dictionary (Non-Normative)
"
&
F
o
r
A
l
l
;
"

f
o
r
m
=
"
p
r
e
f
i
x
"

l
s
p
a
c
e
=
"
0
e
m
"
r
s
p
a
c
e
=
"
t
h
i
c
k
m
a
t
h
s
p
a
c
e
"

"
&
N
o
t
E
x
i
s
t
s
;
"

f
o
r
m
=
"
p
r
e
f
i
x
"

l
s
p
a
c
e
=
"
0
e
m
"
r
s
p
a
c
e
=
"
t
h
i
c
k
m
a
t
h
s
p
a
c
e
"

"
&
E
l
e
m
e
n
t
;
"

f
o
r
m
=
"
i
n
f
i
x
"

l
s
p
a
c
e
=
"
t
h
i
c
k
m
a
t
h
s
p
a
c
e
"
r
s
p
a
c
e
=
"
t
h
i
c
k
m
a
t
h
s
p
a
c
e
"

"
&
N
o
t
E
l
e
m
e
n
t
;
"

f
o
r
m
=
"
i
n
f
i
x
"

l
s
p
a
c
e
=
"
t
h
i
c
k
m
a
t
h
s
p
a
c
e
"
r
s
p
a
c
e
=
"
t
h
i
c
k
m
a
t
h
s
p
a
c
e
"

"
&
N
o
t
R
e
v
e
r
s
e
E
l
e
m
e
n
t
;
"

f
o
r
m
=
"
i
n
f
i
x
"

l
s
p
a
c
e
=
"
t
h
i
c
k
m
a
t
h
s
p
a
c
e
"
r
s
p
a
c
e
=
"
t
h
i
c
k
m
a
t
h
s
p
a
c
e
"

"
&
N
o
t
S
q
u
a
r
e
S
u
b
s
e
t
;
"

f
o
r
m
=
"
i
n
f
i
x
"

l
s
p
a
c
e
=
"
t
h
i
c
k
m
a
t
h
s
p
a
c
e
"
r
s
p
a
c
e
=
"
t
h
i
c
k
m
a
t
h
s
p
a
c
e
"

"
&
N
o
t
S
q
u
a
r
e
S
u
b
s
e
t
E
q
u
a
l
;
"

f
o
r
m
=
"
i
n
f
i
x
"

l
s
p
a
c
e
=
"
t
h
i
c
k
m
a
t
h
s
p
a
c
e
"
r
s
p
a
c
e
=
"
t
h
i
c
k
m
a
t
h
s
p
a
c
e
"

"
&
N
o
t
S
q
u
a
r
e
S
u
p
e
r
s
e
t
;
"

f
o
r
m
=
"
i
n
f
i
x
"

l
s
p
a
c
e
=
"
t
h
i
c
k
m
a
t
h
s
p
a
c
e
"
r
s
p
a
c
e
=
"
t
h
i
c
k
m
a
t
h
s
p
a
c
e
"

"
&
N
o
t
S
q
u
a
r
e
S
u
p
e
r
s
e
t
E
q
u
a
l
;
"

f
o
r
m
=
"
i
n
f
i
x
"

l
s
p
a
c
e
=
"
t
h
i
c
k
m
a
t
h
s
p
a
c
e
"
r
s
p
a
c
e
=
"
t
h
i
c
k
m
a
t
h
s
p
a
c
e
"

"
&
N
o
t
S
u
b
s
e
t
;
"

f
o
r
m
=
"
i
n
f
i
x
"

l
s
p
a
c
e
=
"
t
h
i
c
k
m
a
t
h
s
p
a
c
e
"
r
s
p
a
c
e
=
"
t
h
i
c
k
m
a
t
h
s
p
a
c
e
"

"
&
N
o
t
S
u
b
s
e
t
E
q
u
a
l
;
"

f
o
r
m
=
"
i
n
f
i
x
"

l
s
p
a
c
e
=
"
t
h
i
c
k
m
a
t
h
s
p
a
c
e
"
r
s
p
a
c
e
=
"
t
h
i
c
k
m
a
t
h
s
p
a
c
e
"

"
&
N
o
t
S
u
p
e
r
s
e
t
;
"

f
o
r
m
=
"
i
n
f
i
x
"

l
s
p
a
c
e
=
"
t
h
i
c
k
m
a
t
h
s
p
a
c
e
"
r
s
p
a
c
e
=
"
t
h
i
c
k
m
a
t
h
s
p
a
c
e
"

"
&
N
o
t
S
u
p
e
r
s
e
t
E
q
u
a
l
;
"

f
o
r
m
=
"
i
n
f
i
x
"

l
s
p
a
c
e
=
"
t
h
i
c
k
m
a
t
h
s
p
a
c
e
"
r
s
p
a
c
e
=
"
t
h
i
c
k
m
a
t
h
s
p
a
c
e
"

"
&
R
e
v
e
r
s
e
E
l
e
m
e
n
t
;
"

f
o
r
m
=
"
i
n
f
i
x
"

l
s
p
a
c
e
=
"
t
h
i
c
k
m
a
t
h
s
p
a
c
e
"
r
s
p
a
c
e
=
"
t
h
i
c
k
m
a
t
h
s
p
a
c
e
"

"
&
S
q
u
a
r
e
S
u
b
s
e
t
;
"

f
o
r
m
=
"
i
n
f
i
x
"

l
s
p
a
c
e
=
"
t
h
i
c
k
m
a
t
h
s
p
a
c
e
"
r
s
p
a
c
e
=
"
t
h
i
c
k
m
a
t
h
s
p
a
c
e
"

"
&
S
q
u
a
r
e
S
u
b
s
e
t
E
q
u
a
l
;
"

f
o
r
m
=
"
i
n
f
i
x
"

l
s
p
a
c
e
=
"
t
h
i
c
k
m
a
t
h
s
p
a
c
e
"
r
s
p
a
c
e
=
"
t
h
i
c
k
m
a
t
h
s
p
a
c
e
"

"
&
S
q
u
a
r
e
S
u
p
e
r
s
e
t
;
"

f
o
r
m
=
"
i
n
f
i
x
"

l
s
p
a
c
e
=
"
t
h
i
c
k
m
a
t
h
s
p
a
c
e
"
r
s
p
a
c
e
=
"
t
h
i
c
k
m
a
t
h
s
p
a
c
e
"

"
&
S
q
u
a
r
e
S
u
p
e
r
s
e
t
E
q
u
a
l
;
"

f
o
r
m
=
"
i
n
f
i
x
"

l
s
p
a
c
e
=
"
t
h
i
c
k
m
a
t
h
s
p
a
c
e
"
r
s
p
a
c
e
=
"
t
h
i
c
k
m
a
t
h
s
p
a
c
e
"

"
&
S
u
b
s
e
t
;
"

f
o
r
m
=
"
i
n
f
i
x
"

l
s
p
a
c
e
=
"
t
h
i
c
k
m
a
t
h
s
p
a
c
e
"
r
s
p
a
c
e
=
"
t
h
i
c
k
m
a
t
h
s
p
a
c
e
"

"
&
S
u
b
s
e
t
E
q
u
a
l
;
"

f
o
r
m
=
"
i
n
f
i
x
"

l
s
p
a
c
e
=
"
t
h
i
c
k
m
a
t
h
s
p
a
c
e
"
r
s
p
a
c
e
=
"
t
h
i
c
k
m
a
t
h
s
p
a
c
e
"

"
&
S
u
p
e
r
s
e
t
;
"

f
o
r
m
=
"
i
n
f
i
x
"

l
s
p
a
c
e
=
"
t
h
i
c
k
m
a
t
h
s
p
a
c
e
"
r
s
p
a
c
e
=
"
t
h
i
c
k
m
a
t
h
s
p
a
c
e
"

"
&
S
u
p
e
r
s
e
t
E
q
u
a
l
;
"

f
o
r
m
=
"
i
n
f
i
x
"

l
s
p
a
c
e
=
"
t
h
i
c
k
m
a
t
h
s
p
a
c
e
"
r
s
p
a
c
e
=
"
t
h
i
c
k
m
a
t
h
s
p
a
c
e
"

"
&
D
o
u
b
l
e
L
e
f
t
A
r
r
o
w
;
"

f
o
r
m
=
"
i
n
f
i
x
"

s
t
r
e
t
c
h
y
=
"
t
r
u
e
"

l
s
p
a
c
e
=
"
t
h
i
c
k
m
a
t
h
s
p
a
c
e
"
r
s
p
a
c
e
=
"
t
h
i
c
k
m
a
t
h
s
p
a
c
e
"

"
&
D
o
u
b
l
e
L
e
f
t
R
i
g
h
t
A
r
r
o
w
;
"

f
o
r
m
=
"
i
n
f
i
x
"

s
t
r
e
t
c
h
y
=
"
t
r
u
e
"

l
s
p
a
c
e
=
"
t
h
i
c
k
m
a
t
h
s
p
a
c
e
"
r
s
p
a
c
e
=
"
t
h
i
c
k
m
a
t
h
s
p
a
c
e
"

"
&
D
o
u
b
l
e
R
i
g
h
t
A
r
r
o
w
;
"

f
o
r
m
=
"
i
n
f
i
x
"

s
t
r
e
t
c
h
y
=
"
t
r
u
e
"

l
s
p
a
c
e
=
"
t
h
i
c
k
m
a
t
h
s
p
a
c
e
"
r
s
p
a
c
e
=
"
t
h
i
c
k
m
a
t
h
s
p
a
c
e
"

"
&
D
o
w
n
L
e
f
t
R
i
g
h
t
V
e
c
t
o
r
;
"

f
o
r
m
=
"
i
n
f
i
x
"

s
t
r
e
t
c
h
y
=
"
t
r
u
e
"

l
s
p
a
c
e
=
"
t
h
i
c
k
m
a
t
h
s
p
a
c
e
"
r
s
p
a
c
e
=
"
t
h
i
c
k
m
a
t
h
s
p
a
c
e
"

"
&
D
o
w
n
L
e
f
t
T
e
e
V
e
c
t
o
r
;
"

f
o
r
m
=
"
i
n
f
i
x
"

s
t
r
e
t
c
h
y
=
"
t
r
u
e
"

l
s
p
a
c
e
=
"
t
h
i
c
k
m
a
t
h
s
p
a
c
e
"
r
s
p
a
c
e
=
"
t
h
i
c
k
m
a
t
h
s
p
a
c
e
"

"
&
D
o
w
n
L
e
f
t
V
e
c
t
o
r
;
"

f
o
r
m
=
"
i
n
f
i
x
"

s
t
r
e
t
c
h
y
=
"
t
r
u
e
"

l
s
p
a
c
e
=
"
t
h
i
c
k
m
a
t
h
s
p
a
c
e
"
r
s
p
a
c
e
=
"
t
h
i
c
k
m
a
t
h
s
p
a
c
e
"

"
&
D
o
w
n
L
e
f
t
V
e
c
t
o
r
B
a
r
;
"

f
o
r
m
=
"
i
n
f
i
x
"

s
t
r
e
t
c
h
y
=
"
t
r
u
e
"

l
s
p
a
c
e
=
"
t
h
i
c
k
m
a
t
h
s
p
a
c
e
"
r
s
p
a
c
e
=
"
t
h
i
c
k
m
a
t
h
s
p
a
c
e
"

"
&
D
o
w
n
R
i
g
h
t
T
e
e
V
e
c
t
o
r
;
"

f
o
r
m
=
"
i
n
f
i
x
"

s
t
r
e
t
c
h
y
=
"
t
r
u
e
"

l
s
p
a
c
e
=
"
t
h
i
c
k
m
a
t
h
s
p
a
c
e
"
r
s
p
a
c
e
=
"
t
h
i
c
k
m
a
t
h
s
p
a
c
e
"

"
&
D
o
w
n
R
i
g
h
t
V
e
c
t
o
r
;
"

f
o
r
m
=
"
i
n
f
i
x
"

s
t
r
e
t
c
h
y
=
"
t
r
u
e
"

l
s
p
a
c
e
=
"
t
h
i
c
k
m
a
t
h
s
p
a
c
e
"
r
s
p
a
c
e
=
"
t
h
i
c
k
m
a
t
h
s
p
a
c
e
"

"
&
D
o
w
n
R
i
g
h
t
V
e
c
t
o
r
B
a
r
;
"

f
o
r
m
=
"
i
n
f
i
x
"

s
t
r
e
t
c
h
y
=
"
t
r
u
e
"

l
s
p
a
c
e
=
"
t
h
i
c
k
m
a
t
h
s
p
a
c
e
"
r
s
p
a
c
e
=
"
t
h
i
c
k
m
a
t
h
s
p
a
c
e
"

"
&
L
e
f
t
A
r
r
o
w
;
"

f
o
r
m
=
"
i
n
f
i
x
"

s
t
r
e
t
c
h
y
=
"
t
r
u
e
"

l
s
p
a
c
e
=
"
t
h
i
c
k
m
a
t
h
s
p
a
c
e
"
r
s
p
a
c
e
=
"
t
h
i
c
k
m
a
t
h
s
p
a
c
e
"

"
&
L
e
f
t
A
r
r
o
w
B
a
r
;
"

f
o
r
m
=
"
i
n
f
i
x
"

s
t
r
e
t
c
h
y
=
"
t
r
u
e
"

l
s
p
a
c
e
=
"
t
h
i
c
k
m
a
t
h
s
p
a
c
e
"
r
s
p
a
c
e
=
"
t
h
i
c
k
m
a
t
h
s
p
a
c
e
"

"
&
L
e
f
t
A
r
r
o
w
R
i
g
h
t
A
r
r
o
w
;
"

f
o
r
m
=
"
i
n
f
i
x
"

s
t
r
e
t
c
h
y
=
"
t
r
u
e
"

l
s
p
a
c
e
=
"
t
h
i
c
k
m
a
t
h
s
p
a
c
e
"
r
s
p
a
c
e
=
"
t
h
i
c
k
m
a
t
h
s
p
a
c
e
"

"
&
L
e
f
t
R
i
g
h
t
A
r
r
o
w
;
"

f
o
r
m
=
"
i
n
f
i
x
"

s
t
r
e
t
c
h
y
=
"
t
r
u
e
"

l
s
p
a
c
e
=
"
t
h
i
c
k
m
a
t
h
s
p
a
c
e
"
r
s
p
a
c
e
=
"
t
h
i
c
k
m
a
t
h
s
p
a
c
e
"

"
&
L
e
f
t
R
i
g
h
t
V
e
c
t
o
r
;
"

f
o
r
m
=
"
i
n
f
i
x
"

s
t
r
e
t
c
h
y
=
"
t
r
u
e
"

l
s
p
a
c
e
=
"
t
h
i
c
k
m
a
t
h
s
p
a
c
e
"
r
s
p
a
c
e
=
"
t
h
i
c
k
m
a
t
h
s
p
a
c
e
"

"
&
L
e
f
t
T
e
e
A
r
r
o
w
;
"

f
o
r
m
=
"
i
n
f
i
x
"

s
t
r
e
t
c
h
y
=
"
t
r
u
e
"

l
s
p
a
c
e
=
"
t
h
i
c
k
m
a
t
h
s
p
a
c
e
"
r
s
p
a
c
e
=
"
t
h
i
c
k
m
a
t
h
s
p
a
c
e
"

"
&
L
e
f
t
T
e
e
V
e
c
t
o
r
;
"

f
o
r
m
=
"
i
n
f
i
x
"

s
t
r
e
t
c
h
y
=
"
t
r
u
e
"

l
s
p
a
c
e
=
"
t
h
i
c
k
m
a
t
h
s
p
a
c
e
"
r
s
p
a
c
e
=
"
t
h
i
c
k
m
a
t
h
s
p
a
c
e
"

B.5. Operator dictionary entries 281
"
&
L
e
f
t
V
e
c
t
o
r
;
"

f
o
r
m
=
"
i
n
f
i
x
"

s
t
r
e
t
c
h
y
=
"
t
r
u
e
"

l
s
p
a
c
e
=
"
t
h
i
c
k
m
a
t
h
s
p
a
c
e
"
r
s
p
a
c
e
=
"
t
h
i
c
k
m
a
t
h
s
p
a
c
e
"

"
&
L
e
f
t
V
e
c
t
o
r
B
a
r
;
"

f
o
r
m
=
"
i
n
f
i
x
"

s
t
r
e
t
c
h
y
=
"
t
r
u
e
"

l
s
p
a
c
e
=
"
t
h
i
c
k
m
a
t
h
s
p
a
c
e
"
r
s
p
a
c
e
=
"
t
h
i
c
k
m
a
t
h
s
p
a
c
e
"

"
&
L
o
w
e
r
L
e
f
t
A
r
r
o
w
;
"

f
o
r
m
=
"
i
n
f
i
x
"

s
t
r
e
t
c
h
y
=
"
t
r
u
e
"

l
s
p
a
c
e
=
"
t
h
i
c
k
m
a
t
h
s
p
a
c
e
"
r
s
p
a
c
e
=
"
t
h
i
c
k
m
a
t
h
s
p
a
c
e
"

"
&
L
o
w
e
r
R
i
g
h
t
A
r
r
o
w
;
"

f
o
r
m
=
"
i
n
f
i
x
"

s
t
r
e
t
c
h
y
=
"
t
r
u
e
"

l
s
p
a
c
e
=
"
t
h
i
c
k
m
a
t
h
s
p
a
c
e
"
r
s
p
a
c
e
=
"
t
h
i
c
k
m
a
t
h
s
p
a
c
e
"

"
&
R
i
g
h
t
A
r
r
o
w
;
"

f
o
r
m
=
"
i
n
f
i
x
"

s
t
r
e
t
c
h
y
=
"
t
r
u
e
"

l
s
p
a
c
e
=
"
t
h
i
c
k
m
a
t
h
s
p
a
c
e
"
r
s
p
a
c
e
=
"
t
h
i
c
k
m
a
t
h
s
p
a
c
e
"

"
&
R
i
g
h
t
A
r
r
o
w
B
a
r
;
"

f
o
r
m
=
"
i
n
f
i
x
"

s
t
r
e
t
c
h
y
=
"
t
r
u
e
"

l
s
p
a
c
e
=
"
t
h
i
c
k
m
a
t
h
s
p
a
c
e
"
r
s
p
a
c
e
=
"
t
h
i
c
k
m
a
t
h
s
p
a
c
e
"

"
&
R
i
g
h
t
A
r
r
o
w
L
e
f
t
A
r
r
o
w
;
"

f
o
r
m
=
"
i
n
f
i
x
"

s
t
r
e
t
c
h
y
=
"
t
r
u
e
"

l
s
p
a
c
e
=
"
t
h
i
c
k
m
a
t
h
s
p
a
c
e
"
r
s
p
a
c
e
=
"
t
h
i
c
k
m
a
t
h
s
p
a
c
e
"

"
&
R
i
g
h
t
T
e
e
A
r
r
o
w
;
"

f
o
r
m
=
"
i
n
f
i
x
"

s
t
r
e
t
c
h
y
=
"
t
r
u
e
"

l
s
p
a
c
e
=
"
t
h
i
c
k
m
a
t
h
s
p
a
c
e
"
r
s
p
a
c
e
=
"
t
h
i
c
k
m
a
t
h
s
p
a
c
e
"

"
&
R
i
g
h
t
T
e
e
V
e
c
t
o
r
;
"

f
o
r
m
=
"
i
n
f
i
x
"

s
t
r
e
t
c
h
y
=
"
t
r
u
e
"

l
s
p
a
c
e
=
"
t
h
i
c
k
m
a
t
h
s
p
a
c
e
"
r
s
p
a
c
e
=
"
t
h
i
c
k
m
a
t
h
s
p
a
c
e
"

"
&
R
i
g
h
t
V
e
c
t
o
r
;
"

f
o
r
m
=
"
i
n
f
i
x
"

s
t
r
e
t
c
h
y
=
"
t
r
u
e
"

l
s
p
a
c
e
=
"
t
h
i
c
k
m
a
t
h
s
p
a
c
e
"
r
s
p
a
c
e
=
"
t
h
i
c
k
m
a
t
h
s
p
a
c
e
"

"
&
R
i
g
h
t
V
e
c
t
o
r
B
a
r
;
"

f
o
r
m
=
"
i
n
f
i
x
"

s
t
r
e
t
c
h
y
=
"
t
r
u
e
"

l
s
p
a
c
e
=
"
t
h
i
c
k
m
a
t
h
s
p
a
c
e
"
r
s
p
a
c
e
=
"
t
h
i
c
k
m
a
t
h
s
p
a
c
e
"

"
&
S
h
o
r
t
L
e
f
t
A
r
r
o
w
;
"

f
o
r
m
=
"
i
n
f
i
x
"

l
s
p
a
c
e
=
"
t
h
i
c
k
m
a
t
h
s
p
a
c
e
"
r
s
p
a
c
e
=
"
t
h
i
c
k
m
a
t
h
s
p
a
c
e
"

"
&
S
h
o
r
t
R
i
g
h
t
A
r
r
o
w
;
"

f
o
r
m
=
"
i
n
f
i
x
"

l
s
p
a
c
e
=
"
t
h
i
c
k
m
a
t
h
s
p
a
c
e
"
r
s
p
a
c
e
=
"
t
h
i
c
k
m
a
t
h
s
p
a
c
e
"

"
&
U
p
p
e
r
L
e
f
t
A
r
r
o
w
;
"

f
o
r
m
=
"
i
n
f
i
x
"

s
t
r
e
t
c
h
y
=
"
t
r
u
e
"

l
s
p
a
c
e
=
"
t
h
i
c
k
m
a
t
h
s
p
a
c
e
"
r
s
p
a
c
e
=
"
t
h
i
c
k
m
a
t
h
s
p
a
c
e
"

"
&
U
p
p
e
r
R
i
g
h
t
A
r
r
o
w
;
"

f
o
r
m
=
"
i
n
f
i
x
"

s
t
r
e
t
c
h
y
=
"
t
r
u
e
"

l
s
p
a
c
e
=
"
t
h
i
c
k
m
a
t
h
s
p
a
c
e
"
r
s
p
a
c
e
=
"
t
h
i
c
k
m
a
t
h
s
p
a
c
e
"

"
=
"

f
o
r
m
=
"
i
n
f
i
x
"

l
s
p
a
c
e
=
"
t
h
i
c
k
m
a
t
h
s
p
a
c
e
"
r
s
p
a
c
e
=
"
t
h
i
c
k
m
a
t
h
s
p
a
c
e
"

"
&
l
t
;
"

f
o
r
m
=
"
i
n
f
i
x
"

l
s
p
a
c
e
=
"
t
h
i
c
k
m
a
t
h
s
p
a
c
e
"
r
s
p
a
c
e
=
"
t
h
i
c
k
m
a
t
h
s
p
a
c
e
"

"
>
"

f
o
r
m
=
"
i
n
f
i
x
"

l
s
p
a
c
e
=
"
t
h
i
c
k
m
a
t
h
s
p
a
c
e
"
r
s
p
a
c
e
=
"
t
h
i
c
k
m
a
t
h
s
p
a
c
e
"

"
!
=
"

f
o
r
m
=
"
i
n
f
i
x
"

l
s
p
a
c
e
=
"
t
h
i
c
k
m
a
t
h
s
p
a
c
e
"
r
s
p
a
c
e
=
"
t
h
i
c
k
m
a
t
h
s
p
a
c
e
"

"
=
=
"

f
o
r
m
=
"
i
n
f
i
x
"

l
s
p
a
c
e
=
"
t
h
i
c
k
m
a
t
h
s
p
a
c
e
"
r
s
p
a
c
e
=
"
t
h
i
c
k
m
a
t
h
s
p
a
c
e
"

"
&
l
t
;
=
"

f
o
r
m
=
"
i
n
f
i
x
"

l
s
p
a
c
e
=
"
t
h
i
c
k
m
a
t
h
s
p
a
c
e
"
r
s
p
a
c
e
=
"
t
h
i
c
k
m
a
t
h
s
p
a
c
e
"

"
>
=
"

f
o
r
m
=
"
i
n
f
i
x
"

l
s
p
a
c
e
=
"
t
h
i
c
k
m
a
t
h
s
p
a
c
e
"
r
s
p
a
c
e
=
"
t
h
i
c
k
m
a
t
h
s
p
a
c
e
"

"
&
C
o
n
g
r
u
e
n
t
;
"

f
o
r
m
=
"
i
n
f
i
x
"

l
s
p
a
c
e
=
"
t
h
i
c
k
m
a
t
h
s
p
a
c
e
"
r
s
p
a
c
e
=
"
t
h
i
c
k
m
a
t
h
s
p
a
c
e
"

"
&
C
u
p
C
a
p
;
"

f
o
r
m
=
"
i
n
f
i
x
"

l
s
p
a
c
e
=
"
t
h
i
c
k
m
a
t
h
s
p
a
c
e
"
r
s
p
a
c
e
=
"
t
h
i
c
k
m
a
t
h
s
p
a
c
e
"

"
&
D
o
t
E
q
u
a
l
;
"

f
o
r
m
=
"
i
n
f
i
x
"

l
s
p
a
c
e
=
"
t
h
i
c
k
m
a
t
h
s
p
a
c
e
"
r
s
p
a
c
e
=
"
t
h
i
c
k
m
a
t
h
s
p
a
c
e
"

"
&
D
o
u
b
l
e
V
e
r
t
i
c
a
l
B
a
r
;
"

f
o
r
m
=
"
i
n
f
i
x
"

l
s
p
a
c
e
=
"
t
h
i
c
k
m
a
t
h
s
p
a
c
e
"
r
s
p
a
c
e
=
"
t
h
i
c
k
m
a
t
h
s
p
a
c
e
"

"
&
E
q
u
a
l
;
"

f
o
r
m
=
"
i
n
f
i
x
"

l
s
p
a
c
e
=
"
t
h
i
c
k
m
a
t
h
s
p
a
c
e
"
r
s
p
a
c
e
=
"
t
h
i
c
k
m
a
t
h
s
p
a
c
e
"

"
&
E
q
u
a
l
T
i
l
d
e
;
"

f
o
r
m
=
"
i
n
f
i
x
"

l
s
p
a
c
e
=
"
t
h
i
c
k
m
a
t
h
s
p
a
c
e
"
r
s
p
a
c
e
=
"
t
h
i
c
k
m
a
t
h
s
p
a
c
e
"

"
&
E
q
u
i
l
i
b
r
i
u
m
;
"

f
o
r
m
=
"
i
n
f
i
x
"

s
t
r
e
t
c
h
y
=
"
t
r
u
e
"

l
s
p
a
c
e
=
"
t
h
i
c
k
m
a
t
h
s
p
a
c
e
"
r
s
p
a
c
e
=
"
t
h
i
c
k
m
a
t
h
s
p
a
c
e
"

"
&
G
r
e
a
t
e
r
E
q
u
a
l
;
"

f
o
r
m
=
"
i
n
f
i
x
"

l
s
p
a
c
e
=
"
t
h
i
c
k
m
a
t
h
s
p
a
c
e
"
r
s
p
a
c
e
=
"
t
h
i
c
k
m
a
t
h
s
p
a
c
e
"

"
&
G
r
e
a
t
e
r
E
q
u
a
l
L
e
s
s
;
"

f
o
r
m
=
"
i
n
f
i
x
"

l
s
p
a
c
e
=
"
t
h
i
c
k
m
a
t
h
s
p
a
c
e
"
r
s
p
a
c
e
=
"
t
h
i
c
k
m
a
t
h
s
p
a
c
e
"

"
&
G
r
e
a
t
e
r
F
u
l
l
E
q
u
a
l
;
"

f
o
r
m
=
"
i
n
f
i
x
"

l
s
p
a
c
e
=
"
t
h
i
c
k
m
a
t
h
s
p
a
c
e
"
r
s
p
a
c
e
=
"
t
h
i
c
k
m
a
t
h
s
p
a
c
e
"

"
&
G
r
e
a
t
e
r
G
r
e
a
t
e
r
;
"

f
o
r
m
=
"
i
n
f
i
x
"

l
s
p
a
c
e
=
"
t
h
i
c
k
m
a
t
h
s
p
a
c
e
"
r
s
p
a
c
e
=
"
t
h
i
c
k
m
a
t
h
s
p
a
c
e
"

"
&
G
r
e
a
t
e
r
L
e
s
s
;
"

f
o
r
m
=
"
i
n
f
i
x
"

l
s
p
a
c
e
=
"
t
h
i
c
k
m
a
t
h
s
p
a
c
e
"
r
s
p
a
c
e
=
"
t
h
i
c
k
m
a
t
h
s
p
a
c
e
"

"
&
G
r
e
a
t
e
r
S
l
a
n
t
E
q
u
a
l
;
"

f
o
r
m
=
"
i
n
f
i
x
"

l
s
p
a
c
e
=
"
t
h
i
c
k
m
a
t
h
s
p
a
c
e
"
r
s
p
a
c
e
=
"
t
h
i
c
k
m
a
t
h
s
p
a
c
e
"

"
&
G
r
e
a
t
e
r
T
i
l
d
e
;
"

f
o
r
m
=
"
i
n
f
i
x
"

l
s
p
a
c
e
=
"
t
h
i
c
k
m
a
t
h
s
p
a
c
e
"
r
s
p
a
c
e
=
"
t
h
i
c
k
m
a
t
h
s
p
a
c
e
"

"
&
H
u
m
p
D
o
w
n
H
u
m
p
;
"

f
o
r
m
=
"
i
n
f
i
x
"

l
s
p
a
c
e
=
"
t
h
i
c
k
m
a
t
h
s
p
a
c
e
"
r
s
p
a
c
e
=
"
t
h
i
c
k
m
a
t
h
s
p
a
c
e
"

"
&
H
u
m
p
E
q
u
a
l
;
"

f
o
r
m
=
"
i
n
f
i
x
"

l
s
p
a
c
e
=
"
t
h
i
c
k
m
a
t
h
s
p
a
c
e
"
r
s
p
a
c
e
=
"
t
h
i
c
k
m
a
t
h
s
p
a
c
e
"

"
&
L
e
f
t
T
r
i
a
n
g
l
e
;
"

f
o
r
m
=
"
i
n
f
i
x
"

l
s
p
a
c
e
=
"
t
h
i
c
k
m
a
t
h
s
p
a
c
e
"
r
s
p
a
c
e
=
"
t
h
i
c
k
m
a
t
h
s
p
a
c
e
"

"
&
L
e
f
t
T
r
i
a
n
g
l
e
B
a
r
;
"

f
o
r
m
=
"
i
n
f
i
x
"

l
s
p
a
c
e
=
"
t
h
i
c
k
m
a
t
h
s
p
a
c
e
"
r
s
p
a
c
e
=
"
t
h
i
c
k
m
a
t
h
s
p
a
c
e
"

282 Appendix B. Operator Dictionary (Non-Normative)
"
&
L
e
f
t
T
r
i
a
n
g
l
e
E
q
u
a
l
;
"

f
o
r
m
=
"
i
n
f
i
x
"

l
s
p
a
c
e
=
"
t
h
i
c
k
m
a
t
h
s
p
a
c
e
"
r
s
p
a
c
e
=
"
t
h
i
c
k
m
a
t
h
s
p
a
c
e
"

"
&
l
e
;
"

f
o
r
m
=
"
i
n
f
i
x
"

l
s
p
a
c
e
=
"
t
h
i
c
k
m
a
t
h
s
p
a
c
e
"
r
s
p
a
c
e
=
"
t
h
i
c
k
m
a
t
h
s
p
a
c
e
"

"
&
L
e
s
s
E
q
u
a
l
G
r
e
a
t
e
r
;
"

f
o
r
m
=
"
i
n
f
i
x
"

l
s
p
a
c
e
=
"
t
h
i
c
k
m
a
t
h
s
p
a
c
e
"
r
s
p
a
c
e
=
"
t
h
i
c
k
m
a
t
h
s
p
a
c
e
"

"
&
L
e
s
s
F
u
l
l
E
q
u
a
l
;
"

f
o
r
m
=
"
i
n
f
i
x
"

l
s
p
a
c
e
=
"
t
h
i
c
k
m
a
t
h
s
p
a
c
e
"
r
s
p
a
c
e
=
"
t
h
i
c
k
m
a
t
h
s
p
a
c
e
"

"
&
L
e
s
s
G
r
e
a
t
e
r
;
"

f
o
r
m
=
"
i
n
f
i
x
"

l
s
p
a
c
e
=
"
t
h
i
c
k
m
a
t
h
s
p
a
c
e
"
r
s
p
a
c
e
=
"
t
h
i
c
k
m
a
t
h
s
p
a
c
e
"

"
&
L
e
s
s
L
e
s
s
;
"

f
o
r
m
=
"
i
n
f
i
x
"

l
s
p
a
c
e
=
"
t
h
i
c
k
m
a
t
h
s
p
a
c
e
"
r
s
p
a
c
e
=
"
t
h
i
c
k
m
a
t
h
s
p
a
c
e
"

"
&
L
e
s
s
S
l
a
n
t
E
q
u
a
l
;
"

f
o
r
m
=
"
i
n
f
i
x
"

l
s
p
a
c
e
=
"
t
h
i
c
k
m
a
t
h
s
p
a
c
e
"
r
s
p
a
c
e
=
"
t
h
i
c
k
m
a
t
h
s
p
a
c
e
"

"
&
L
e
s
s
T
i
l
d
e
;
"

f
o
r
m
=
"
i
n
f
i
x
"

l
s
p
a
c
e
=
"
t
h
i
c
k
m
a
t
h
s
p
a
c
e
"
r
s
p
a
c
e
=
"
t
h
i
c
k
m
a
t
h
s
p
a
c
e
"

"
&
N
e
s
t
e
d
G
r
e
a
t
e
r
G
r
e
a
t
e
r
;
"

f
o
r
m
=
"
i
n
f
i
x
"

l
s
p
a
c
e
=
"
t
h
i
c
k
m
a
t
h
s
p
a
c
e
"
r
s
p
a
c
e
=
"
t
h
i
c
k
m
a
t
h
s
p
a
c
e
"

"
&
N
e
s
t
e
d
L
e
s
s
L
e
s
s
;
"

f
o
r
m
=
"
i
n
f
i
x
"

l
s
p
a
c
e
=
"
t
h
i
c
k
m
a
t
h
s
p
a
c
e
"
r
s
p
a
c
e
=
"
t
h
i
c
k
m
a
t
h
s
p
a
c
e
"

"
&
N
o
t
C
o
n
g
r
u
e
n
t
;
"

f
o
r
m
=
"
i
n
f
i
x
"

l
s
p
a
c
e
=
"
t
h
i
c
k
m
a
t
h
s
p
a
c
e
"
r
s
p
a
c
e
=
"
t
h
i
c
k
m
a
t
h
s
p
a
c
e
"

"
&
N
o
t
C
u
p
C
a
p
;
"

f
o
r
m
=
"
i
n
f
i
x
"

l
s
p
a
c
e
=
"
t
h
i
c
k
m
a
t
h
s
p
a
c
e
"
r
s
p
a
c
e
=
"
t
h
i
c
k
m
a
t
h
s
p
a
c
e
"

"
&
N
o
t
D
o
u
b
l
e
V
e
r
t
i
c
a
l
B
a
r
;
"

f
o
r
m
=
"
i
n
f
i
x
"

l
s
p
a
c
e
=
"
t
h
i
c
k
m
a
t
h
s
p
a
c
e
"
r
s
p
a
c
e
=
"
t
h
i
c
k
m
a
t
h
s
p
a
c
e
"

"
&
N
o
t
E
q
u
a
l
;
"

f
o
r
m
=
"
i
n
f
i
x
"

l
s
p
a
c
e
=
"
t
h
i
c
k
m
a
t
h
s
p
a
c
e
"
r
s
p
a
c
e
=
"
t
h
i
c
k
m
a
t
h
s
p
a
c
e
"

"
&
N
o
t
E
q
u
a
l
T
i
l
d
e
;
"

f
o
r
m
=
"
i
n
f
i
x
"

l
s
p
a
c
e
=
"
t
h
i
c
k
m
a
t
h
s
p
a
c
e
"
r
s
p
a
c
e
=
"
t
h
i
c
k
m
a
t
h
s
p
a
c
e
"

"
&
N
o
t
G
r
e
a
t
e
r
;
"

f
o
r
m
=
"
i
n
f
i
x
"

l
s
p
a
c
e
=
"
t
h
i
c
k
m
a
t
h
s
p
a
c
e
"
r
s
p
a
c
e
=
"
t
h
i
c
k
m
a
t
h
s
p
a
c
e
"

"
&
N
o
t
G
r
e
a
t
e
r
E
q
u
a
l
;
"

f
o
r
m
=
"
i
n
f
i
x
"

l
s
p
a
c
e
=
"
t
h
i
c
k
m
a
t
h
s
p
a
c
e
"
r
s
p
a
c
e
=
"
t
h
i
c
k
m
a
t
h
s
p
a
c
e
"

"
&
N
o
t
G
r
e
a
t
e
r
F
u
l
l
E
q
u
a
l
;
"

f
o
r
m
=
"
i
n
f
i
x
"

l
s
p
a
c
e
=
"
t
h
i
c
k
m
a
t
h
s
p
a
c
e
"
r
s
p
a
c
e
=
"
t
h
i
c
k
m
a
t
h
s
p
a
c
e
"

"
&
N
o
t
G
r
e
a
t
e
r
G
r
e
a
t
e
r
;
"

f
o
r
m
=
"
i
n
f
i
x
"

l
s
p
a
c
e
=
"
t
h
i
c
k
m
a
t
h
s
p
a
c
e
"
r
s
p
a
c
e
=
"
t
h
i
c
k
m
a
t
h
s
p
a
c
e
"

"
&
N
o
t
G
r
e
a
t
e
r
L
e
s
s
;
"

f
o
r
m
=
"
i
n
f
i
x
"

l
s
p
a
c
e
=
"
t
h
i
c
k
m
a
t
h
s
p
a
c
e
"
r
s
p
a
c
e
=
"
t
h
i
c
k
m
a
t
h
s
p
a
c
e
"

"
&
N
o
t
G
r
e
a
t
e
r
S
l
a
n
t
E
q
u
a
l
;
"

f
o
r
m
=
"
i
n
f
i
x
"

l
s
p
a
c
e
=
"
t
h
i
c
k
m
a
t
h
s
p
a
c
e
"
r
s
p
a
c
e
=
"
t
h
i
c
k
m
a
t
h
s
p
a
c
e
"

"
&
N
o
t
G
r
e
a
t
e
r
T
i
l
d
e
;
"

f
o
r
m
=
"
i
n
f
i
x
"

l
s
p
a
c
e
=
"
t
h
i
c
k
m
a
t
h
s
p
a
c
e
"
r
s
p
a
c
e
=
"
t
h
i
c
k
m
a
t
h
s
p
a
c
e
"

"
&
N
o
t
H
u
m
p
D
o
w
n
H
u
m
p
;
"

f
o
r
m
=
"
i
n
f
i
x
"

l
s
p
a
c
e
=
"
t
h
i
c
k
m
a
t
h
s
p
a
c
e
"
r
s
p
a
c
e
=
"
t
h
i
c
k
m
a
t
h
s
p
a
c
e
"

"
&
N
o
t
H
u
m
p
E
q
u
a
l
;
"

f
o
r
m
=
"
i
n
f
i
x
"

l
s
p
a
c
e
=
"
t
h
i
c
k
m
a
t
h
s
p
a
c
e
"
r
s
p
a
c
e
=
"
t
h
i
c
k
m
a
t
h
s
p
a
c
e
"

"
&
N
o
t
L
e
f
t
T
r
i
a
n
g
l
e
;
"

f
o
r
m
=
"
i
n
f
i
x
"

l
s
p
a
c
e
=
"
t
h
i
c
k
m
a
t
h
s
p
a
c
e
"
r
s
p
a
c
e
=
"
t
h
i
c
k
m
a
t
h
s
p
a
c
e
"

"
&
N
o
t
L
e
f
t
T
r
i
a
n
g
l
e
B
a
r
;
"

f
o
r
m
=
"
i
n
f
i
x
"

l
s
p
a
c
e
=
"
t
h
i
c
k
m
a
t
h
s
p
a
c
e
"
r
s
p
a
c
e
=
"
t
h
i
c
k
m
a
t
h
s
p
a
c
e
"

"
&
N
o
t
L
e
f
t
T
r
i
a
n
g
l
e
E
q
u
a
l
;
"

f
o
r
m
=
"
i
n
f
i
x
"

l
s
p
a
c
e
=
"
t
h
i
c
k
m
a
t
h
s
p
a
c
e
"
r
s
p
a
c
e
=
"
t
h
i
c
k
m
a
t
h
s
p
a
c
e
"

"
&
N
o
t
L
e
s
s
;
"

f
o
r
m
=
"
i
n
f
i
x
"

l
s
p
a
c
e
=
"
t
h
i
c
k
m
a
t
h
s
p
a
c
e
"
r
s
p
a
c
e
=
"
t
h
i
c
k
m
a
t
h
s
p
a
c
e
"

"
&
N
o
t
L
e
s
s
E
q
u
a
l
;
"

f
o
r
m
=
"
i
n
f
i
x
"

l
s
p
a
c
e
=
"
t
h
i
c
k
m
a
t
h
s
p
a
c
e
"
r
s
p
a
c
e
=
"
t
h
i
c
k
m
a
t
h
s
p
a
c
e
"

"
&
N
o
t
L
e
s
s
G
r
e
a
t
e
r
;
"

f
o
r
m
=
"
i
n
f
i
x
"

l
s
p
a
c
e
=
"
t
h
i
c
k
m
a
t
h
s
p
a
c
e
"
r
s
p
a
c
e
=
"
t
h
i
c
k
m
a
t
h
s
p
a
c
e
"

"
&
N
o
t
L
e
s
s
L
e
s
s
;
"

f
o
r
m
=
"
i
n
f
i
x
"

l
s
p
a
c
e
=
"
t
h
i
c
k
m
a
t
h
s
p
a
c
e
"
r
s
p
a
c
e
=
"
t
h
i
c
k
m
a
t
h
s
p
a
c
e
"

"
&
N
o
t
L
e
s
s
S
l
a
n
t
E
q
u
a
l
;
"

f
o
r
m
=
"
i
n
f
i
x
"

l
s
p
a
c
e
=
"
t
h
i
c
k
m
a
t
h
s
p
a
c
e
"
r
s
p
a
c
e
=
"
t
h
i
c
k
m
a
t
h
s
p
a
c
e
"

"
&
N
o
t
L
e
s
s
T
i
l
d
e
;
"

f
o
r
m
=
"
i
n
f
i
x
"

l
s
p
a
c
e
=
"
t
h
i
c
k
m
a
t
h
s
p
a
c
e
"
r
s
p
a
c
e
=
"
t
h
i
c
k
m
a
t
h
s
p
a
c
e
"

"
&
N
o
t
N
e
s
t
e
d
G
r
e
a
t
e
r
G
r
e
a
t
e
r
;
"

f
o
r
m
=
"
i
n
f
i
x
"

l
s
p
a
c
e
=
"
t
h
i
c
k
m
a
t
h
s
p
a
c
e
"
r
s
p
a
c
e
=
"
t
h
i
c
k
m
a
t
h
s
p
a
c
e
"

"
&
N
o
t
N
e
s
t
e
d
L
e
s
s
L
e
s
s
;
"

f
o
r
m
=
"
i
n
f
i
x
"

l
s
p
a
c
e
=
"
t
h
i
c
k
m
a
t
h
s
p
a
c
e
"
r
s
p
a
c
e
=
"
t
h
i
c
k
m
a
t
h
s
p
a
c
e
"

"
&
N
o
t
P
r
e
c
e
d
e
s
;
"

f
o
r
m
=
"
i
n
f
i
x
"

l
s
p
a
c
e
=
"
t
h
i
c
k
m
a
t
h
s
p
a
c
e
"
r
s
p
a
c
e
=
"
t
h
i
c
k
m
a
t
h
s
p
a
c
e
"

"
&
N
o
t
P
r
e
c
e
d
e
s
E
q
u
a
l
;
"

f
o
r
m
=
"
i
n
f
i
x
"

l
s
p
a
c
e
=
"
t
h
i
c
k
m
a
t
h
s
p
a
c
e
"
r
s
p
a
c
e
=
"
t
h
i
c
k
m
a
t
h
s
p
a
c
e
"

"
&
N
o
t
P
r
e
c
e
d
e
s
S
l
a
n
t
E
q
u
a
l
;
"

f
o
r
m
=
"
i
n
f
i
x
"

l
s
p
a
c
e
=
"
t
h
i
c
k
m
a
t
h
s
p
a
c
e
"
r
s
p
a
c
e
=
"
t
h
i
c
k
m
a
t
h
s
p
a
c
e
"

"
&
N
o
t
R
i
g
h
t
T
r
i
a
n
g
l
e
;
"

f
o
r
m
=
"
i
n
f
i
x
"

l
s
p
a
c
e
=
"
t
h
i
c
k
m
a
t
h
s
p
a
c
e
"
r
s
p
a
c
e
=
"
t
h
i
c
k
m
a
t
h
s
p
a
c
e
"

"
&
N
o
t
R
i
g
h
t
T
r
i
a
n
g
l
e
B
a
r
;
"

f
o
r
m
=
"
i
n
f
i
x
"

l
s
p
a
c
e
=
"
t
h
i
c
k
m
a
t
h
s
p
a
c
e
"
r
s
p
a
c
e
=
"
t
h
i
c
k
m
a
t
h
s
p
a
c
e
"

"
&
N
o
t
R
i
g
h
t
T
r
i
a
n
g
l
e
E
q
u
a
l
;
"

f
o
r
m
=
"
i
n
f
i
x
"

l
s
p
a
c
e
=
"
t
h
i
c
k
m
a
t
h
s
p
a
c
e
"
r
s
p
a
c
e
=
"
t
h
i
c
k
m
a
t
h
s
p
a
c
e
"

B.5. Operator dictionary entries 283
"
&
N
o
t
S
u
c
c
e
e
d
s
;
"

f
o
r
m
=
"
i
n
f
i
x
"

l
s
p
a
c
e
=
"
t
h
i
c
k
m
a
t
h
s
p
a
c
e
"
r
s
p
a
c
e
=
"
t
h
i
c
k
m
a
t
h
s
p
a
c
e
"

"
&
N
o
t
S
u
c
c
e
e
d
s
E
q
u
a
l
;
"

f
o
r
m
=
"
i
n
f
i
x
"

l
s
p
a
c
e
=
"
t
h
i
c
k
m
a
t
h
s
p
a
c
e
"
r
s
p
a
c
e
=
"
t
h
i
c
k
m
a
t
h
s
p
a
c
e
"

"
&
N
o
t
S
u
c
c
e
e
d
s
S
l
a
n
t
E
q
u
a
l
;
"

f
o
r
m
=
"
i
n
f
i
x
"

l
s
p
a
c
e
=
"
t
h
i
c
k
m
a
t
h
s
p
a
c
e
"
r
s
p
a
c
e
=
"
t
h
i
c
k
m
a
t
h
s
p
a
c
e
"

"
&
N
o
t
S
u
c
c
e
e
d
s
T
i
l
d
e
;
"

f
o
r
m
=
"
i
n
f
i
x
"

l
s
p
a
c
e
=
"
t
h
i
c
k
m
a
t
h
s
p
a
c
e
"
r
s
p
a
c
e
=
"
t
h
i
c
k
m
a
t
h
s
p
a
c
e
"

"
&
N
o
t
T
i
l
d
e
;
"

f
o
r
m
=
"
i
n
f
i
x
"

l
s
p
a
c
e
=
"
t
h
i
c
k
m
a
t
h
s
p
a
c
e
"
r
s
p
a
c
e
=
"
t
h
i
c
k
m
a
t
h
s
p
a
c
e
"

"
&
N
o
t
T
i
l
d
e
E
q
u
a
l
;
"

f
o
r
m
=
"
i
n
f
i
x
"

l
s
p
a
c
e
=
"
t
h
i
c
k
m
a
t
h
s
p
a
c
e
"
r
s
p
a
c
e
=
"
t
h
i
c
k
m
a
t
h
s
p
a
c
e
"

"
&
N
o
t
T
i
l
d
e
F
u
l
l
E
q
u
a
l
;
"

f
o
r
m
=
"
i
n
f
i
x
"

l
s
p
a
c
e
=
"
t
h
i
c
k
m
a
t
h
s
p
a
c
e
"
r
s
p
a
c
e
=
"
t
h
i
c
k
m
a
t
h
s
p
a
c
e
"

"
&
N
o
t
T
i
l
d
e
T
i
l
d
e
;
"

f
o
r
m
=
"
i
n
f
i
x
"

l
s
p
a
c
e
=
"
t
h
i
c
k
m
a
t
h
s
p
a
c
e
"
r
s
p
a
c
e
=
"
t
h
i
c
k
m
a
t
h
s
p
a
c
e
"

"
&
N
o
t
V
e
r
t
i
c
a
l
B
a
r
;
"

f
o
r
m
=
"
i
n
f
i
x
"

l
s
p
a
c
e
=
"
t
h
i
c
k
m
a
t
h
s
p
a
c
e
"
r
s
p
a
c
e
=
"
t
h
i
c
k
m
a
t
h
s
p
a
c
e
"

"
&
P
r
e
c
e
d
e
s
;
"

f
o
r
m
=
"
i
n
f
i
x
"

l
s
p
a
c
e
=
"
t
h
i
c
k
m
a
t
h
s
p
a
c
e
"
r
s
p
a
c
e
=
"
t
h
i
c
k
m
a
t
h
s
p
a
c
e
"

"
&
P
r
e
c
e
d
e
s
E
q
u
a
l
;
"

f
o
r
m
=
"
i
n
f
i
x
"

l
s
p
a
c
e
=
"
t
h
i
c
k
m
a
t
h
s
p
a
c
e
"
r
s
p
a
c
e
=
"
t
h
i
c
k
m
a
t
h
s
p
a
c
e
"

"
&
P
r
e
c
e
d
e
s
S
l
a
n
t
E
q
u
a
l
;
"

f
o
r
m
=
"
i
n
f
i
x
"

l
s
p
a
c
e
=
"
t
h
i
c
k
m
a
t
h
s
p
a
c
e
"
r
s
p
a
c
e
=
"
t
h
i
c
k
m
a
t
h
s
p
a
c
e
"

"
&
P
r
e
c
e
d
e
s
T
i
l
d
e
;
"

f
o
r
m
=
"
i
n
f
i
x
"

l
s
p
a
c
e
=
"
t
h
i
c
k
m
a
t
h
s
p
a
c
e
"
r
s
p
a
c
e
=
"
t
h
i
c
k
m
a
t
h
s
p
a
c
e
"

"
&
P
r
o
p
o
r
t
i
o
n
;
"

f
o
r
m
=
"
i
n
f
i
x
"

l
s
p
a
c
e
=
"
t
h
i
c
k
m
a
t
h
s
p
a
c
e
"
r
s
p
a
c
e
=
"
t
h
i
c
k
m
a
t
h
s
p
a
c
e
"

"
&
P
r
o
p
o
r
t
i
o
n
a
l
;
"

f
o
r
m
=
"
i
n
f
i
x
"

l
s
p
a
c
e
=
"
t
h
i
c
k
m
a
t
h
s
p
a
c
e
"
r
s
p
a
c
e
=
"
t
h
i
c
k
m
a
t
h
s
p
a
c
e
"

"
&
R
e
v
e
r
s
e
E
q
u
i
l
i
b
r
i
u
m
;
"

f
o
r
m
=
"
i
n
f
i
x
"

s
t
r
e
t
c
h
y
=
"
t
r
u
e
"

l
s
p
a
c
e
=
"
t
h
i
c
k
m
a
t
h
s
p
a
c
e
"
r
s
p
a
c
e
=
"
t
h
i
c
k
m
a
t
h
s
p
a
c
e
"

"
&
R
i
g
h
t
T
r
i
a
n
g
l
e
;
"

f
o
r
m
=
"
i
n
f
i
x
"

l
s
p
a
c
e
=
"
t
h
i
c
k
m
a
t
h
s
p
a
c
e
"
r
s
p
a
c
e
=
"
t
h
i
c
k
m
a
t
h
s
p
a
c
e
"

"
&
R
i
g
h
t
T
r
i
a
n
g
l
e
B
a
r
;
"

f
o
r
m
=
"
i
n
f
i
x
"

l
s
p
a
c
e
=
"
t
h
i
c
k
m
a
t
h
s
p
a
c
e
"
r
s
p
a
c
e
=
"
t
h
i
c
k
m
a
t
h
s
p
a
c
e
"

"
&
R
i
g
h
t
T
r
i
a
n
g
l
e
E
q
u
a
l
;
"

f
o
r
m
=
"
i
n
f
i
x
"

l
s
p
a
c
e
=
"
t
h
i
c
k
m
a
t
h
s
p
a
c
e
"
r
s
p
a
c
e
=
"
t
h
i
c
k
m
a
t
h
s
p
a
c
e
"

"
&
S
u
c
c
e
e
d
s
;
"

f
o
r
m
=
"
i
n
f
i
x
"

l
s
p
a
c
e
=
"
t
h
i
c
k
m
a
t
h
s
p
a
c
e
"
r
s
p
a
c
e
=
"
t
h
i
c
k
m
a
t
h
s
p
a
c
e
"

"
&
S
u
c
c
e
e
d
s
E
q
u
a
l
;
"

f
o
r
m
=
"
i
n
f
i
x
"

l
s
p
a
c
e
=
"
t
h
i
c
k
m
a
t
h
s
p
a
c
e
"
r
s
p
a
c
e
=
"
t
h
i
c
k
m
a
t
h
s
p
a
c
e
"

"
&
S
u
c
c
e
e
d
s
S
l
a
n
t
E
q
u
a
l
;
"

f
o
r
m
=
"
i
n
f
i
x
"

l
s
p
a
c
e
=
"
t
h
i
c
k
m
a
t
h
s
p
a
c
e
"
r
s
p
a
c
e
=
"
t
h
i
c
k
m
a
t
h
s
p
a
c
e
"

"
&
S
u
c
c
e
e
d
s
T
i
l
d
e
;
"

f
o
r
m
=
"
i
n
f
i
x
"

l
s
p
a
c
e
=
"
t
h
i
c
k
m
a
t
h
s
p
a
c
e
"
r
s
p
a
c
e
=
"
t
h
i
c
k
m
a
t
h
s
p
a
c
e
"

"
&
T
i
l
d
e
;
"

f
o
r
m
=
"
i
n
f
i
x
"

l
s
p
a
c
e
=
"
t
h
i
c
k
m
a
t
h
s
p
a
c
e
"
r
s
p
a
c
e
=
"
t
h
i
c
k
m
a
t
h
s
p
a
c
e
"

"
&
T
i
l
d
e
E
q
u
a
l
;
"

f
o
r
m
=
"
i
n
f
i
x
"

l
s
p
a
c
e
=
"
t
h
i
c
k
m
a
t
h
s
p
a
c
e
"
r
s
p
a
c
e
=
"
t
h
i
c
k
m
a
t
h
s
p
a
c
e
"

"
&
T
i
l
d
e
F
u
l
l
E
q
u
a
l
;
"

f
o
r
m
=
"
i
n
f
i
x
"

l
s
p
a
c
e
=
"
t
h
i
c
k
m
a
t
h
s
p
a
c
e
"
r
s
p
a
c
e
=
"
t
h
i
c
k
m
a
t
h
s
p
a
c
e
"

"
&
T
i
l
d
e
T
i
l
d
e
;
"

f
o
r
m
=
"
i
n
f
i
x
"

l
s
p
a
c
e
=
"
t
h
i
c
k
m
a
t
h
s
p
a
c
e
"
r
s
p
a
c
e
=
"
t
h
i
c
k
m
a
t
h
s
p
a
c
e
"

"
&
U
p
T
e
e
;
"

f
o
r
m
=
"
i
n
f
i
x
"

l
s
p
a
c
e
=
"
t
h
i
c
k
m
a
t
h
s
p
a
c
e
"
r
s
p
a
c
e
=
"
t
h
i
c
k
m
a
t
h
s
p
a
c
e
"

"
&
V
e
r
t
i
c
a
l
B
a
r
;
"

f
o
r
m
=
"
i
n
f
i
x
"

l
s
p
a
c
e
=
"
t
h
i
c
k
m
a
t
h
s
p
a
c
e
"
r
s
p
a
c
e
=
"
t
h
i
c
k
m
a
t
h
s
p
a
c
e
"

"
&
S
q
u
a
r
e
U
n
i
o
n
;
"

f
o
r
m
=
"
i
n
f
i
x
"

s
t
r
e
t
c
h
y
=
"
t
r
u
e
"

l
s
p
a
c
e
=
"
m
e
d
i
u
m
m
a
t
h
s
p
a
c
e
"
r
s
p
a
c
e
=
"
m
e
d
i
u
m
m
a
t
h
s
p
a
c
e
"

"
&
U
n
i
o
n
;
"

f
o
r
m
=
"
i
n
f
i
x
"

s
t
r
e
t
c
h
y
=
"
t
r
u
e
"

l
s
p
a
c
e
=
"
m
e
d
i
u
m
m
a
t
h
s
p
a
c
e
"
r
s
p
a
c
e
=
"
m
e
d
i
u
m
m
a
t
h
s
p
a
c
e
"

"
&
U
n
i
o
n
P
l
u
s
;
"

f
o
r
m
=
"
i
n
f
i
x
"

s
t
r
e
t
c
h
y
=
"
t
r
u
e
"

l
s
p
a
c
e
=
"
m
e
d
i
u
m
m
a
t
h
s
p
a
c
e
"
r
s
p
a
c
e
=
"
m
e
d
i
u
m
m
a
t
h
s
p
a
c
e
"

"
-
"

f
o
r
m
=
"
i
n
f
i
x
"

l
s
p
a
c
e
=
"
m
e
d
i
u
m
m
a
t
h
s
p
a
c
e
"
r
s
p
a
c
e
=
"
m
e
d
i
u
m
m
a
t
h
s
p
a
c
e
"

"
+
"

f
o
r
m
=
"
i
n
f
i
x
"

l
s
p
a
c
e
=
"
m
e
d
i
u
m
m
a
t
h
s
p
a
c
e
"
r
s
p
a
c
e
=
"
m
e
d
i
u
m
m
a
t
h
s
p
a
c
e
"

"
&
I
n
t
e
r
s
e
c
t
i
o
n
;
"

f
o
r
m
=
"
i
n
f
i
x
"

s
t
r
e
t
c
h
y
=
"
t
r
u
e
"

l
s
p
a
c
e
=
"
m
e
d
i
u
m
m
a
t
h
s
p
a
c
e
"
r
s
p
a
c
e
=
"
m
e
d
i
u
m
m
a
t
h
s
p
a
c
e
"

"
&
M
i
n
u
s
P
l
u
s
;
"

f
o
r
m
=
"
i
n
f
i
x
"

l
s
p
a
c
e
=
"
m
e
d
i
u
m
m
a
t
h
s
p
a
c
e
"
r
s
p
a
c
e
=
"
m
e
d
i
u
m
m
a
t
h
s
p
a
c
e
"

"
&
P
l
u
s
M
i
n
u
s
;
"

f
o
r
m
=
"
i
n
f
i
x
"

l
s
p
a
c
e
=
"
m
e
d
i
u
m
m
a
t
h
s
p
a
c
e
"
r
s
p
a
c
e
=
"
m
e
d
i
u
m
m
a
t
h
s
p
a
c
e
"

"
&
S
q
u
a
r
e
I
n
t
e
r
s
e
c
t
i
o
n
;
"

f
o
r
m
=
"
i
n
f
i
x
"

s
t
r
e
t
c
h
y
=
"
t
r
u
e
"

l
s
p
a
c
e
=
"
m
e
d
i
u
m
m
a
t
h
s
p
a
c
e
"
r
s
p
a
c
e
=
"
m
e
d
i
u
m
m
a
t
h
s
p
a
c
e
"

284 Appendix B. Operator Dictionary (Non-Normative)
"
&
V
e
e
;
"

f
o
r
m
=
"
p
r
e
f
i
x
"

l
a
r
g
e
o
p
=
"
t
r
u
e
"
m
o
v
a
b
l
e
l
i
m
i
t
s
=
"
t
r
u
e
"
s
t
r
e
t
c
h
y
=
"
t
r
u
e
"

l
s
p
a
c
e
=
"
0
e
m
"
r
s
p
a
c
e
=
"
t
h
i
n
m
a
t
h
s
p
a
c
e
"

"
&
C
i
r
c
l
e
M
i
n
u
s
;
"

f
o
r
m
=
"
p
r
e
f
i
x
"

l
a
r
g
e
o
p
=
"
t
r
u
e
"
m
o
v
a
b
l
e
l
i
m
i
t
s
=
"
t
r
u
e
"

l
s
p
a
c
e
=
"
0
e
m
"
r
s
p
a
c
e
=
"
t
h
i
n
m
a
t
h
s
p
a
c
e
"

"
&
C
i
r
c
l
e
P
l
u
s
;
"

f
o
r
m
=
"
p
r
e
f
i
x
"

l
a
r
g
e
o
p
=
"
t
r
u
e
"
m
o
v
a
b
l
e
l
i
m
i
t
s
=
"
t
r
u
e
"

l
s
p
a
c
e
=
"
0
e
m
"
r
s
p
a
c
e
=
"
t
h
i
n
m
a
t
h
s
p
a
c
e
"

"
&
S
u
m
;
"

f
o
r
m
=
"
p
r
e
f
i
x
"

l
a
r
g
e
o
p
=
"
t
r
u
e
"
m
o
v
a
b
l
e
l
i
m
i
t
s
=
"
t
r
u
e
"
s
t
r
e
t
c
h
y
=
"
t
r
u
e
"

l
s
p
a
c
e
=
"
0
e
m
"
r
s
p
a
c
e
=
"
t
h
i
n
m
a
t
h
s
p
a
c
e
"

"
&
U
n
i
o
n
;
"

f
o
r
m
=
"
p
r
e
f
i
x
"

l
a
r
g
e
o
p
=
"
t
r
u
e
"
m
o
v
a
b
l
e
l
i
m
i
t
s
=
"
t
r
u
e
"
s
t
r
e
t
c
h
y
=
"
t
r
u
e
"

l
s
p
a
c
e
=
"
0
e
m
"
r
s
p
a
c
e
=
"
t
h
i
n
m
a
t
h
s
p
a
c
e
"

"
&
U
n
i
o
n
P
l
u
s
;
"

f
o
r
m
=
"
p
r
e
f
i
x
"

l
a
r
g
e
o
p
=
"
t
r
u
e
"
m
o
v
a
b
l
e
l
i
m
i
t
s
=
"
t
r
u
e
"
s
t
r
e
t
c
h
y
=
"
t
r
u
e
"

l
s
p
a
c
e
=
"
0
e
m
"
r
s
p
a
c
e
=
"
t
h
i
n
m
a
t
h
s
p
a
c
e
"

"
l
i
m
"

f
o
r
m
=
"
p
r
e
f
i
x
"

m
o
v
a
b
l
e
l
i
m
i
t
s
=
"
t
r
u
e
"

l
s
p
a
c
e
=
"
0
e
m
"
r
s
p
a
c
e
=
"
t
h
i
n
m
a
t
h
s
p
a
c
e
"

"
m
a
x
"

f
o
r
m
=
"
p
r
e
f
i
x
"

m
o
v
a
b
l
e
l
i
m
i
t
s
=
"
t
r
u
e
"

l
s
p
a
c
e
=
"
0
e
m
"
r
s
p
a
c
e
=
"
t
h
i
n
m
a
t
h
s
p
a
c
e
"

"
m
i
n
"

f
o
r
m
=
"
p
r
e
f
i
x
"

m
o
v
a
b
l
e
l
i
m
i
t
s
=
"
t
r
u
e
"

l
s
p
a
c
e
=
"
0
e
m
"
r
s
p
a
c
e
=
"
t
h
i
n
m
a
t
h
s
p
a
c
e
"

"
&
C
i
r
c
l
e
M
i
n
u
s
;
"

f
o
r
m
=
"
i
n
f
i
x
"

l
s
p
a
c
e
=
"
t
h
i
n
m
a
t
h
s
p
a
c
e
"
r
s
p
a
c
e
=
"
t
h
i
n
m
a
t
h
s
p
a
c
e
"

"
&
C
i
r
c
l
e
P
l
u
s
;
"

f
o
r
m
=
"
i
n
f
i
x
"

l
s
p
a
c
e
=
"
t
h
i
n
m
a
t
h
s
p
a
c
e
"
r
s
p
a
c
e
=
"
t
h
i
n
m
a
t
h
s
p
a
c
e
"

"
&
C
l
o
c
k
w
i
s
e
C
o
n
t
o
u
r
I
n
t
e
g
r
a
l
;
"

f
o
r
m
=
"
p
r
e
f
i
x
"

l
a
r
g
e
o
p
=
"
t
r
u
e
"
s
t
r
e
t
c
h
y
=
"
t
r
u
e
"

l
s
p
a
c
e
=
"
0
e
m
"
r
s
p
a
c
e
=
"
0
e
m
"

"
&
C
o
n
t
o
u
r
I
n
t
e
g
r
a
l
;
"

f
o
r
m
=
"
p
r
e
f
i
x
"

l
a
r
g
e
o
p
=
"
t
r
u
e
"
s
t
r
e
t
c
h
y
=
"
t
r
u
e
"

l
s
p
a
c
e
=
"
0
e
m
"
r
s
p
a
c
e
=
"
0
e
m
"

"
&
C
o
u
n
t
e
r
C
l
o
c
k
w
i
s
e
C
o
n
t
o
u
r
I
n
t
e
g
r
a
l
;
"

f
o
r
m
=
"
p
r
e
f
i
x
"

l
a
r
g
e
o
p
=
"
t
r
u
e
"
s
t
r
e
t
c
h
y
=
"
t
r
u
e
"

l
s
p
a
c
e
=
"
0
e
m
"
r
s
p
a
c
e
=
"
0
e
m
"

"
&
D
o
u
b
l
e
C
o
n
t
o
u
r
I
n
t
e
g
r
a
l
;
"

f
o
r
m
=
"
p
r
e
f
i
x
"

l
a
r
g
e
o
p
=
"
t
r
u
e
"
s
t
r
e
t
c
h
y
=
"
t
r
u
e
"

l
s
p
a
c
e
=
"
0
e
m
"
r
s
p
a
c
e
=
"
0
e
m
"

"
&
I
n
t
e
g
r
a
l
;
"

f
o
r
m
=
"
p
r
e
f
i
x
"

l
a
r
g
e
o
p
=
"
t
r
u
e
"
s
t
r
e
t
c
h
y
=
"
t
r
u
e
"

l
s
p
a
c
e
=
"
0
e
m
"
r
s
p
a
c
e
=
"
0
e
m
"

"
&
C
u
p
;
"

f
o
r
m
=
"
i
n
f
i
x
"

l
s
p
a
c
e
=
"
t
h
i
n
m
a
t
h
s
p
a
c
e
"
r
s
p
a
c
e
=
"
t
h
i
n
m
a
t
h
s
p
a
c
e
"

"
&
C
a
p
;
"

f
o
r
m
=
"
i
n
f
i
x
"

l
s
p
a
c
e
=
"
t
h
i
n
m
a
t
h
s
p
a
c
e
"
r
s
p
a
c
e
=
"
t
h
i
n
m
a
t
h
s
p
a
c
e
"

"
&
V
e
r
t
i
c
a
l
T
i
l
d
e
;
"

f
o
r
m
=
"
i
n
f
i
x
"

l
s
p
a
c
e
=
"
t
h
i
n
m
a
t
h
s
p
a
c
e
"
r
s
p
a
c
e
=
"
t
h
i
n
m
a
t
h
s
p
a
c
e
"

"
&
W
e
d
g
e
;
"

f
o
r
m
=
"
p
r
e
f
i
x
"

l
a
r
g
e
o
p
=
"
t
r
u
e
"
m
o
v
a
b
l
e
l
i
m
i
t
s
=
"
t
r
u
e
"
s
t
r
e
t
c
h
y
=
"
t
r
u
e
"

l
s
p
a
c
e
=
"
0
e
m
"
r
s
p
a
c
e
=
"
t
h
i
n
m
a
t
h
s
p
a
c
e
"

"
&
C
i
r
c
l
e
T
i
m
e
s
;
"

f
o
r
m
=
"
p
r
e
f
i
x
"

l
a
r
g
e
o
p
=
"
t
r
u
e
"
m
o
v
a
b
l
e
l
i
m
i
t
s
=
"
t
r
u
e
"

l
s
p
a
c
e
=
"
0
e
m
"
r
s
p
a
c
e
=
"
t
h
i
n
m
a
t
h
s
p
a
c
e
"

"
&
C
o
p
r
o
d
u
c
t
;
"

f
o
r
m
=
"
p
r
e
f
i
x
"

l
a
r
g
e
o
p
=
"
t
r
u
e
"
m
o
v
a
b
l
e
l
i
m
i
t
s
=
"
t
r
u
e
"
s
t
r
e
t
c
h
y
=
"
t
r
u
e
"

l
s
p
a
c
e
=
"
0
e
m
"
r
s
p
a
c
e
=
"
t
h
i
n
m
a
t
h
s
p
a
c
e
"

"
&
P
r
o
d
u
c
t
;
"

f
o
r
m
=
"
p
r
e
f
i
x
"

l
a
r
g
e
o
p
=
"
t
r
u
e
"
m
o
v
a
b
l
e
l
i
m
i
t
s
=
"
t
r
u
e
"
s
t
r
e
t
c
h
y
=
"
t
r
u
e
"

l
s
p
a
c
e
=
"
0
e
m
"
r
s
p
a
c
e
=
"
t
h
i
n
m
a
t
h
s
p
a
c
e
"

"
&
I
n
t
e
r
s
e
c
t
i
o
n
;
"

f
o
r
m
=
"
p
r
e
f
i
x
"

l
a
r
g
e
o
p
=
"
t
r
u
e
"
m
o
v
a
b
l
e
l
i
m
i
t
s
=
"
t
r
u
e
"
s
t
r
e
t
c
h
y
=
"
t
r
u
e
"

l
s
p
a
c
e
=
"
0
e
m
"
r
s
p
a
c
e
=
"
t
h
i
n
m
a
t
h
s
p
a
c
e
"

"
&
C
o
p
r
o
d
u
c
t
;
"

f
o
r
m
=
"
i
n
f
i
x
"

l
s
p
a
c
e
=
"
t
h
i
n
m
a
t
h
s
p
a
c
e
"
r
s
p
a
c
e
=
"
t
h
i
n
m
a
t
h
s
p
a
c
e
"

"
&
S
t
a
r
;
"

f
o
r
m
=
"
i
n
f
i
x
"

l
s
p
a
c
e
=
"
t
h
i
n
m
a
t
h
s
p
a
c
e
"
r
s
p
a
c
e
=
"
t
h
i
n
m
a
t
h
s
p
a
c
e
"

"
&
C
i
r
c
l
e
D
o
t
;
"

f
o
r
m
=
"
p
r
e
f
i
x
"

l
a
r
g
e
o
p
=
"
t
r
u
e
"
m
o
v
a
b
l
e
l
i
m
i
t
s
=
"
t
r
u
e
"

l
s
p
a
c
e
=
"
0
e
m
"
r
s
p
a
c
e
=
"
t
h
i
n
m
a
t
h
s
p
a
c
e
"

"
*
"

f
o
r
m
=
"
i
n
f
i
x
"

l
s
p
a
c
e
=
"
t
h
i
n
m
a
t
h
s
p
a
c
e
"
r
s
p
a
c
e
=
"
t
h
i
n
m
a
t
h
s
p
a
c
e
"

"
&
I
n
v
i
s
i
b
l
e
T
i
m
e
s
;
"

f
o
r
m
=
"
i
n
f
i
x
"

l
s
p
a
c
e
=
"
0
e
m
"
r
s
p
a
c
e
=
"
0
e
m
"

"
&
C
e
n
t
e
r
D
o
t
;
"

f
o
r
m
=
"
i
n
f
i
x
"

l
s
p
a
c
e
=
"
t
h
i
n
m
a
t
h
s
p
a
c
e
"
r
s
p
a
c
e
=
"
t
h
i
n
m
a
t
h
s
p
a
c
e
"

B.5. Operator dictionary entries 285
"
&
C
i
r
c
l
e
T
i
m
e
s
;
"

f
o
r
m
=
"
i
n
f
i
x
"

l
s
p
a
c
e
=
"
t
h
i
n
m
a
t
h
s
p
a
c
e
"
r
s
p
a
c
e
=
"
t
h
i
n
m
a
t
h
s
p
a
c
e
"

"
&
V
e
e
;
"

f
o
r
m
=
"
i
n
f
i
x
"

l
s
p
a
c
e
=
"
t
h
i
n
m
a
t
h
s
p
a
c
e
"
r
s
p
a
c
e
=
"
t
h
i
n
m
a
t
h
s
p
a
c
e
"

"
&
W
e
d
g
e
;
"

f
o
r
m
=
"
i
n
f
i
x
"

l
s
p
a
c
e
=
"
t
h
i
n
m
a
t
h
s
p
a
c
e
"
r
s
p
a
c
e
=
"
t
h
i
n
m
a
t
h
s
p
a
c
e
"

"
&
D
i
a
m
o
n
d
;
"

f
o
r
m
=
"
i
n
f
i
x
"

l
s
p
a
c
e
=
"
t
h
i
n
m
a
t
h
s
p
a
c
e
"
r
s
p
a
c
e
=
"
t
h
i
n
m
a
t
h
s
p
a
c
e
"

"
&
B
a
c
k
s
l
a
s
h
;
"

f
o
r
m
=
"
i
n
f
i
x
"

s
t
r
e
t
c
h
y
=
"
t
r
u
e
"

l
s
p
a
c
e
=
"
t
h
i
n
m
a
t
h
s
p
a
c
e
"
r
s
p
a
c
e
=
"
t
h
i
n
m
a
t
h
s
p
a
c
e
"

"
/
"

f
o
r
m
=
"
i
n
f
i
x
"

s
t
r
e
t
c
h
y
=
"
t
r
u
e
"

l
s
p
a
c
e
=
"
t
h
i
n
m
a
t
h
s
p
a
c
e
"
r
s
p
a
c
e
=
"
t
h
i
n
m
a
t
h
s
p
a
c
e
"

"
-
"

f
o
r
m
=
"
p
r
e
f
i
x
"

l
s
p
a
c
e
=
"
0
e
m
"
r
s
p
a
c
e
=
"
v
e
r
y
v
e
r
y
t
h
i
n
m
a
t
h
s
p
a
c
e
"

"
+
"

f
o
r
m
=
"
p
r
e
f
i
x
"

l
s
p
a
c
e
=
"
0
e
m
"
r
s
p
a
c
e
=
"
v
e
r
y
v
e
r
y
t
h
i
n
m
a
t
h
s
p
a
c
e
"

"
&
M
i
n
u
s
P
l
u
s
;
"

f
o
r
m
=
"
p
r
e
f
i
x
"

l
s
p
a
c
e
=
"
0
e
m
"
r
s
p
a
c
e
=
"
v
e
r
y
v
e
r
y
t
h
i
n
m
a
t
h
s
p
a
c
e
"

"
&
P
l
u
s
M
i
n
u
s
;
"

f
o
r
m
=
"
p
r
e
f
i
x
"

l
s
p
a
c
e
=
"
0
e
m
"
r
s
p
a
c
e
=
"
v
e
r
y
v
e
r
y
t
h
i
n
m
a
t
h
s
p
a
c
e
"

"
.
"

f
o
r
m
=
"
i
n
f
i
x
"

l
s
p
a
c
e
=
"
0
e
m
"
r
s
p
a
c
e
=
"
0
e
m
"

"
&
C
r
o
s
s
;
"

f
o
r
m
=
"
i
n
f
i
x
"

l
s
p
a
c
e
=
"
v
e
r
y
t
h
i
n
m
a
t
h
s
p
a
c
e
"
r
s
p
a
c
e
=
"
v
e
r
y
t
h
i
n
m
a
t
h
s
p
a
c
e
"

"
*
*
"

f
o
r
m
=
"
i
n
f
i
x
"

l
s
p
a
c
e
=
"
v
e
r
y
t
h
i
n
m
a
t
h
s
p
a
c
e
"
r
s
p
a
c
e
=
"
v
e
r
y
t
h
i
n
m
a
t
h
s
p
a
c
e
"

"
&
C
i
r
c
l
e
D
o
t
;
"

f
o
r
m
=
"
i
n
f
i
x
"

l
s
p
a
c
e
=
"
v
e
r
y
t
h
i
n
m
a
t
h
s
p
a
c
e
"
r
s
p
a
c
e
=
"
v
e
r
y
t
h
i
n
m
a
t
h
s
p
a
c
e
"

"
&
S
m
a
l
l
C
i
r
c
l
e
;
"

f
o
r
m
=
"
i
n
f
i
x
"

l
s
p
a
c
e
=
"
v
e
r
y
t
h
i
n
m
a
t
h
s
p
a
c
e
"
r
s
p
a
c
e
=
"
v
e
r
y
t
h
i
n
m
a
t
h
s
p
a
c
e
"

"
&
S
q
u
a
r
e
;
"

f
o
r
m
=
"
p
r
e
f
i
x
"

l
s
p
a
c
e
=
"
0
e
m
"
r
s
p
a
c
e
=
"
v
e
r
y
t
h
i
n
m
a
t
h
s
p
a
c
e
"

"
&
D
e
l
;
"

f
o
r
m
=
"
p
r
e
f
i
x
"

l
s
p
a
c
e
=
"
0
e
m
"
r
s
p
a
c
e
=
"
v
e
r
y
t
h
i
n
m
a
t
h
s
p
a
c
e
"

"
&
P
a
r
t
i
a
l
D
;
"

f
o
r
m
=
"
p
r
e
f
i
x
"

l
s
p
a
c
e
=
"
0
e
m
"
r
s
p
a
c
e
=
"
v
e
r
y
t
h
i
n
m
a
t
h
s
p
a
c
e
"

"
&
C
a
p
i
t
a
l
D
i
f
f
e
r
e
n
t
i
a
l
D
;
"

f
o
r
m
=
"
p
r
e
f
i
x
"

l
s
p
a
c
e
=
"
0
e
m
"
r
s
p
a
c
e
=
"
v
e
r
y
t
h
i
n
m
a
t
h
s
p
a
c
e
"

"
&
D
i
f
f
e
r
e
n
t
i
a
l
D
;
"

f
o
r
m
=
"
p
r
e
f
i
x
"

l
s
p
a
c
e
=
"
0
e
m
"
r
s
p
a
c
e
=
"
v
e
r
y
t
h
i
n
m
a
t
h
s
p
a
c
e
"

"
&
S
q
r
t
;
"

f
o
r
m
=
"
p
r
e
f
i
x
"

s
t
r
e
t
c
h
y
=
"
t
r
u
e
"

l
s
p
a
c
e
=
"
0
e
m
"
r
s
p
a
c
e
=
"
v
e
r
y
t
h
i
n
m
a
t
h
s
p
a
c
e
"

"
&
D
o
u
b
l
e
D
o
w
n
A
r
r
o
w
;
"

f
o
r
m
=
"
i
n
f
i
x
"

s
t
r
e
t
c
h
y
=
"
t
r
u
e
"

l
s
p
a
c
e
=
"
v
e
r
y
t
h
i
n
m
a
t
h
s
p
a
c
e
"
r
s
p
a
c
e
=
"
v
e
r
y
t
h
i
n
m
a
t
h
s
p
a
c
e
"

"
&
D
o
u
b
l
e
L
o
n
g
L
e
f
t
A
r
r
o
w
;
"

f
o
r
m
=
"
i
n
f
i
x
"

s
t
r
e
t
c
h
y
=
"
t
r
u
e
"

l
s
p
a
c
e
=
"
v
e
r
y
t
h
i
n
m
a
t
h
s
p
a
c
e
"
r
s
p
a
c
e
=
"
v
e
r
y
t
h
i
n
m
a
t
h
s
p
a
c
e
"

"
&
D
o
u
b
l
e
L
o
n
g
L
e
f
t
R
i
g
h
t
A
r
r
o
w
;
"

f
o
r
m
=
"
i
n
f
i
x
"

s
t
r
e
t
c
h
y
=
"
t
r
u
e
"

l
s
p
a
c
e
=
"
v
e
r
y
t
h
i
n
m
a
t
h
s
p
a
c
e
"
r
s
p
a
c
e
=
"
v
e
r
y
t
h
i
n
m
a
t
h
s
p
a
c
e
"

286 Appendix B. Operator Dictionary (Non-Normative)
"
&
D
o
u
b
l
e
L
o
n
g
R
i
g
h
t
A
r
r
o
w
;
"

f
o
r
m
=
"
i
n
f
i
x
"

s
t
r
e
t
c
h
y
=
"
t
r
u
e
"

l
s
p
a
c
e
=
"
v
e
r
y
t
h
i
n
m
a
t
h
s
p
a
c
e
"
r
s
p
a
c
e
=
"
v
e
r
y
t
h
i
n
m
a
t
h
s
p
a
c
e
"

"
&
D
o
u
b
l
e
U
p
A
r
r
o
w
;
"

f
o
r
m
=
"
i
n
f
i
x
"

s
t
r
e
t
c
h
y
=
"
t
r
u
e
"

l
s
p
a
c
e
=
"
v
e
r
y
t
h
i
n
m
a
t
h
s
p
a
c
e
"
r
s
p
a
c
e
=
"
v
e
r
y
t
h
i
n
m
a
t
h
s
p
a
c
e
"

"
&
D
o
u
b
l
e
U
p
D
o
w
n
A
r
r
o
w
;
"

f
o
r
m
=
"
i
n
f
i
x
"

s
t
r
e
t
c
h
y
=
"
t
r
u
e
"

l
s
p
a
c
e
=
"
v
e
r
y
t
h
i
n
m
a
t
h
s
p
a
c
e
"
r
s
p
a
c
e
=
"
v
e
r
y
t
h
i
n
m
a
t
h
s
p
a
c
e
"

"
&
D
o
w
n
A
r
r
o
w
;
"

f
o
r
m
=
"
i
n
f
i
x
"

s
t
r
e
t
c
h
y
=
"
t
r
u
e
"

l
s
p
a
c
e
=
"
v
e
r
y
t
h
i
n
m
a
t
h
s
p
a
c
e
"
r
s
p
a
c
e
=
"
v
e
r
y
t
h
i
n
m
a
t
h
s
p
a
c
e
"

"
&
D
o
w
n
A
r
r
o
w
B
a
r
;
"

f
o
r
m
=
"
i
n
f
i
x
"

s
t
r
e
t
c
h
y
=
"
t
r
u
e
"

l
s
p
a
c
e
=
"
v
e
r
y
t
h
i
n
m
a
t
h
s
p
a
c
e
"
r
s
p
a
c
e
=
"
v
e
r
y
t
h
i
n
m
a
t
h
s
p
a
c
e
"

"
&
D
o
w
n
A
r
r
o
w
U
p
A
r
r
o
w
;
"

f
o
r
m
=
"
i
n
f
i
x
"

s
t
r
e
t
c
h
y
=
"
t
r
u
e
"

l
s
p
a
c
e
=
"
v
e
r
y
t
h
i
n
m
a
t
h
s
p
a
c
e
"
r
s
p
a
c
e
=
"
v
e
r
y
t
h
i
n
m
a
t
h
s
p
a
c
e
"

"
&
D
o
w
n
T
e
e
A
r
r
o
w
;
"

f
o
r
m
=
"
i
n
f
i
x
"

s
t
r
e
t
c
h
y
=
"
t
r
u
e
"

l
s
p
a
c
e
=
"
v
e
r
y
t
h
i
n
m
a
t
h
s
p
a
c
e
"
r
s
p
a
c
e
=
"
v
e
r
y
t
h
i
n
m
a
t
h
s
p
a
c
e
"

"
&
L
e
f
t
D
o
w
n
T
e
e
V
e
c
t
o
r
;
"

f
o
r
m
=
"
i
n
f
i
x
"

s
t
r
e
t
c
h
y
=
"
t
r
u
e
"

l
s
p
a
c
e
=
"
v
e
r
y
t
h
i
n
m
a
t
h
s
p
a
c
e
"
r
s
p
a
c
e
=
"
v
e
r
y
t
h
i
n
m
a
t
h
s
p
a
c
e
"

"
&
L
e
f
t
D
o
w
n
V
e
c
t
o
r
;
"

f
o
r
m
=
"
i
n
f
i
x
"

s
t
r
e
t
c
h
y
=
"
t
r
u
e
"

l
s
p
a
c
e
=
"
v
e
r
y
t
h
i
n
m
a
t
h
s
p
a
c
e
"
r
s
p
a
c
e
=
"
v
e
r
y
t
h
i
n
m
a
t
h
s
p
a
c
e
"

"
&
L
e
f
t
D
o
w
n
V
e
c
t
o
r
B
a
r
;
"

f
o
r
m
=
"
i
n
f
i
x
"

s
t
r
e
t
c
h
y
=
"
t
r
u
e
"

l
s
p
a
c
e
=
"
v
e
r
y
t
h
i
n
m
a
t
h
s
p
a
c
e
"
r
s
p
a
c
e
=
"
v
e
r
y
t
h
i
n
m
a
t
h
s
p
a
c
e
"

"
&
L
e
f
t
U
p
D
o
w
n
V
e
c
t
o
r
;
"

f
o
r
m
=
"
i
n
f
i
x
"

s
t
r
e
t
c
h
y
=
"
t
r
u
e
"

l
s
p
a
c
e
=
"
v
e
r
y
t
h
i
n
m
a
t
h
s
p
a
c
e
"
r
s
p
a
c
e
=
"
v
e
r
y
t
h
i
n
m
a
t
h
s
p
a
c
e
"

"
&
L
e
f
t
U
p
T
e
e
V
e
c
t
o
r
;
"

f
o
r
m
=
"
i
n
f
i
x
"

s
t
r
e
t
c
h
y
=
"
t
r
u
e
"

l
s
p
a
c
e
=
"
v
e
r
y
t
h
i
n
m
a
t
h
s
p
a
c
e
"
r
s
p
a
c
e
=
"
v
e
r
y
t
h
i
n
m
a
t
h
s
p
a
c
e
"

"
&
L
e
f
t
U
p
V
e
c
t
o
r
;
"

f
o
r
m
=
"
i
n
f
i
x
"

s
t
r
e
t
c
h
y
=
"
t
r
u
e
"

l
s
p
a
c
e
=
"
v
e
r
y
t
h
i
n
m
a
t
h
s
p
a
c
e
"
r
s
p
a
c
e
=
"
v
e
r
y
t
h
i
n
m
a
t
h
s
p
a
c
e
"

"
&
L
e
f
t
U
p
V
e
c
t
o
r
B
a
r
;
"

f
o
r
m
=
"
i
n
f
i
x
"

s
t
r
e
t
c
h
y
=
"
t
r
u
e
"

l
s
p
a
c
e
=
"
v
e
r
y
t
h
i
n
m
a
t
h
s
p
a
c
e
"
r
s
p
a
c
e
=
"
v
e
r
y
t
h
i
n
m
a
t
h
s
p
a
c
e
"

"
&
L
o
n
g
L
e
f
t
A
r
r
o
w
;
"

f
o
r
m
=
"
i
n
f
i
x
"

s
t
r
e
t
c
h
y
=
"
t
r
u
e
"

l
s
p
a
c
e
=
"
v
e
r
y
t
h
i
n
m
a
t
h
s
p
a
c
e
"
r
s
p
a
c
e
=
"
v
e
r
y
t
h
i
n
m
a
t
h
s
p
a
c
e
"

"
&
L
o
n
g
L
e
f
t
R
i
g
h
t
A
r
r
o
w
;
"

f
o
r
m
=
"
i
n
f
i
x
"

s
t
r
e
t
c
h
y
=
"
t
r
u
e
"

l
s
p
a
c
e
=
"
v
e
r
y
t
h
i
n
m
a
t
h
s
p
a
c
e
"
r
s
p
a
c
e
=
"
v
e
r
y
t
h
i
n
m
a
t
h
s
p
a
c
e
"

"
&
L
o
n
g
R
i
g
h
t
A
r
r
o
w
;
"

f
o
r
m
=
"
i
n
f
i
x
"

s
t
r
e
t
c
h
y
=
"
t
r
u
e
"

l
s
p
a
c
e
=
"
v
e
r
y
t
h
i
n
m
a
t
h
s
p
a
c
e
"
r
s
p
a
c
e
=
"
v
e
r
y
t
h
i
n
m
a
t
h
s
p
a
c
e
"

"
&
R
e
v
e
r
s
e
U
p
E
q
u
i
l
i
b
r
i
u
m
;
"

f
o
r
m
=
"
i
n
f
i
x
"

s
t
r
e
t
c
h
y
=
"
t
r
u
e
"

l
s
p
a
c
e
=
"
v
e
r
y
t
h
i
n
m
a
t
h
s
p
a
c
e
"
r
s
p
a
c
e
=
"
v
e
r
y
t
h
i
n
m
a
t
h
s
p
a
c
e
"

"
&
R
i
g
h
t
D
o
w
n
T
e
e
V
e
c
t
o
r
;
"

f
o
r
m
=
"
i
n
f
i
x
"

s
t
r
e
t
c
h
y
=
"
t
r
u
e
"

l
s
p
a
c
e
=
"
v
e
r
y
t
h
i
n
m
a
t
h
s
p
a
c
e
"
r
s
p
a
c
e
=
"
v
e
r
y
t
h
i
n
m
a
t
h
s
p
a
c
e
"

"
&
R
i
g
h
t
D
o
w
n
V
e
c
t
o
r
;
"

f
o
r
m
=
"
i
n
f
i
x
"

s
t
r
e
t
c
h
y
=
"
t
r
u
e
"

l
s
p
a
c
e
=
"
v
e
r
y
t
h
i
n
m
a
t
h
s
p
a
c
e
"
r
s
p
a
c
e
=
"
v
e
r
y
t
h
i
n
m
a
t
h
s
p
a
c
e
"

"
&
R
i
g
h
t
D
o
w
n
V
e
c
t
o
r
B
a
r
;
"

f
o
r
m
=
"
i
n
f
i
x
"

s
t
r
e
t
c
h
y
=
"
t
r
u
e
"

l
s
p
a
c
e
=
"
v
e
r
y
t
h
i
n
m
a
t
h
s
p
a
c
e
"
r
s
p
a
c
e
=
"
v
e
r
y
t
h
i
n
m
a
t
h
s
p
a
c
e
"

"
&
R
i
g
h
t
U
p
D
o
w
n
V
e
c
t
o
r
;
"

f
o
r
m
=
"
i
n
f
i
x
"

s
t
r
e
t
c
h
y
=
"
t
r
u
e
"

l
s
p
a
c
e
=
"
v
e
r
y
t
h
i
n
m
a
t
h
s
p
a
c
e
"
r
s
p
a
c
e
=
"
v
e
r
y
t
h
i
n
m
a
t
h
s
p
a
c
e
"

"
&
R
i
g
h
t
U
p
T
e
e
V
e
c
t
o
r
;
"

f
o
r
m
=
"
i
n
f
i
x
"

s
t
r
e
t
c
h
y
=
"
t
r
u
e
"

l
s
p
a
c
e
=
"
v
e
r
y
t
h
i
n
m
a
t
h
s
p
a
c
e
"
r
s
p
a
c
e
=
"
v
e
r
y
t
h
i
n
m
a
t
h
s
p
a
c
e
"

"
&
R
i
g
h
t
U
p
V
e
c
t
o
r
;
"

f
o
r
m
=
"
i
n
f
i
x
"

s
t
r
e
t
c
h
y
=
"
t
r
u
e
"

l
s
p
a
c
e
=
"
v
e
r
y
t
h
i
n
m
a
t
h
s
p
a
c
e
"
r
s
p
a
c
e
=
"
v
e
r
y
t
h
i
n
m
a
t
h
s
p
a
c
e
"

"
&
R
i
g
h
t
U
p
V
e
c
t
o
r
B
a
r
;
"

f
o
r
m
=
"
i
n
f
i
x
"

s
t
r
e
t
c
h
y
=
"
t
r
u
e
"

l
s
p
a
c
e
=
"
v
e
r
y
t
h
i
n
m
a
t
h
s
p
a
c
e
"
r
s
p
a
c
e
=
"
v
e
r
y
t
h
i
n
m
a
t
h
s
p
a
c
e
"

"
&
S
h
o
r
t
D
o
w
n
A
r
r
o
w
;
"

f
o
r
m
=
"
i
n
f
i
x
"

l
s
p
a
c
e
=
"
v
e
r
y
t
h
i
n
m
a
t
h
s
p
a
c
e
"
r
s
p
a
c
e
=
"
v
e
r
y
t
h
i
n
m
a
t
h
s
p
a
c
e
"

"
&
S
h
o
r
t
U
p
A
r
r
o
w
;
"

f
o
r
m
=
"
i
n
f
i
x
"

l
s
p
a
c
e
=
"
v
e
r
y
t
h
i
n
m
a
t
h
s
p
a
c
e
"
r
s
p
a
c
e
=
"
v
e
r
y
t
h
i
n
m
a
t
h
s
p
a
c
e
"

"
&
U
p
A
r
r
o
w
;
"

f
o
r
m
=
"
i
n
f
i
x
"

s
t
r
e
t
c
h
y
=
"
t
r
u
e
"

l
s
p
a
c
e
=
"
v
e
r
y
t
h
i
n
m
a
t
h
s
p
a
c
e
"
r
s
p
a
c
e
=
"
v
e
r
y
t
h
i
n
m
a
t
h
s
p
a
c
e
"

"
&
U
p
A
r
r
o
w
B
a
r
;
"

f
o
r
m
=
"
i
n
f
i
x
"

s
t
r
e
t
c
h
y
=
"
t
r
u
e
"

l
s
p
a
c
e
=
"
v
e
r
y
t
h
i
n
m
a
t
h
s
p
a
c
e
"
r
s
p
a
c
e
=
"
v
e
r
y
t
h
i
n
m
a
t
h
s
p
a
c
e
"

"
&
U
p
A
r
r
o
w
D
o
w
n
A
r
r
o
w
;
"

f
o
r
m
=
"
i
n
f
i
x
"

s
t
r
e
t
c
h
y
=
"
t
r
u
e
"

l
s
p
a
c
e
=
"
v
e
r
y
t
h
i
n
m
a
t
h
s
p
a
c
e
"
r
s
p
a
c
e
=
"
v
e
r
y
t
h
i
n
m
a
t
h
s
p
a
c
e
"

"
&
U
p
D
o
w
n
A
r
r
o
w
;
"

f
o
r
m
=
"
i
n
f
i
x
"

s
t
r
e
t
c
h
y
=
"
t
r
u
e
"

l
s
p
a
c
e
=
"
v
e
r
y
t
h
i
n
m
a
t
h
s
p
a
c
e
"
r
s
p
a
c
e
=
"
v
e
r
y
t
h
i
n
m
a
t
h
s
p
a
c
e
"

"
&
U
p
E
q
u
i
l
i
b
r
i
u
m
;
"

f
o
r
m
=
"
i
n
f
i
x
"

s
t
r
e
t
c
h
y
=
"
t
r
u
e
"

l
s
p
a
c
e
=
"
v
e
r
y
t
h
i
n
m
a
t
h
s
p
a
c
e
"
r
s
p
a
c
e
=
"
v
e
r
y
t
h
i
n
m
a
t
h
s
p
a
c
e
"

"
&
U
p
T
e
e
A
r
r
o
w
;
"

f
o
r
m
=
"
i
n
f
i
x
"

s
t
r
e
t
c
h
y
=
"
t
r
u
e
"

l
s
p
a
c
e
=
"
v
e
r
y
t
h
i
n
m
a
t
h
s
p
a
c
e
"
r
s
p
a
c
e
=
"
v
e
r
y
t
h
i
n
m
a
t
h
s
p
a
c
e
"

"
^
"

f
o
r
m
=
"
i
n
f
i
x
"

l
s
p
a
c
e
=
"
v
e
r
y
t
h
i
n
m
a
t
h
s
p
a
c
e
"
r
s
p
a
c
e
=
"
v
e
r
y
t
h
i
n
m
a
t
h
s
p
a
c
e
"

"
&
l
t
;
>
"

f
o
r
m
=
"
i
n
f
i
x
"

l
s
p
a
c
e
=
"
v
e
r
y
t
h
i
n
m
a
t
h
s
p
a
c
e
"
r
s
p
a
c
e
=
"
v
e
r
y
t
h
i
n
m
a
t
h
s
p
a
c
e
"

"
’
"

f
o
r
m
=
"
p
o
s
t
f
i
x
"

l
s
p
a
c
e
=
"
v
e
r
y
t
h
i
n
m
a
t
h
s
p
a
c
e
"
r
s
p
a
c
e
=
"
0
e
m
"

"
!
"

f
o
r
m
=
"
p
o
s
t
f
i
x
"

l
s
p
a
c
e
=
"
v
e
r
y
t
h
i
n
m
a
t
h
s
p
a
c
e
"
r
s
p
a
c
e
=
"
0
e
m
"

B.5. Operator dictionary entries 287
"
!
!
"

f
o
r
m
=
"
p
o
s
t
f
i
x
"

l
s
p
a
c
e
=
"
v
e
r
y
t
h
i
n
m
a
t
h
s
p
a
c
e
"
r
s
p
a
c
e
=
"
0
e
m
"

"
~
"

f
o
r
m
=
"
i
n
f
i
x
"

l
s
p
a
c
e
=
"
v
e
r
y
t
h
i
n
m
a
t
h
s
p
a
c
e
"
r
s
p
a
c
e
=
"
v
e
r
y
t
h
i
n
m
a
t
h
s
p
a
c
e
"

"
@
"

f
o
r
m
=
"
i
n
f
i
x
"

l
s
p
a
c
e
=
"
v
e
r
y
t
h
i
n
m
a
t
h
s
p
a
c
e
"
r
s
p
a
c
e
=
"
v
e
r
y
t
h
i
n
m
a
t
h
s
p
a
c
e
"

"
-
"

f
o
r
m
=
"
p
o
s
t
f
i
x
"

l
s
p
a
c
e
=
"
v
e
r
y
t
h
i
n
m
a
t
h
s
p
a
c
e
"
r
s
p
a
c
e
=
"
0
e
m
"

"
-
"

f
o
r
m
=
"
p
r
e
f
i
x
"

l
s
p
a
c
e
=
"
0
e
m
"
r
s
p
a
c
e
=
"
v
e
r
y
t
h
i
n
m
a
t
h
s
p
a
c
e
"

"
+
+
"

f
o
r
m
=
"
p
o
s
t
f
i
x
"

l
s
p
a
c
e
=
"
v
e
r
y
t
h
i
n
m
a
t
h
s
p
a
c
e
"
r
s
p
a
c
e
=
"
0
e
m
"

"
+
+
"

f
o
r
m
=
"
p
r
e
f
i
x
"

l
s
p
a
c
e
=
"
0
e
m
"
r
s
p
a
c
e
=
"
v
e
r
y
t
h
i
n
m
a
t
h
s
p
a
c
e
"

"
&
A
p
p
l
y
F
u
n
c
t
i
o
n
;
"

f
o
r
m
=
"
i
n
f
i
x
"

l
s
p
a
c
e
=
"
0
e
m
"
r
s
p
a
c
e
=
"
0
e
m
"

"
?
"

f
o
r
m
=
"
i
n
f
i
x
"

l
s
p
a
c
e
=
"
v
e
r
y
t
h
i
n
m
a
t
h
s
p
a
c
e
"
r
s
p
a
c
e
=
"
v
e
r
y
t
h
i
n
m
a
t
h
s
p
a
c
e
"

"
_
"

f
o
r
m
=
"
i
n
f
i
x
"

l
s
p
a
c
e
=
"
v
e
r
y
t
h
i
n
m
a
t
h
s
p
a
c
e
"
r
s
p
a
c
e
=
"
v
e
r
y
t
h
i
n
m
a
t
h
s
p
a
c
e
"

"
&
B
r
e
v
e
;
"

f
o
r
m
=
"
p
o
s
t
f
i
x
"
a
c
c
e
n
t
=
"
t
r
u
e
"

l
s
p
a
c
e
=
"
0
e
m
"
r
s
p
a
c
e
=
"
0
e
m
"

"
&
C
e
d
i
l
l
a
;
"

f
o
r
m
=
"
p
o
s
t
f
i
x
"
a
c
c
e
n
t
=
"
t
r
u
e
"

l
s
p
a
c
e
=
"
0
e
m
"
r
s
p
a
c
e
=
"
0
e
m
"

"
&
D
i
a
c
r
i
t
i
c
a
l
G
r
a
v
e
;
"

f
o
r
m
=
"
p
o
s
t
f
i
x
"
a
c
c
e
n
t
=
"
t
r
u
e
"

l
s
p
a
c
e
=
"
0
e
m
"
r
s
p
a
c
e
=
"
0
e
m
"

"
&
D
i
a
c
r
i
t
i
c
a
l
D
o
t
;
"

f
o
r
m
=
"
p
o
s
t
f
i
x
"
a
c
c
e
n
t
=
"
t
r
u
e
"

l
s
p
a
c
e
=
"
0
e
m
"
r
s
p
a
c
e
=
"
0
e
m
"

"
&
D
i
a
c
r
i
t
i
c
a
l
D
o
u
b
l
e
A
c
u
t
e
;
"

f
o
r
m
=
"
p
o
s
t
f
i
x
"
a
c
c
e
n
t
=
"
t
r
u
e
"

l
s
p
a
c
e
=
"
0
e
m
"
r
s
p
a
c
e
=
"
0
e
m
"

"
&
L
e
f
t
A
r
r
o
w
;
"

f
o
r
m
=
"
p
o
s
t
f
i
x
"
a
c
c
e
n
t
=
"
t
r
u
e
"
s
t
r
e
t
c
h
y
=
"
t
r
u
e
"

l
s
p
a
c
e
=
"
0
e
m
"
r
s
p
a
c
e
=
"
0
e
m
"

"
&
L
e
f
t
R
i
g
h
t
A
r
r
o
w
;
"

f
o
r
m
=
"
p
o
s
t
f
i
x
"
a
c
c
e
n
t
=
"
t
r
u
e
"
s
t
r
e
t
c
h
y
=
"
t
r
u
e
"

l
s
p
a
c
e
=
"
0
e
m
"
r
s
p
a
c
e
=
"
0
e
m
"

"
&
L
e
f
t
R
i
g
h
t
V
e
c
t
o
r
;
"

f
o
r
m
=
"
p
o
s
t
f
i
x
"
a
c
c
e
n
t
=
"
t
r
u
e
"
s
t
r
e
t
c
h
y
=
"
t
r
u
e
"

l
s
p
a
c
e
=
"
0
e
m
"
r
s
p
a
c
e
=
"
0
e
m
"

"
&
L
e
f
t
V
e
c
t
o
r
;
"

f
o
r
m
=
"
p
o
s
t
f
i
x
"
a
c
c
e
n
t
=
"
t
r
u
e
"
s
t
r
e
t
c
h
y
=
"
t
r
u
e
"

l
s
p
a
c
e
=
"
0
e
m
"
r
s
p
a
c
e
=
"
0
e
m
"

"
&
D
i
a
c
r
i
t
i
c
a
l
A
c
u
t
e
;
"

f
o
r
m
=
"
p
o
s
t
f
i
x
"
a
c
c
e
n
t
=
"
t
r
u
e
"

l
s
p
a
c
e
=
"
0
e
m
"
r
s
p
a
c
e
=
"
0
e
m
"

"
&
R
i
g
h
t
A
r
r
o
w
;
"

f
o
r
m
=
"
p
o
s
t
f
i
x
"
a
c
c
e
n
t
=
"
t
r
u
e
"
s
t
r
e
t
c
h
y
=
"
t
r
u
e
"

l
s
p
a
c
e
=
"
0
e
m
"
r
s
p
a
c
e
=
"
0
e
m
"

"
&
R
i
g
h
t
V
e
c
t
o
r
;
"

f
o
r
m
=
"
p
o
s
t
f
i
x
"
a
c
c
e
n
t
=
"
t
r
u
e
"
s
t
r
e
t
c
h
y
=
"
t
r
u
e
"

l
s
p
a
c
e
=
"
0
e
m
"
r
s
p
a
c
e
=
"
0
e
m
"

"
&
D
i
a
c
r
i
t
i
c
a
l
T
i
l
d
e
;
"

f
o
r
m
=
"
p
o
s
t
f
i
x
"
a
c
c
e
n
t
=
"
t
r
u
e
"
s
t
r
e
t
c
h
y
=
"
t
r
u
e
"

l
s
p
a
c
e
=
"
0
e
m
"
r
s
p
a
c
e
=
"
0
e
m
"

"
&
D
o
u
b
l
e
D
o
t
;
"

f
o
r
m
=
"
p
o
s
t
f
i
x
"
a
c
c
e
n
t
=
"
t
r
u
e
"

l
s
p
a
c
e
=
"
0
e
m
"
r
s
p
a
c
e
=
"
0
e
m
"

"
&
D
o
w
n
B
r
e
v
e
;
"

f
o
r
m
=
"
p
o
s
t
f
i
x
"
a
c
c
e
n
t
=
"
t
r
u
e
"

l
s
p
a
c
e
=
"
0
e
m
"
r
s
p
a
c
e
=
"
0
e
m
"

"
&
H
a
c
e
k
;
"

f
o
r
m
=
"
p
o
s
t
f
i
x
"
a
c
c
e
n
t
=
"
t
r
u
e
"
s
t
r
e
t
c
h
y
=
"
t
r
u
e
"

l
s
p
a
c
e
=
"
0
e
m
"
r
s
p
a
c
e
=
"
0
e
m
"

"
&
H
a
t
;
"

f
o
r
m
=
"
p
o
s
t
f
i
x
"
a
c
c
e
n
t
=
"
t
r
u
e
"
s
t
r
e
t
c
h
y
=
"
t
r
u
e
"

l
s
p
a
c
e
=
"
0
e
m
"
r
s
p
a
c
e
=
"
0
e
m
"

"
&
O
v
e
r
B
a
r
;
"

f
o
r
m
=
"
p
o
s
t
f
i
x
"
a
c
c
e
n
t
=
"
t
r
u
e
"
s
t
r
e
t
c
h
y
=
"
t
r
u
e
"

l
s
p
a
c
e
=
"
0
e
m
"
r
s
p
a
c
e
=
"
0
e
m
"

"
&
O
v
e
r
B
r
a
c
e
;
"

f
o
r
m
=
"
p
o
s
t
f
i
x
"
a
c
c
e
n
t
=
"
t
r
u
e
"
s
t
r
e
t
c
h
y
=
"
t
r
u
e
"

l
s
p
a
c
e
=
"
0
e
m
"
r
s
p
a
c
e
=
"
0
e
m
"

"
&
O
v
e
r
B
r
a
c
k
e
t
;
"

f
o
r
m
=
"
p
o
s
t
f
i
x
"
a
c
c
e
n
t
=
"
t
r
u
e
"
s
t
r
e
t
c
h
y
=
"
t
r
u
e
"

l
s
p
a
c
e
=
"
0
e
m
"
r
s
p
a
c
e
=
"
0
e
m
"

"
&
O
v
e
r
P
a
r
e
n
t
h
e
s
i
s
;
"

f
o
r
m
=
"
p
o
s
t
f
i
x
"
a
c
c
e
n
t
=
"
t
r
u
e
"
s
t
r
e
t
c
h
y
=
"
t
r
u
e
"

l
s
p
a
c
e
=
"
0
e
m
"
r
s
p
a
c
e
=
"
0
e
m
"

"
&
T
r
i
p
l
e
D
o
t
;
"

f
o
r
m
=
"
p
o
s
t
f
i
x
"
a
c
c
e
n
t
=
"
t
r
u
e
"

l
s
p
a
c
e
=
"
0
e
m
"
r
s
p
a
c
e
=
"
0
e
m
"

"
&
U
n
d
e
r
B
a
r
;
"

f
o
r
m
=
"
p
o
s
t
f
i
x
"
a
c
c
e
n
t
=
"
t
r
u
e
"
s
t
r
e
t
c
h
y
=
"
t
r
u
e
"

l
s
p
a
c
e
=
"
0
e
m
"
r
s
p
a
c
e
=
"
0
e
m
"

"
&
U
n
d
e
r
B
r
a
c
e
;
"

f
o
r
m
=
"
p
o
s
t
f
i
x
"
a
c
c
e
n
t
=
"
t
r
u
e
"
s
t
r
e
t
c
h
y
=
"
t
r
u
e
"

l
s
p
a
c
e
=
"
0
e
m
"
r
s
p
a
c
e
=
"
0
e
m
"

288 Appendix B. Operator Dictionary (Non-Normative)
"
&
U
n
d
e
r
B
r
a
c
k
e
t
;
"

f
o
r
m
=
"
p
o
s
t
f
i
x
"
a
c
c
e
n
t
=
"
t
r
u
e
"
s
t
r
e
t
c
h
y
=
"
t
r
u
e
"

l
s
p
a
c
e
=
"
0
e
m
"
r
s
p
a
c
e
=
"
0
e
m
"

"
&
U
n
d
e
r
P
a
r
e
n
t
h
e
s
i
s
;
"

f
o
r
m
=
"
p
o
s
t
f
i
x
"
a
c
c
e
n
t
=
"
t
r
u
e
"
s
t
r
e
t
c
h
y
=
"
t
r
u
e
"

l
s
p
a
c
e
=
"
0
e
m
"
r
s
p
a
c
e
=
"
0
e
m
"

Appendix C

Sample CSS Style Sheet for MathML (Non-Normative)

The Cascading Style Sheet sample given here is not normative. It is provided as a guide to illustrate the sort of
CSS style sheet rules which a MathML renderer should include in its default style sheet in order to comply with
both the CSS and MathML specifications. In particular, there is a need to provide rules to prevent the descent of
CSS font rules into MathML expressions embedded in ambient text, and to provide support for the mathfamily,
mathslant, mathweight, mathsize, mathcolor and mathbackground attributes.

We expect that implementation experience will allow us to provide a more authoritative default MathML style
sheet in the future. In the interim, it is hoped that this illustrative sample will be helpful.

math, math[mode="inline"] {
display: inline;
font-family: CMSY10, CMEX10, Symbol, Times;
font-style: normal;

}

math[mode="display"] {
display: block;
text-align: center;
font-family: CMSY10, CMEX10, Symbol, Times;
font-style: normal;

}

@media screen { /* hide from old browsers */

/* Rules dealing with the various values of the "mathvariant" attribute: */

math *.[mathvariant="normal"] {
font-family: "Times New Roman", Courier, Garamond, serif;
font-weight: normal;
font-style: normal;

}

math *.[mathvariant="bold"] {
font-family: "Times New Roman", Courier, Garamond, serif;
font-weight: bold;

289

290 Appendix C. Sample CSS Style Sheet for MathML (Non-Normative)

font-style: normal;
}

math *.[mathvariant="italic"] {
font-family: "Times New Roman", Courier, Garamond, serif;
font-weight: normal;
font-style: italic;

}

math *.[mathvariant="bold-italic"] {
font-family: "Times New Roman", Courier, Garamond, serif;
font-weight: bold;
font-style: italic;

}

math *.[mathvariant="double-struck"] {
font-family: msbm;
font-weight: normal;
font-style: normal;

}

math *.[mathvariant="script"] {
font-family: eusb;
font-weight: normal;
font-style: normal;

}

math *.[mathvariant="bold-script"] {
font-family: eusb;
font-weight: bold;
font-style: normal;

}

math *.[mathvariant="fraktur"] {
font-family: eufm;
font-weight: normal;
font-style: normal;

}

math *.[mathvariant="bold-fraktur"] {
font-family: eufm;
font-weight: bold;
font-style: italic;

}

math *.[mathvariant="sans-serif"] {
font-family: Arial, "Lucida Sans Unicode", Verdana, sans-serif;
font-weight: normal;
font-style: normal;

}

291

math *.[mathvariant="bold-sans-serif"] {
font-family: Arial, "Lucida Sans Unicode", Verdana, sans-serif;
font-weight: bold;
font-style: normal;

}

math *.[mathvariant="sans-serif-italic"] {
font-family: Arial, "Lucida Sans Unicode", Verdana, sans-serif;
font-weight: normal;
font-style: italic;

}

math *.[mathvariant="sans-serif-bold-italic"] {
font-family: Arial, "Lucida Sans Unicode", Verdana, sans-serif;
font-weight: bold;
font-style: italic;

}

math *.[mathvariant="monospace"] {
font-family: monospace

}

/* Rules dealing with "mathsize" attribute */

math *.[mathsize="small"] {
font-size: 80%

}

math *.[mathsize="normal"] {
/* font-size: 100% - which is unnecessary */
}

math *.[mathsize="big"] {
font-size: 125%

}

/*Set size values for the "base" children of script and limit schema to
distinguish them from the script or limit children:

*/

msub>*:first-child[mathsize="big"],
msup>*:first-child[mathsize="big"],
msubsup>*:first-child[mathsize="big"],
munder>*:first-child[mathsize="big"],
mover>*:first-child[mathsize="big"],
munderover>*:first-child[mathsize="big"],
mmultiscripts>*:first-child[mathsize="big"],
mroot>*:first-child[mathsize="big"] {

292 Appendix C. Sample CSS Style Sheet for MathML (Non-Normative)

font-size: 125%
}

msub>*:first-child[mathsize="small"],
msup>*:first-child[mathsize="small"],
msubsup>*:first-child[mathsize="small"],
munder>*:first-child[mathsize="small"],
mover>*:first-child[mathsize="small"],
munderover>*:first-child[mathsize="small"],
mmultiscripts>*:first-child[mathsize="small"],
mroot>*:first-child[mathsize="small"] {
font-size: 80%

}

msub>*:first-child,
msup>*:first-child,
msubsup>*:first-child,
munder>*:first-child,
mover>*:first-child,
munderover>*:first-child,
mmultiscripts>*:first-child,
mroot>*:first-child {
font-size: 100%

}

/*Set size values for the other children of script and limit schema (the
script and limit children) - include scriptlevel increment attribute?

*/

msub>*[mathsize="big"],
msup>*[mathsize="big"],
msubsup>*[mathsize="big"],
munder>*[mathsize="big"],
mover>*[mathsize="big"],
munderover>*[mathsize="big"],
mmultiscripts>*[mathsize="big"],
math[display="inline"] mfrac>*[mathsize="big"],
math *[scriptlevel="+1"][mathsize="big"] {
font-size: 89% /* (.71 times 1.25) */

}

msub>* [mathsize="small"],
msup>*[mathsize="small"],
msubsup>*[mathsize="small"],
munder>*[mathsize="small"],
mover>*[mathsize="small"],
munderover>*[mathsize="small"],
mmultiscripts>*[mathsize="small"],
math[display="inline"] mfrac>*[mathsize="small"],
math *[scriptlevel="+1"][mathsize="small"] {

293

font-size: 57% /* (.71 times .80) */
}

msub>*,
msup>*,
msubsup>*,
munder>*,
mover>*,
munderover>*,
mmultiscripts>*,
math[display="inline"] mfrac>*,
math *[scriptlevel="+1"] {
font-size: 71%

}

mroot>*[mathsize="big"] {
font-size: 62% /* (.50 times 1.25) */

}

mroot>*[mathsize="small"] {
font-size: 40% /* (.50 times .80) */

}

mroot>* {
font-size: 50%

}

/* Set size values for other scriptlevel increment attributes */

math *[scriptlevel="+2"][mathsize="big"] {
font-size: 63% /* (.71 times .71 times 1.25) */

}

math *[scriptlevel="+2"][mathsize="small"] {
font-size: 36% /* (.71 times .71 times .71) */

}

math *[scriptlevel="+2"] {
font-size: 50% /* .71 times .71 */

}

math *.[mathcolor="green"] {
color: green

}

math *.[mathcolor="black"] {
color: black

}

math *.[mathcolor="red"] {

294 Appendix C. Sample CSS Style Sheet for MathML (Non-Normative)

color: red
}

math *.[mathcolor="blue"] {
color: blue

}

math *.[mathcolor="olive"] {
color: olive

}

math *.[mathcolor="purple"] {
color: purple

}

math *.[mathcolor="teal"] {
color: teal

}

math *.[mathcolor="aqua"] {
color: aqua

}

math *.[mathcolor="gray"] {
color: gray

}

math *.[mathbackground="blue"] {
background-color: blue

}

math *.[mathbackground="green"] {
background-color: green

}

math *.[mathbackground="white"] {
background-color: white

}

math *.[mathbackground="yellow"] {
background-color: yellow

}

math *.[mathbackground="aqua"] {
background-color: aqua

}

} /* Close "@media screen" scope */

@media aural {

295

}

Appendix D

Glossary (Non-Normative)

Several of the following definitions of terms have been borrowed or modified from similar definitions in documents
originating from W3C or standards organizations. See the individual definitions for more information.

Argument A child of a presentation layout schema. That is, ‘A is an argument of B’ means ‘A is a child of B and
B is a presentation layout schema’. Thus, token elements have no arguments, even if they have children
(which can only be malignmark).

Attribute A parameter used to specify some property of an SGML or XML element type. It is defined in terms of
an attribute name, attribute type, and a default value. A value may be specified for it on a start-tag for
that element type.

Axis The axis is an imaginary alignment line upon which a fraction line is centered. Often, operators as well as
characters that can stretch, such as parentheses, brackets, braces, summation signs etc., are centered on
the axis, and are symmetric with respect to it.

Baseline The baseline is an imaginary alignment line upon which a glyph without a descender rests. The baseline
is an intrinsic property of the glyph (namely a horizontal line). Often baselines are aligned (joined)
during typesetting.

Black box The bounding box of the actual size taken up by the viewable portion (ink) of a glyph or expression.
Bounding box The rectangular box of smallest size, taking into account the constraints on boxes allowed in a

particular context, which contains some specific part of a rendered display.
Box A rectangular plane area considered to contain a character or further sub-boxes, used in discussions of ren-

dering for display. It is usually considered to have a baseline, height, depth and width.
Cascading Style Sheets (CSS) A language that allows authors and readers to attach style (e.g. fonts, colors and

spacing) to HTML and XML documents.
Character A member of a set of identifiers used for the organization, control or representation of text. ISO/IEC

Standard 10646-1:1993 uses the word ‘data’ here instead of ‘text’.
Character data (CDATA) A data type in SGML and XML for raw data that does not include markup or entity

references. Attributes of type CDATA may contain entity references. These are expanded by an XML
processor before the attribute value is processed as CDATA.

Character or expression depth Distance between the baseline and bottom edge of the character glyph or expres-
sion. Also known as the descent.

Character or expression height Distance between the baseline and top edge of the character glyph or expression.
Also known as the ascent.

Character or expression width Horizontal distance taken by the character glyph as indicated in the font metrics,
or the total width of an expression.

Condition A MathML content element used to place a mathematical condition on one or more variables.
Contained (element A is contained in element B) A is part of B’s content.
Container (Constructor) A non-empty MathML Content element that is used to construct a mathematical object

such as a number, set, or list.

296

297

Content elements MathML elements that explicitly specify the mathematical meaning of a portion of a MathML
expression (defined in Chapter 4).

Content token element Content element having only PCDATA, sep and presentation expressions as content. Rep-
resents either an identifier (ci) or a number (cn).

Context (of a given MathML expression) Information provided during the rendering of some MathML data to
the rendering process for the given MathML expression; especially information about the MathML
markup surrounding the expression.

Declaration An instance of the declare element.
Depth (of a box) The distance from the baseline of the box to the bottom edge of the box.
Direct sub-expression (of a MathML expression ‘E’) A sub-expression directly contained in E.
Directly contained (element A in element B) A is a child of B (as defined in XML), in other words A is con-

tained in B, but not in any element that is itself contained in B.
Document Object Model A model in which the document or Web page is treated as an object repository. This

model is developed by the DOM Working Group (DOM) of the W3C.
Document Style Semantics and Specification Language (DSSSL) A method of specifying the formatting and

transformation of SGML documents. ISO International Standard 10179:1996.
Document Type Definition (DTD) In SGML or XML, a DTD is a formal definition of the elements and the

relationship among the data elements (the structure) for a particular type of document.
Em A font-relative measure encoded by the font. Before electronic typesetting, an "em" was the width of an ‘M’

in the font. In modern usage, an "em" is either specified by the designer of the font or is taken to be the
height (point size) of the font. Em’s are typically used for font-relative horizontal sizes.

Ex A font-relative measure that is the height of an ‘x’ in the font. "ex"s are typically used for font-relative vertical
sizes.

Height (of a box) The distance from the baseline of the box to the top edge of the box.
Inferred mrow An mrow element that is ‘inferred’ around the contents of certain layout schemata when they have

other than exactly one argument. Defined precisely in Section 3.1.7
Embedded object Embedded objects such as Java applets, Microsoft Component Object Model (COM) objects

(e.g. ActiveX Controls and ActiveX Document embeddings), and plug-ins that reside in an HTML
document.

Embellished operator An operator, including any ‘embellishment’ it may have, such as superscripts or style
information. The ‘embellishment’ is represented by a layout schema that contains the operator itself.
Defined precisely in Section 3.2.5.

Entity reference A sequence of ASCII characters of the form &name; representing some other data, typically a
non-ASCII character, a sequence of characters, or an external source of data, e.g. a file containing a set
of standard entity definitions such as ISO Latin 1.

Extensible Markup Language (XML) A simple dialect of SGML intended to enable generic SGML to be served,
received, and processed on the Web.

Fences In typesetting, bracketing tokens like parentheses, braces, and brackets, which usually appear in matched
pairs.

Font A particular collection of glyphs of a typeface of a given size, weight and style, for example ‘Times Roman
Bold 12 point’.

Glyph The actual shape (bit pattern, outline) of a character. ISO/IEC Standard 9541-1:1991 defines a glyph as a
recognizable abstract graphic symbol that is independent of any specific design.

Indirectly contained A is contained in B, but not directly contained in B.
Instance of MathML A single instance of the top level element of MathML, and/or a single instance of embedded

MathML in some other data format.
Inverse function A mathematical function that, when composed with the original function acts like an identity

function.
Lambda expression A mathematical expression used to define a function in terms of variables and an expression

in those variables.

298 Appendix D. Glossary (Non-Normative)

Layout schema (plural: schemata) A presentation element defined in chapter 3, other than the token elements
and empty elements defined there (i.e. not the elements defined in Section 3.2 and Section 3.5.5, or
the empty elements none and mprescripts defined in Section 3.4.7). The layout schemata are never
empty elements (though their content may contain nothing in some cases), are always expressions, and
all allow any MathML expressions as arguments (except for requirements on argument count, and the
requirement for a certain empty element in mmultiscripts).

Mathematical Markup Language (MathML) The markup language specified in this document for describing
the structure of mathematical expressions, together with a mathematical context.

MathML element An XML element that forms part of the logical structure of a MathML document.
MathML expression (within some valid MathML data) A single instance of a presentation element, except for

the empty elements none or mprescripts, or an instance of malignmark within a token element
(defined below); or a single instance of certain of the content elements (see Chapter 4 for a precise
definition of which ones).

Multi-purpose Internet Mail Extensions (MIME) A set of specifications that offers a way to interchange text in
languages with different character sets, and multimedia content among many different computer systems
that use Internet mail standards.

Operator, content element A mathematical object that is applied to arguments using the apply element.
Operator, an mo element Used to represent ordinary operators, fences, separators in MathML presentation. (The

token element mo is defined in Section 3.2.5).
OpenMath A general representation language for communicating mathematical objects between application pro-

grams.
Parsed character data (PCDATA) An SGML/XML data type for raw data occurring in a context where text is

parsed and markup (for instance entity references and element start/end tags) is recognized.
Point Point is often abbreviated ‘pt’. The value of 1 pt is approximately 1/72 inch. Points are typically used to

specify absolute sizes for font-related objects.
Pre-defined function One of the empty elements defined in [mathml3cds] and used with the apply construct to

build function applications.
Presentation elements MathML tags and entities intended to express the syntactic structure of mathematical no-

tation (defined in Chapter 3).
Presentation layout schema A presentation element that can have other MathML elements as content.
Presentation token element A presentation element that can contain only parsed character data or the

malignmark element.
Qualifier A MathML content element that is used to specify the value of a specific named parameter in the

application of selected pre-defined functions.
Relation A MathML content element used to construct expressions such as a < b.
Render Faithfully translate into application-specific form allowing native application operations to be performed.
Schema Schema (plural: schemata or schemas). See ‘presentation layout schema’.
Scope of a declaration The portion of a MathML document in which a particular definition is active.
Selected sub-expression (of an maction element) The argument of an maction element (a layout schema de-

fined in Section 3.6) that is (at any given time) ‘selected’ within the viewing state of a MathML renderer,
or by the selection attribute when the element exists only in MathML data. Defined precisely in the
abovementioned section.

Space-like (MathML expression) A MathML expression that is ignored by the suggested rendering rules for
MathML presentation elements when they determine operator forms and effective operator rendering
attributes based on operator positions in mrow elements. Defined precisely in Section 3.2.7.

Standard Generalized Markup Language (SGML) An ISO standard (ISO 8879:1986) that provides a formal
mechanism for the definition of document structure via DTDs (Document Type Definitions), and a
notation for the markup of document instances conforming to a DTD.

Sub-expression (of a MathML expression ‘E’) A MathML expression contained (directly or indirectly) in the
content of E.

299

Suggested rendering rules for MathML presentation elements Defined throughout Chapter 3; the ones that use
other terms defined here occur mainly in Section 3.2.5 and in Section 3.6.

TEX A software system developed by Professor Donald Knuth for typesetting documents.
Token element Presentation token element or a Content token element. (See above.)
Top-level element (of MathML) math (defined in Section 2.5.2).
Typeface A typeface is a specific design of a set of letters, numbers and symbols, such as ‘Times Roman’ or

‘Chicago’.
Valid MathML data MathML data that (1) conforms to the MathML DTD, (2) obeys the additional rules defined

in the MathML standard for the legal contents and attribute values of each MathML element, and (3)
satisfies the EBNF grammar for content elements.

Width (of a box) The distance from the left edge of the box to the right edge of the box.
Extensible Style Language (XSL) A style language for XML developed by W3C. See XSL FO and XSLT.
XSL Formatting Objects (XSL FO) An XML vocabulary to express formatting, which is a part of XSL.
XSL Transformation (XSLT) A language to express the transformation of XML documents into other XML

documents.

Appendix E

Working Group Membership and Acknowledgments (Non-Normative)

E.1 The Math Working Group Membership

The present W3C Math Working Group (2006-2008) is co-chaired by Patrick Ion of the AMS and Robert Miner of
Design Science. Contact the co-chairs about membership in the Working Group. For the present membership see
the W3C Math home page.

Participants in the Working Group responsible for MathML 3.0 are:

• Ron Ausbrooks, Mackichan Software, Las Cruces NM, USA
• Laurent Bernardin, Waterloo Maple, Inc., Waterloo ON, CAN
• Pierre-Yves Bertholet, MITRE Corporation, McLean VA, USA
• Bert Bos, W3C, Sophia-Antipolis, FRA
• Mike Brenner, MITRE Corporation, Bedford MA, USA
• Olga Caprotti, University of Helsinki, Helsinki, FI
• David Carlisle, NAG Ltd., Oxford, UK
• Giorgi Chavchanidze, Opera Software, Oslo, NO
• Ananth Coorg, The Boeing Company, Seattle WA, USA
• St\’ephane Dalmas, INRIA, Sophia Antipolis, FRA
• Stan Devitt, Agfa-Gevaert N. V., Trier, GER
• Margaret Hinchcliffe, Waterloo Maple, Inc., Waterloo ON, CAN
• Patrick Ion, W3C Invited Experts:Mathematical Reviews (American Mathematical Society), Ann Arbor

MI, USA
• Michael Kohlhase, German Research Center for Artificial Intelligence (DFKI) Gmbh, GER
• Azzeddine Lazrek, W3C Invited Experts: University of Marrakesh, Morocco
• Dennis Leas, DAISY Consortium
• Paul Libbrecht, German Research Center for Artificial Intelligence (DFKI) Gmbh, GER
• Manolis Mavrikis, University of Edinburgh, Edinburg, UK
• Bruce Miller, National Institute of Standards and Technology (NIST), Gaithersburg MD, USA
• Robert Miner, Design Science Inc., Long Beach CA, USA
• Murray Sargent III, Microsoft, Redmond WA, USA
• Kyle Siegrist, Mathematical Association of America, Washington DC, USA
• Neil Soiffer, Design Science Inc., Long Beach CA, USA
• Stephen Watt, University of Western Ontario, London ON, CAN
• Mohamed Zergaoui, Innovimax, Paris, FRA

For 2003 to 2006 W3C Math Activity comprised a Math Interest Group, chaired by David Carlsisle of NAG and
Robert Miner of Design Science.

The W3C Math Working Group (2001-2003) was co-chaired by Patrick Ion of the AMS, and Angel Diaz of IBM
from June 2001 to May 2002; afterwards Patrick Ion continued as chair until the end of the WG’s extended charter.

300

http://www.w3.org/Math/

E.1. The Math Working Group Membership 301

Participants in the Working Group responsible for MathML 2.0, second edition were:

• Ron Ausbrooks, Mackichan Software, Las Cruces NM, USA
• Laurent Bernardin, Waterloo Maple, Inc., Waterloo ON, CAN
• Stephen Buswell, Stilo Technology Ltd., Bristol, UK
• David Carlisle, NAG Ltd., Oxford, UK
• St\’ephane Dalmas, INRIA, Sophia Antipolis, FR
• Stan Devitt, Stratum Technical Services Ltd., Waterloo ON, CAN (earlier with Waterloo Maple, Inc.,

Waterloo ON, CAN)
• Max Froumentin, W3C, Sophia-Antipolis, FRA
• Patrick Ion, Mathematical Reviews (American Mathematical Society), Ann Arbor MI, USA
• Michael Kohlhase, DFKI, GER
• Robert Miner, Design Science Inc., Long Beach CA, USA
• Luca Padovani, University of Bologna, IT
• Ivor Philips, Boeing, Seattle WA, USA
• Murray Sargent III, Microsoft, Redmond WA, USA
• Neil Soiffer, Wolfram Research Inc., Champaign IL, USA
• Paul Topping, Design Science Inc., Long Beach CA, USA
• Stephen Watt, University of Western Ontario, London ON, CAN

Earlier active participants of the W3C Math Working Group (2001 – 2003) have included:

• Angel Diaz, IBM Research Division, Yorktown Heights NY, USA
• Sam Dooley, IBM Research, Yorktown Heights NY, USA
• Barry MacKichan, MacKichan Software, Las Cruces NM, USA

The W3C Math Working Group was co-chaired by Patrick Ion of the AMS, and Angel Diaz of IBM from July
1998 to December 2000.

Participants in the Working Group responsible for MathML 2.0 were:

• Ron Ausbrooks, Mackichan Software, Las Cruces NM, USA
• Laurent Bernardin, Maplesoft, Waterloo ON, CAN
• Stephen Buswell, Stilo Technology Ltd., Cardiff, UK
• David Carlisle, NAG Ltd., Oxford, UK
• St\’ephane Dalmas, INRIA, Sophia Antipolis, FR
• Stan Devitt, Stratum Technical Services Ltd., Waterloo ON, CAN (earlier with Waterloo Maple, Inc.,

Waterloo ON, CAN)
• Angel Diaz, IBM Research Division, Yorktown Heights NY, USA
• Ben Hinkle, Waterloo Maple, Inc., Waterloo ON, CAN
• Stephen Hunt, MATH.EDU Inc., Champaign IL, USA
• Douglas Lovell, IBM Hawthorne Research, Yorktown Heights NY, USA
• Patrick Ion, Mathematical Reviews (American Mathematical Society), Ann Arbor MI, USA
• Robert Miner, Design Science Inc., Long Beach CA, USA (earlier with Geometry Technologies Inc.,

Minneapolis MN, USA)
• Ivor Philips, Boeing, Seattle WA, USA
• Nico Poppelier, Penta Scope, Amersfoort, NL (earlier with Salience and Elsevier Science, NL)
• Dave Raggett, W3C (Openwave), Bristol, UK (earlier with Hewlett-Packard)
• T.V. Raman, IBM Almaden, Palo Alto CA, USA (earlier with Adobe Inc., Mountain View CA, USA)
• Murray Sargent III, Microsoft, Redmond WA, USA
• Neil Soiffer, Wolfram Research Inc., Champaign IL, USA
• Irene Schena, Universitá di Bologna, Bologna, IT
• Paul Topping, Design Science Inc., Long Beach CA, USA
• Stephen Watt, University of Western Ontario, London ON, CAN

302 Appendix E. Working Group Membership and Acknowledgments (Non-Normative)

Earlier active participants of this second W3C Math Working Group have included:

• Sam Dooley, IBM Research, Yorktown Heights NY, USA
• Robert Sutor, IBM Research, Yorktown Heights NY, USA
• Barry MacKichan, MacKichan Software, Las Cruces NM, USA

At the time of release of MathML 1.0 [MathML1] the Math Working Group was co-chaired by Patrick Ion and
Robert Miner, then of the Geometry Center. Since that time several changes in membership have taken place. In the
course of the update to MathML 1.01, in addition to people listed in the original membership below, corrections
were offered by David Carlisle, Don Gignac, Kostya Serebriany, Ben Hinkle, Sebastian Rahtz, Sam Dooley and
others.

Participants in the Math Working Group responsible for the finished MathML 1.0 specification were:

• Stephen Buswell, Stilo Technology Ltd., Cardiff, UK
• St\’ephane Dalmas, INRIA, Sophia Antipolis, FR
• Stan Devitt, Maplesoft Inc., Waterloo ON, CAN
• Angel Diaz, IBM Research Division, Yorktown Heights NY, USA
• Brenda Hunt, Wolfram Research Inc., Champaign IL, USA
• Stephen Hunt, Wolfram Research Inc., Champaign IL, USA
• Patrick Ion, Mathematical Reviews (American Mathematical Society), Ann Arbor MI, USA
• Robert Miner, Geometry Center, University of Minnesota, Minneapolis MN, USA
• Nico Poppelier, Elsevier Science, Amsterdam, NL
• Dave Raggett, W3C (Hewlett Packard), Bristol, UK
• T.V. Raman, Adobe Inc., Mountain View CA, USA
• Bruce Smith, Wolfram Research Inc., Champaign IL, USA
• Neil Soiffer, Wolfram Research Inc., Champaign IL, USA
• Robert Sutor, IBM Research, Yorktown Heights NY, USA
• Paul Topping, Design Science Inc., Long Beach CA, USA
• Stephen Watt, University of Western Ontario, London ON, CAN
• Ralph Youngen, American Mathematical Society, Providence RI, USA

Others who had been members of the W3C Math WG for periods at earlier stages were:

• Stephen Glim, Mathsoft Inc., Cambridge MA, USA
• Arnaud Le Hors, W3C, Cambridge MA, USA
• Ron Whitney, Texterity Inc., Boston MA, USA
• Lauren Wood, SoftQuad, Surrey BC, CAN
• Ka-Ping Yee, University of Waterloo, Waterloo ON, CAN

E.2 Acknowledgments

The Working Group benefited from the help of many other people in developing the specification for MathML 1.0.
We would like to particularly name Barbara Beeton, Chris Hamlin, John Jenkins, Ira Polans, Arthur Smith, Robby
Villegas and Joe Yurvati for help and information in assembling the character tables in Chapter 6, as well as Peter
Flynn, Russell S.S. O’Connor, Andreas Strotmann, and other contributors to the www-math mailing list for their
careful proofreading and constructive criticisms.

As the Math Working Group went on to MathML 2.0, it again was helped by many from the W3C family of
Working Groups with whom we necessarily had a great deal of interaction. Outside the W3C, a particularly active
relevant front was the interface with the Unicode Technical Committee (UTC) and the NTSC WG2 dealing with
ISO 10646. There the STIX project put together a proposal for the addition of characters for mathematical notation
to Unicode, and this work was again spearheaded by Barbara Beeton of the AMS. The whole problem ended
split into three proposals, two of which were advanced by Murray Sargent of Microsoft, a Math WG member and

http://lists.w3.org/Archives/Public/www-math/

E.2. Acknowledgments 303

member of the UTC. But the mathematical community should be grateful for essential help and guidance over a
couple of years of refinement of the proposals to help mathematics provided by Kenneth Whistler of Sybase, and
a UTC and WG2 member, and by Asmus Freytag, also involved in the UTC and WG2 deliberations, and always a
stalwart and knowledgeable supporter of the needs of scientific notation.

Appendix F

Changes (Non-Normative)

F.1 Changes between MathML 2.0 Second Edition and MathML 3.0

Issue ():The current appendix is just a stub that will be completed in later drafts.

• Changes to Chapter 4.The concept of a Content Dictionary was introduced in MathML3, the whole
chapter and the content dictionaries were compiled anew.

304

Appendix G

References (Non-Normative)

[AAP-math] ANSI/NISO Z39.59-1998; AAP Math DTD, Standard for Electronic Manuscript Preparation and
MarkUp. (Association of American Publishers, Inc., Washington, DC) Bethesda, MD, 1988.

[Abramowitz1997] Abramowitz, Milton, Irene A. Stegun (editors); Mathematical Fuctions: With Formulas,
Graphs, and Mathematical Tables. Dover Publications Inc., December 1977, ISBN: 0-4866-1272-4.

[Behaviors] Vidur Apparao, Daniel Glazman, and Chris Wilson (editors) Behavioral Extensions to CSS
World Wide Web Consortium Working Draft, 4 August 1999. (http://www.w3.org/TR/1999/
WD-becss-19990804)

[Bidi] Mark Davis; The Bidirectional Algorithm, Unicode Standard Annex #9, August 2000. (http://www.
unicode.org/unicode/reports/tr9/)

[Buswell1996] Buswell, S., Healey, E.R. Pike, and M. Pike; SGML and the Semantic Representation of Math-
ematics. UIUC Digital Library Initiative SGML Mathematics Workshop, May 1996 and SGML Europe 96
Conference, Munich 1996.

[CSS1] Lie, Håkon Wium and Bert Bos; Cascading Style Sheets, level 1, W3C Recommendation, 17 December
1996. (http://www.w3.org/TR/1999/REC-CSS1-19990111)

[CSS2] Bert Bos, Håkon Wium Lie, Chris Lilley, and Ian Jacobs (editors); Cascading Style Sheets, lev-
el 2 CSS2 Specification, W3C Recommendation, 12 May 1998. (http://www.w3.org/TR/1998/
REC-CSS2-19980512/)

[CSS21] Bert Bos, Tantek Çelik, Ian Hickson, Håkon Wium Lie (editors); Cascading Style Sheets, Level 2 Revi-
sion 1 (CSS 2.1) Specification, W3C Candidate Recommendation 19 July 2007. (http://www.w3.org/TR/
CSS21/)

[Cajori1928] Cajori, Florian; A History of Mathematical Notations, vol. I & II. Open Court Publishing Co., La
Salle Illinois, 1928 & 1929 republished Dover Publications Inc., New York, 1993, xxviii+820 pp. ISBN
0-486-67766-4 (paperback).

[Carroll1871] Carroll, Lewis [Rev. C.L. Dodgson]; Through the Looking Glass and What Alice Found There.
Macmillian & Co., 1871.

[Chaundy1954] Chaundy, T.W., P.R. Barrett, and C. Batey; The Printing of Mathematics. Aids for authors and ed-
itors and rules for compositors and readers at the University Press, Oxford. Oxford University Press, London,
1954, ix+105 pp.

[DOM] Arnaud Le Hors, Philippe Le H\’egaret, Lauren Wood, Gavin Nicol, Jonathan Robie, Mike
Champion, and Steve Byrne (editors); Document Object Model (DOM) Level 2 Core Specification
World Wide Web Consortium Recommendation, 13 November, 2000. (http://www.w3.org/TR/2000/
REC-DOM-Level-2-Core-20001113/)

[Entities] David Carlisle, XML Entity definitions for Characters (Editor’s draft) Draft 17 November 2007 (http:
//www.w3.org/2003/entities/2007doc/)

305

http://www.w3.org/TR/1999/WD-becss-19990804
http://www.w3.org/TR/1999/WD-becss-19990804
http://www.w3.org/TR/1999/WD-becss-19990804
http://www.unicode.org/unicode/reports/tr9/
http://www.unicode.org/unicode/reports/tr9/
http://www.unicode.org/unicode/reports/tr9/
http://www.w3.org/TR/1999/REC-CSS1-19990111
http://www.w3.org/TR/1999/REC-CSS1-19990111
http://www.w3.org/TR/1998/REC-CSS2-19980512/
http://www.w3.org/TR/1998/REC-CSS2-19980512/
http://www.w3.org/TR/1998/REC-CSS2-19980512/
http://www.w3.org/TR/1998/REC-CSS2-19980512/
http://www.w3.org/TR/CSS21/
http://www.w3.org/TR/CSS21/
http://www.w3.org/TR/CSS21/
http://www.w3.org/TR/CSS21/
http://www.w3.org/TR/2000/REC-DOM-Level-2-Core-20001113/
http://www.w3.org/TR/2000/REC-DOM-Level-2-Core-20001113/
http://www.w3.org/TR/2000/REC-DOM-Level-2-Core-20001113/
http://www.w3.org/2003/entities/2007doc/
http://www.w3.org/2003/entities/2007doc/
http://www.w3.org/2003/entities/2007doc/

306 Appendix G. References (Non-Normative)

[HTML4] Raggett, Dave, Arnaud Le Hors and Ian Jacobs (editors); HTML 4.01 Specification, 24 December 1999.
(http://www.w3.org/TR/1999/REC-html401-19991224/); section on data types.

[Higham1993] Higham, Nicholas J.; Handbook of writing for the mathematical sciences. Society for Industrial
and Applied Mathematics (SIAM), Philadelphia, PA, 1993. xii+241 pp. ISBN: 0-89871-314-5.

[ISO-12083] ISO 12083:1993; ISO 12083 DTD Information and Documentation - Electronic Manuscript Prepa-
ration and Markup. International Standards Organization, Geneva, Switzerland, 1993.

[ISOIEC10646-1] ISO/IEC JTC1/SC2/WG2; ISO/IEC 10646-1: 2000, Information technology – Universal-Octet
Coded Character Set (UCS) – Part 1: Architecture and Basic Multilingual Plane. International Standards
Organization, Geneva, Switzerland, 2000.

[Knuth1986] Knuth, Donald E.; The TEXbook. American Mathematical Society, Providence, RI and Addison-
Wesley Publ. Co., Reading, MA, 1986, ix+483 pp. ISBN: 0-201-13448-9.

[MathML1] Patrick Ion, Robert Miner, Mathematical Markup Language (MathML) 1.01 Specification W3C Rec-
ommendation, revision of 7 July 1999 (http://www.w3.org/TR/REC-MathML/)

[MathML2] David Carlisle, Patrick Ion, Robert Miner, Nico Poppelier, Mathematical Markup Language
(MathML) Version 2.0 W3C Recommendation 21 February 2001 (http://www.w3.org/TR/2001/
REC-MathML2-20010221/)

[MathMLforCSS] Bert Bos, David Carlisle, George Chavchanidze, Patrick D. F. Ion, Bruce R. Miller A
MathML for CSS profile W3C Working Draft 24 September 2007 (http://www.w3.org/TR/2007/
WD-mathml-for-css-20070924/)

[Modularization] Robert Adams, Murray Altheim, Frank Boumphrey, Sam Dooley, Shane McCar-
ron, Sebastian Schnitzenbaumer, Ted Wugofski (editors); Modularization of XHTML[tm], World
Wide Web Consortium Recommendation, 10 April 2001. (http://www.w3.org/TR/2001/
REC-xhtml-modularization-20010410/)

[Namespaces] Tim Bray, Dave Hollander, Andrew Layman (editors); Namespaces in XML, World
Wide Web Consortium Recommendation, 14 January 1999. (http://www.w3.org/TR/1999/
REC-xml-names-19990114/)

[OpenMath2000] O. Caprotti, D. P. Carlisle, A. M. Cohen (editors); The OpenMath Standard, February 2000.
(http://www.openmath.org/standard)

[OpenMath2004] S. Buswell, O. Caprotti, D. P. Carlisle, M. C. Dewar, M. Gaëtano and M. Kohlhase
(editors); The OpenMath Standard Version 2.0, June 2004. (http://www.openmath.org/standard/
om20-2004-06-30/)

[Pierce1961] Pierce, John R.; An Introduction to Information Theory. Symbols, Signals and Noise.. Revised edi-
tion of Symbols, Signals and Noise: the Nature and Process of Communication (1961). Dover Publications
Inc., New York, 1980, xii+305 pp. ISBN 0-486-24061-4.

[Poppelier1992] Poppelier, N.A.F.M., E. van Herwijnen, and C.A. Rowley; Standard DTD’s and Scientific Pub-
lishing, EPSIG News 5 (1992) #3, September 1992, 10-19.

[RELAX-NG] Clark, James and Makoto Murata; RELAX NG Specification. The Organization for the Advance-
ment of Structured Information Standards [OASIS] 2001.

[RFC2045] N. Freed and N. Borenstein; Multipurpose Internet Mail Extensions (MIME) Part One: Format of
Internet Message Bodies, RFC 2045, November 1996. (http://www.ietf.org/rfc/rfc2045.txt)

[RFC2046] N. Freed and N. Borenstein; Multipurpose Internet Mail Extensions (MIME) Part Two: Media Types,
RFC 2045, November 1996. (http://www.ietf.org/rfc/rfc2046.txt)

[RFC3023] M. Murata, S. St.Laurent and D. Kohn; XML Media Types, RFC 3023, January 2001. (http://www.
ietf.org/rfc/rfc3023.txt)

[RelaxNG] A Schema Language for XML (http://www.relaxng.org)

http://www.w3.org/TR/1999/REC-html401-19991224/
http://www.w3.org/TR/1999/REC-html401-19991224/
http://www.w3.org/TR/REC-MathML/
http://www.w3.org/TR/REC-MathML/
http://www.w3.org/TR/2001/REC-MathML2-20010221/
http://www.w3.org/TR/2001/REC-MathML2-20010221/
http://www.w3.org/TR/2001/REC-MathML2-20010221/
http://www.w3.org/TR/2001/REC-MathML2-20010221/
http://www.w3.org/TR/2007/WD-mathml-for-css-20070924/
http://www.w3.org/TR/2007/WD-mathml-for-css-20070924/
http://www.w3.org/TR/2007/WD-mathml-for-css-20070924/
http://www.w3.org/TR/2007/WD-mathml-for-css-20070924/
http://www.w3.org/TR/2001/REC-xhtml-modularization-20010410/
http://www.w3.org/TR/2001/REC-xhtml-modularization-20010410/
http://www.w3.org/TR/2001/REC-xhtml-modularization-20010410/
http://www.w3.org/TR/1999/REC-xml-names-19990114/
http://www.w3.org/TR/1999/REC-xml-names-19990114/
http://www.w3.org/TR/1999/REC-xml-names-19990114/
http://www.openmath.org/standard/
http://www.openmath.org/standard/
http://www.openmath.org/standard/om20-2004-06-30/
http://www.openmath.org/standard/om20-2004-06-30/
http://www.openmath.org/standard/om20-2004-06-30/
http://relaxng.org/spec-20011203.html
http://www.ietf.org/rfc/rfc2045.txt
http://www.ietf.org/rfc/rfc2045.txt
http://www.ietf.org/rfc/rfc2045.txt
http://www.ietf.org/rfc/rfc2046.txt
http://www.ietf.org/rfc/rfc2046.txt
http://www.ietf.org/rfc/rfc3023.txt
http://www.ietf.org/rfc/rfc3023.txt
http://www.ietf.org/rfc/rfc3023.txt
http://www.relaxng.org

307

[RelaxNGBook] Eric van der Vlist; RELAXNG: A simple schema language for XML O’Reilly 2004

[RodWatt2000] Igor Rodionov, Stephen Watt; Content-Faithful Stylesheets for MathML. Technical Report TR-
00-23, Ontario Research Center for Computer Algebra, December 2000. (http://www.orcca.on.ca/
TechReports/2000/TR-00-24.html)

[SVG1.1] Dean Jackson, Jon Ferraiolo, Jun Fujisawa, eds. Scalable Vector Graphics (SVG) 1.1 Specification W3C
Recommendation, 14 January 2003 (http://www.w3.org/TR/2003/REC-SVG11-20030114/)

[Spivak1986] Spivak, M. D.; The Joy of TEX A gourmet guide to typesetting with the AMS-TEX macro package.
American Mathematical Society, Providence, RI, MA 1986, xviii+290 pp. ISBN: 0-8218-2999-8.

[Swanson1979] Swanson, Ellen; Mathematics into type: Copy editing and proofreading of mathematics for edi-
torial assistants and authors. Revised edition. American Mathematical Society, Providence, R.I., 1979. x+90
pp. ISBN: 0-8218-0053-1.

[Swanson1999] Swanson, Ellen; Mathematics into type: Updated Edition. American Mathematical Society, Prov-
idence, R.I., 1999. 102 pp. ISBN: 0-8218-1961-5.

[Thieme1983] Thieme, Romeo; Satz und bedeutung mathematischer Formeln [Typesetting and meaning of math-
ematical formulas]. Reprint of the 1934 original. Edited by Karl Billmann, Helmut Bodden and Horst Nacke.
Werner-Verlag Gmbh, Dusseldorf, 1983, viii + 92 pp. ISBN 3-8041-3549-8.

[UAX15] Unicode Standard Annex 15, Version 4.0.0; Unicode Normalization Forms, The Unicode Consortium,
2003-04-17. (http://www.unicode.org/reports/tr15/tr15-23.html)

[Unicode] The Unicode Consortium; The Unicode Standard, Version 5.0, Addison-Wesley Professional. ISBN
0321480910. (http://www.unicode.org/unicode/standard/standard.html)

[XHTML] Steve Pemberton, Murray Altheim, et al.; XHTML[tm] 1.0: The Extensible HyperText Markup Lan-
guage World Wide Web Consortium Recommendation, 26 January 2000. (http://www.w3.org/TR/2000/
REC-xhtml1-20000126/)

[XHTML-MathML-SVG] Masayasu Ishikawa, ed., An HTML + MathML + SVG Profile W3C Working Draft, 9
August 2002. (http://www.w3.org/TR/2002/WD-XHTMLplusMathMLplusSVG-20020809/)

[XLink] Steve DeRose, Eve Maler, David Orchard (editors); XML Linking Language (XLink) Version
1.0, World Wide Web Consortium Recommendation, 27 June 2001. (http://www.w3.org/TR/2001/
REC-xlink-20010627/)

[XML] Tim Bray, Jean Paoli, C.M. Sperberg-McQueen and Eve Maler (editors); Extensible Markup Language
(XML), (http://www.w3.org/TR/xml)

[XMLSchemas] David C. Fallside, editor; XML Schema Part 0: Primer, World Wide Web Consortium Recom-
mendation, 2 May 2001. (http://www.w3.org/TR/2001/REC-xmlschema-0-20010502/)

[XPath] James Clark, Steve DeRose(editors); XML Path Language Version 1.0, World Wide Web Consortium
Recommendation, 16. November 1999. (http://www.w3.org/TR/1999/REC-xpath-19991116)

[XPointer] Paul Grosso, Eve Maler, Jonathan Marsh, Norman Walsh (editors); XML Pointer Framework,
World Wide Web Consortium Recommendation, 25 March 2003. (http://www.w3.org/TR/2003/
REC-xptr-framework-20030325/)

[XSLT] James Clark (editor); XSL Transformations (XSLT) Version 1.0, World Wide Web Consortium Recom-
mendation, 16 November 1999. (http://www.w3.org/TR/1999/REC-xslt-19991116)

[Zwillinger1988] Daniel Zwillinger (editor); Standard Mathematical Tables and Formulae (30th Edition). CRC
Press LLC, January 1996, ISBN: 0-8493-2479-3.

[mathml3cds] Carlisle, Davenport, Kohlhase, eds; The MathML3 Content Dictionaries. Joint Document by Open-
Math Society and W3C Math WG, under development.

[owl] Deborah L. McGuinness and Frank van Harmelen (editors); OWL Web Ontology Language Overview
February 2004. http://www.w3.org/TR/2004/REC-owl-features-20040210/

http://www.orcca.on.ca/TechReports/2000/TR-00-24.html
http://www.orcca.on.ca/TechReports/2000/TR-00-24.html
http://www.w3.org/TR/2003/REC-SVG11-20030114/
http://www.w3.org/TR/2003/REC-SVG11-20030114/
http://www.unicode.org/reports/tr15/tr15-23.html
http://www.unicode.org/reports/tr15/tr15-23.html
http://www.unicode.org/unicode/standard/standard.html
http://www.w3.org/TR/2000/REC-xhtml1-20000126/
http://www.w3.org/TR/2000/REC-xhtml1-20000126/
http://www.w3.org/TR/2000/REC-xhtml1-20000126/
http://www.w3.org/TR/2000/REC-xhtml1-20000126/
http://www.w3.org/TR/2002/WD-XHTMLplusMathMLplusSVG-20020809/
http://www.w3.org/TR/2002/WD-XHTMLplusMathMLplusSVG-20020809/
http://www.w3.org/TR/2001/REC-xlink-20010627/
http://www.w3.org/TR/2001/REC-xlink-20010627/
http://www.w3.org/TR/2001/REC-xlink-20010627/
http://www.w3.org/TR/2001/REC-xlink-20010627/
http://www.w3.org/TR/xml
http://www.w3.org/TR/xml
http://www.w3.org/TR/xml
http://www.w3.org/TR/2001/REC-xmlschema-0-20010502/
http://www.w3.org/TR/2001/REC-xmlschema-0-20010502/
http://www.w3.org/TR/1999/REC-xpath-19991116
http://www.w3.org/TR/1999/REC-xpath-19991116
http://www.w3.org/TR/2003/REC-xptr-framework-20030325/
http://www.w3.org/TR/2003/REC-xptr-framework-20030325/
http://www.w3.org/TR/2003/REC-xptr-framework-20030325/
http://www.w3.org/TR/1999/REC-xslt-19991116
http://www.w3.org/TR/1999/REC-xslt-19991116
http://www.w3.org/TR/2004/REC-owl-features-20040210/
http://www.w3.org/TR/2004/REC-owl-features-20040210/

308 Appendix G. References (Non-Normative)

[rdf] Graham Klyne, Jeremy J. Carroll, Brian McBride (editors); Resource Description Frame-
work (RDF): Concepts and Abstract Syntax,February 2004. http://www.w3.org/TR/2004/
REC-rdf-concepts-20040210/

[roadmap] Patrick Ion, Robert Minor, Math Working Group Roadmap 2007/8 (http://www.w3.org/Math/
Roadmap/)

[sgml-xml] J. Clark; Comparison of SGML and XML, W3C Note, December 1997. (http://www.w3.org/TR/
NOTE-sgml-xml-971215.html)

[xml11] World Wide Web Consortium Extensible Markup Language (XML) 1.1. W3C Recommendation, Febru-
ary 2004 (http://www.w3.org/TR/2004/REC-xml11-20040204/)

http://www.w3.org/TR/2004/REC-rdf-concepts-20040210/
http://www.w3.org/TR/2004/REC-rdf-concepts-20040210/
http://www.w3.org/TR/2004/REC-rdf-concepts-20040210/
http://www.w3.org/TR/2004/REC-rdf-concepts-20040210/
http://www.w3.org/Math/Roadmap/
http://www.w3.org/Math/Roadmap/
http://www.w3.org/TR/NOTE-sgml-xml-971215.html
http://www.w3.org/TR/NOTE-sgml-xml-971215.html
http://www.w3.org/TR/NOTE-sgml-xml-971215.html
http://www.w3.org/TR/2004/REC-xml11-20040204/
http://www.w3.org/TR/2004/REC-xml11-20040204/

Appendix H

Index (Non-Normative)

H.1 MathML Elements

References to sections in which an element is defined are marked in bold.

OMA 4.2.2
OMATP 4.2.2
OMATTR 4.2.2
OMBIND 4.2.2
OMBVAR 4.2.2
OME 4.2.2
OMF 4.2.2
OMFOREIGN 4.2.2
OMI 4.2.2
OMR 4.2.2
OMS 4.2.2
OMV 4.2.2
Union 4.3.9
abs 4.3.11.20
and 4.3.8.5, 4.3.11.13
annotation 2.1.5, 4.2.2, 4.2.8, 4.5.5, 5.1.1, 5.1.2, 5.1.3, 5.1.4, 5.2, 5.2.1, 5.2.2, 5.3.2, 7, 7.2, 7.2.2, 7.2.3
annotation-xml 3.8, 4.2.2, 4.2.8, 4.3.6, 4.5.5, 5.1.1, 5.1.2, 5.1.3, 5.1.4, 5.2, 5.2.1, 5.2.2, 5.2.3, 5.3.2, 5.4.1, 7, 7.2,

7.2.2, 7.2.3, 7.3.4, A.2.6
apply 4.2.2, 4.2.4, 4.2.5, 4.2.7.2, 4.3.2, 4.3.3, 4.3.4, 4.3.5.1, 4.3.8.1, 4.3.8.3, 4.3.13.2, 4.3.13.3, 4.3.15.1, 4.3.15.2
approx 4.3.12.8
arccos 4.3.16.1
arccosh 4.3.16.1
arccot 4.3.16.1
arccoth 4.3.16.1
arccsc 4.3.16.1
arccsch 4.3.16.1
arcsec 4.3.16.1
arcsech 4.3.16.1
arcsin 4.3.16.1
arcsinh 4.3.16.1
arctan 4.3.16.1
arctanh 4.3.16.1
arg 4.3.11.22
attribution 4.2.8
attribution-xml 4.2.8

309

310 Appendix H. Index (Non-Normative)

bind 4.2.2, 4.2.6, 4.2.6.1, 4.2.7.3, 4.3.2, 4.3.3, 4.3.4, 4.3.8.1, 4.3.8.2, 4.3.8.3
bvar 4.2.2, 4.2.6.1, 4.2.6.2, 4.3.4, 4.3.5.2, 4.3.8.1, 4.3.8.3, 4.3.10.1, 4.3.10.3, 4.3.13.2, 4.3.13.3, 4.3.15.1, 4.3.15.2,

4.3.15.3, 5.3.2
card 4.3.14.12
cartesianproduct 4.3.9, 4.3.14.13
ceiling 4.3.11.27
cerror 4.2.9
ci 2.1.5, 3.2.3.1, 4.2.2, 4.2.4.1, 4.2.4.2, 4.2.6.2, 4.3.6, 4.3.7, 4.3.8.5, 4.5.2, 5.3.1
cn 2.1.5, 3.2.4.1, 3.5.5.6, 4.2.2, 4.2.3, 4.3.1, 4.5.1, 5.3.1
codomain 4.3.10.7
complexes 4.3.19.5
compose 4.3.10.4
condition 4.3.5.1, 4.3.8, 4.3.8.5, 4.3.10.1, 4.3.11.18, 4.3.11.19, 4.3.13.1, 4.3.15.1, 4.3.15.2, 4.3.15.3, 4.3.18.2,

5.3.2
conjugate 4.3.11.21
cos 4.3.16.1
cosh 4.3.16.1
cot 4.3.16.1
coth 4.3.16.1
csc 4.3.16.1
csch 4.3.16.1
csymbol 4.2.2, 4.2.4.2, 4.3.1, 4.3.2, 4.3.3, 4.3.6, 4.3.8.5, 4.5.2, 5.3.1
curl 4.3.13.6
declare 4.4.1
degree 4.3.5.1, 4.3.8, 4.3.8.3, 4.3.8.5, 4.3.13.2, 4.3.13.3, 4.3.17.6, 5.3.2
determinant 4.3.18.4
diff 4.3.4, 4.3.13.2, 4.3.13.3
divergence 4.3.13.4
divide 4.3.11.3
domain 4.3.10.6
domainofapplication 4.3.5.1, 4.3.8, 4.3.8.1, 4.3.8.2, 4.3.8.5, 4.3.10.3, 4.3.11.18, 4.3.11.19, 4.3.15.1, 4.3.15.2,

4.3.18.2
emptyset 4.3.19.12
eq 4.3.12.1
equivalent 4.3.12.7
error 4.2.2
eulergamma 4.3.19.14
exists 4.3.4, 4.3.11.19
exp 4.3.16.2
exponentiale 4.3.19.7
factorial 4.3.11.2
factorof 4.3.12.9
false 4.3.19.11
floor 4.3.11.26
forall 4.3.11.18
foreign 4.2.8
gcd 4.3.11.12
geq 4.3.12.5
grad 4.3.13.5
gt 4.3.12.3

H.1. MathML Elements 311

ident 4.3.10.5
image 4.3.10.8
imaginary 4.3.11.24
imaginaryi 4.3.19.8
implies 4.3.11.17
in 4.3.14.5
infinity 4.2.3, 4.3.19.15
int 4.3.13.1
integers 4.3.19.1
intersect 4.3.14.4
interval 4.3.3, 4.3.5.1, 4.3.10.1, 4.3.13.1
inverse 4.3.10.2
lambda 4.3.4, 4.3.5.2, 4.3.10.3, 4.3.13.2, 4.3.15.1, 4.3.15.2
laplacian 4.3.13.7
lcm 4.3.11.7, 4.3.11.25
leq 4.3.12.6
limit 4.3.15.3
list 4.3.5.1, 4.3.14.2
ln 4.3.16.3
log 4.3.16.4
logbase 5.3.2
lowlimit 4.3.5.1, 4.3.8, 4.3.8.4, 4.3.8.5, 4.3.13.1, 4.3.15.1, 4.3.15.2, 4.3.15.3, 5.3.2
lt 4.3.12.3, 4.3.12.4, 4.3.12.5, 4.3.12.6
maction 2.3.1.3, 2.3.3, 3.1.3.2, 3.1.7.5, 3.2.5.7, 3.2.7.4, 3.5.5.2, 3.5.5.4, 3.5.5.6, 3.6.1, 3.6.1.1, 7.3
malign 3.3.9.2
maligngroup 3.1.7.4, 3.2.7.2, 3.2.7.4, 3.5.1.2, 3.5.2.2, 3.5.4.2, 3.5.5.2, 3.5.5.3, 3.5.5.4, 3.5.5.6, 3.5.5.7, 3.5.5.9,

3.5.5.10, 7.3.2
malignmark 3.1.2.1, 3.1.7.4, 3.2.1, 3.2.7.4, 3.2.8.1, 3.5.1.2, 3.5.2.2, 3.5.4.2, 3.5.5.4, 3.5.5.5, 3.5.5.6, 3.5.5.9,

3.5.5.10, 7.3.2
malignscope 3.5.5.1
math 2.5.1, 2.5.1.1, 2.5.1.2, 2.5.2, 3.1.3.1, 3.1.3.2, 3.1.5.1, 3.1.6.1, 3.2.5.2, 3.2.5.8, 7.1.1, 7.2.1, 7.2.2, 7.2.3, 7.4
matrix 3.5.5.9, 4.3.5.1, 4.3.18.2
matrixrow 4.3.5.1, 4.3.18.2, 4.3.18.3
max 4.3.11.4
mcolumn 3.1.3.2, 3.1.7.4, 3.5, 3.5.6, 3.5.6.1, 3.5.6.2, 3.7.1
mean 4.3.17.1, 4.3.17.2
median 4.3.17.4
menclose 3.1.3.1, 3.1.3.2, 3.1.6.1, 3.1.7.2, 3.3.9, 3.3.9.1, 3.3.9.2, 3.3.9.3, 3.5.5.6, 3.5.6.2
merror 2.3.2, 3.1.3.1, 3.1.3.2, 3.1.7.2, 3.3.5, 3.3.5.1
mfenced 3.1.3.2, 3.1.6.1, 3.1.7.2, 3.2.5.4, 3.3.1.1, 3.3.8, 3.3.8.1, 3.3.8.2, 3.3.8.3, 3.5.5.2, 3.5.5.4, 3.5.5.6
mfrac 3.1.3.2, 3.1.6.1, 3.1.7.2, 3.2.2.2, 3.2.5.7, 3.3.2, 3.3.2.1, 3.3.2.2, 3.3.4.1, 3.3.4.2, 3.3.5.3
mfraction 3.3.5.3
mglyph 2.3.1.3, 3.1.2.1, 3.1.7.1, 3.2.1, 3.2.8.1, 3.2.9, 3.2.9.1, 3.2.9.2, 3.2.9.3, 3.2.9.4, 6.1, 6.4, 7.3.3
mi 2.1.5, 3.1.5.2, 3.1.7.1, 3.2.2, 3.2.2.1, 3.2.3, 3.2.3.1, 3.2.3.2, 3.2.3.3, 3.2.4.2, 3.2.6.1, 3.2.6.4, 3.2.8.1, 3.2.9.1,

3.3.6.5, 3.5.5.4, 3.5.6, 4.5.2, 5.3.1, 6.5
min 4.3.11.5
minfinity 4.2.3
mininfinity 4.2.3
minus 4.2.5, 4.3.11.6
mlabeledtr 3.1.3.2, 3.1.7.4, 3.3.4.1, 3.5, 3.5.1.1, 3.5.1.2, 3.5.3, 3.5.3.1, 3.5.3.2, 3.5.3.3, 3.5.4.1, 3.5.4.2, 3.5.5.7

312 Appendix H. Index (Non-Normative)

mline 3.1.7.1, 3.2.1, 3.2.10, 3.2.10.1, 3.2.10.2, 3.2.10.3, 3.5.6, 3.7.1, 3.7.3
mmultiscripts 3.1.3.2, 3.1.7.3, 3.2.5.7, 3.3.4.2, 3.4.7, 3.4.7.1, 3.4.7.2, 3.4.7.3, 3.5.5.6
mn 2.1.5, 3.1.5.2, 3.1.7.1, 3.2.4, 3.2.4.1, 3.2.4.2, 3.2.4.4, 3.5.5.4, 3.5.5.6, 3.5.6, 3.5.6.2, 4.5.1, 5.3.1
mo 2.1.5, 3.1.4, 3.1.5.2, 3.1.6.1, 3.1.7.1, 3.2.4.2, 3.2.5, 3.2.5.1, 3.2.5.2, 3.2.5.4, 3.2.5.5, 3.2.5.6, 3.2.5.7, 3.2.5.8,

3.2.5.10, 3.2.5.11, 3.2.6.1, 3.2.6.4, 3.2.7.2, 3.2.7.4, 3.2.8.1, 3.2.9.1, 3.3.1.1, 3.3.1.3, 3.3.2.2, 3.3.4.1,
3.3.4.2, 3.3.7.2, 3.3.7.3, 3.3.8.1, 3.3.8.2, 3.4.4.2, 3.4.5.2, 3.4.6.2, 3.5.6, B.1, B.2

mode 4.3.17.5
moment 4.3.17.6
momentabout 4.3.17.6
mover 3.1.3.2, 3.1.7.3, 3.2.5.7, 3.2.5.10, 3.2.5.11, 3.3.4.2, 3.4.5, 3.4.5.1, 3.4.5.2, 3.4.6.2, 3.4.6.3, 3.5.5.6, 3.7.3
mpadded 2.1.3.2, 3.1.3.1, 3.1.3.2, 3.1.7.2, 3.2.5.7, 3.2.7.4, 3.3.4.1, 3.3.6, 3.3.6.1, 3.3.6.2, 3.3.6.3, 3.3.6.4, 3.3.6.5,

3.3.7.2, 3.5.5.6
mphantom 3.1.3.1, 3.1.3.2, 3.1.7.2, 3.2.5.7, 3.2.5.8, 3.2.7.2, 3.2.7.4, 3.2.7.5, 3.3.6.4, 3.3.7, 3.3.7.1, 3.3.7.2, 3.3.7.3,

3.5.5.2, 3.5.5.5, 3.5.5.6, 3.5.6
mprescripts 3.1.2.2, 3.1.3.2, 3.4.7.1, 7.3.2
mroot 3.1.3.2, 3.1.6.1, 3.1.7.2, 3.3.3, 3.3.3.1, 3.3.3.2, 3.3.4.2, 3.5.5.6
mrow 2.4.4, 2.5.2, 3.1.1, 3.1.3.1, 3.1.3.2, 3.1.4, 3.1.5.1, 3.1.6.1, 3.1.6.2, 3.1.7.2, 3.2.5.2, 3.2.5.7, 3.2.5.10, 3.2.7.4,

3.2.7.5, 3.3.1, 3.3.1.1, 3.3.1.2, 3.3.1.3, 3.3.1.4, 3.3.2.2, 3.3.3.1, 3.3.4.1, 3.3.5.1, 3.3.6.1, 3.3.6.3, 3.3.7.1,
3.3.7.2, 3.3.8.1, 3.3.8.2, 3.3.8.3, 3.3.9.1, 3.5.4.1, 3.5.5.2, 3.5.5.4, 3.5.5.6, 3.5.6, 5.3.1, B.1

ms 2.1.5, 3.1.5.2, 3.1.7.1, 3.2.8, 3.2.8.1, 3.2.8.2
mspace 2.1.5, 3.1.6.1, 3.1.7.1, 3.2.1, 3.2.5.2, 3.2.5.5, 3.2.5.8, 3.2.6.1, 3.2.7, 3.2.7.1, 3.2.7.2, 3.2.7.3, 3.2.7.4,

3.2.10.2, 3.3.4.1, 3.3.6.4, 3.3.6.5, 3.5.5.5, 3.5.6, 3.7.1, 6.6
msqrt 3.1.3.1, 3.1.3.2, 3.1.6.1, 3.1.7.2, 3.2.2.2, 3.2.5.7, 3.3.3, 3.3.3.1, 3.3.3.2, 3.3.9.2, 3.5.5.6
mstyle 2.1.3.3, 2.1.3.4, 3.1.3.1, 3.1.3.2, 3.1.6.1, 3.1.7.2, 3.2.2, 3.2.2.1, 3.2.2.2, 3.2.5.2, 3.2.5.7, 3.2.5.8, 3.2.5.11,

3.2.7.4, 3.3.2.2, 3.3.3.2, 3.3.4, 3.3.4.1, 3.3.4.2, 3.3.4.3, 3.3.8.2, 3.4, 3.4.1.2, 3.4.2.2, 3.4.3.2, 3.4.4.2,
3.4.5.2, 3.4.6.2, 3.4.7.2, 3.5.1.2, 3.5.5.2, 3.5.5.6, 3.5.6, 3.5.6.2

mstyle>merror 3.3.5.2
msub 3.1.3.2, 3.1.7.3, 3.2.3.1, 3.2.5.7, 3.3.4.2, 3.4.1, 3.4.1.1, 3.4.1.2, 3.5.5.6
msubsup 3.1.3.2, 3.1.7.3, 3.2.5.7, 3.3.4.2, 3.4.3, 3.4.3.1, 3.4.3.2, 3.4.3.3, 3.4.7.2, 3.5.5.6
msup 3.1.3.2, 3.1.4, 3.1.7.3, 3.2.3.1, 3.2.5.7, 3.2.7.5, 3.3.4.2, 3.4.2, 3.4.2.1, 3.4.2.2, 3.5.5.6
mtable 2.1.3.2, 3.1.3.2, 3.1.6.1, 3.1.7.4, 3.2.2.2, 3.2.5.10, 3.3.2.2, 3.3.4.1, 3.3.4.2, 3.3.9.2, 3.5, 3.5.1, 3.5.1.1,

3.5.1.2, 3.5.1.3, 3.5.2.1, 3.5.2.2, 3.5.3.1, 3.5.3.2, 3.5.3.3, 3.5.4.2, 3.5.5.1, 3.5.5.4, 3.5.5.7, 3.5.5.9, 3.5.5.10,
3.5.6.1, 4.3.18.2

mtd 3.1.3.1, 3.1.3.2, 3.1.7.4, 3.2.5.7, 3.2.5.10, 3.3.4.1, 3.5, 3.5.1.1, 3.5.1.2, 3.5.2.1, 3.5.3.1, 3.5.3.2, 3.5.4, 3.5.4.1,
3.5.4.2, 3.5.5.1, 3.5.5.2, 3.5.5.4, 3.5.5.7, 3.5.5.10

mtext 2.1.5, 3.1.5.2, 3.1.7.1, 3.2.5.5, 3.2.6, 3.2.6.1, 3.2.6.2, 3.2.6.4, 3.2.7.2, 3.2.7.4, 3.2.8.1, 3.3.6.4, 3.3.6.5,
3.5.5.3, 3.5.5.4, 3.5.5.5, 3.5.6, 3.6.1.1

mtr 3.1.3.2, 3.1.7.4, 3.3.4.1, 3.5, 3.5.1.1, 3.5.2, 3.5.2.1, 3.5.2.2, 3.5.3.1, 3.5.3.2, 3.5.4.1, 3.5.4.2, 3.5.5.1, 3.5.5.4,
3.5.5.7, 3.5.5.10, 4.3.18.2

munder 3.1.3.2, 3.1.7.3, 3.2.5.7, 3.2.5.10, 3.2.5.11, 3.3.4.2, 3.4.4, 3.4.4.1, 3.4.4.2, 3.4.6.2, 3.4.6.3, 3.5.5.6, 3.7.3
munderover 3.1.3.2, 3.1.7.3, 3.2.5.7, 3.2.5.10, 3.2.5.11, 3.3.4.2, 3.4.6, 3.4.6.1, 3.4.6.2, 3.4.6.3, 3.5.5.6
naturalnumbers 4.3.19.4
neq 4.3.12.2
none 3.1.2.2, 3.4.7.1, 7.3.2
not 4.3.11.16
notanumber 4.2.3, 4.3.19.9
notin 4.3.14.6
notprsubset 4.3.14.10
notsubset 4.3.14.9
or 4.3.11.14

H.1. MathML Elements 313

otherwise 4.3.5.3, 4.3.10.9
outerproduct 4.3.18.9
partialdiff 4.3.13.3
pi 4.3.1, 4.3.19.13
piece 4.3.5.3, 4.3.10.9
piecewise 4.3.5.3, 4.3.10.9
plus 4.2.5, 4.3.9, 4.3.11.7
power 4.3.11.8
primes 4.3.19.6
prod 4.3.9
product 4.3.15.2
prsubset 4.3.14.8
quotient 4.3.11.1
rationals 4.3.19.3
real 4.3.11.23
reals 4.3.19.2
rem 4.3.11.9
root 4.3.11.11
scalarproduct 4.3.18.8
sdev 4.3.17.2
sec 4.3.16.1
sech 4.3.16.1
selector 4.3.18.6
semantics 3.2.5.7, 3.3.6.5, 3.5.5.2, 3.5.5.6, 3.8, 4.2.2, 4.2.6.2, 4.2.8, 4.3.6, 4.3.7, 4.5.5, 5, 5.1.1, 5.1.2, 5.1.3, 5.1.4,

5.2, 5.2.1, 5.2.2, 5.2.3, 5.3.1, 5.4, 5.4.1, 5.4.2, 7, 7.2, 7.2.2, 7.2.3, 7.3, 7.3.4
sementics 5.2.1
sep 4.3.1
set 4.3.5.1, 4.3.5.2, 4.3.14.1
setdiff 4.3.14.11
share 4.2.2, 4.2.7, 4.2.7.1, 4.2.7.2, 4.2.7.3, 4.4.1, 4.5.6
share element 4.2.7.1
sin 4.2.5, 4.3.16.1
sinh 4.3.16.1
subset 4.3.14.7
sum 4.3.9, 4.3.15.1
tan 4.3.16.1
tanh 4.3.16.1
tendsto 4.3.15.3, 4.3.15.4
times 4.3.9, 4.3.11.10
transpose 4.3.18.5
true 4.3.19.10
union 4.3.9, 4.3.14.3
uplimit 4.3.5.1, 4.3.8, 4.3.8.4, 4.3.8.5, 4.3.13.1, 4.3.15.1, 4.3.15.2, 5.3.2
variance 4.3.17.3
vector 4.3.5.1, 4.3.7, 4.3.18.1
vectorproduct 4.3.18.7
xor 4.3.11.15

314 Appendix H. Index (Non-Normative)

H.2 MathML Attributes

In addition to the standard MathML attributes, some attributes from other namespaces such as Xlink or XML
Schema are also listed here.

accent 3.2.5.1, 3.2.5.11, 3.4, 3.4.4.2, 3.4.5.2, 3.4.6.2
accentunder 3.4, 3.4.4.2, 3.4.6.2
actiontype 3.1.3.2, 3.6.1.1
align 2.1.3.3, 3.4.4.2, 3.4.5.2, 3.4.6.2, 3.5.1.2, 3.5.6, 3.5.6.1
alignmentscope 3.5.1.2, 3.5.5.1, 3.5.5.9
alt 3.2.9.2, 6.4, 7.3.4
altimg 2.5.2
altimg-height 2.5.2
altimg-width 2.5.2
axis 3.2.5.10
background 3.2.2.2, 3.3.4.2
background-color 3.2.2.2
base 4.2.3, 4.3.1
bevelled 3.3.2.2
cd 4.2.4.2, 4.2.8, 4.3.1, 4.3.3, 5.1.1, 5.2.1, 5.2.2, 5.2.3
cdbase 4.2.4.2, 4.2.7.4, 4.2.8, 4.3.1, 4.3.3, 5.1.1, 5.2.1, 5.2.2, 5.2.3
class 2.1.3.3, 2.1.4, 3.2.2
clipboardFlavor 7.2.2
close 3.3.8.2
closure 4.3.3, 4.3.10.1
color 2.3.3, 3.2.2.2, 3.3.4.1
columnalign 3.3.4.1, 3.5.1.2, 3.5.2.2, 3.5.4.2, 3.5.5.2, 3.5.5.3, 3.5.5.10, 3.5.6, 3.5.6.1
columnalignment 3.5.1.2
columnlines 3.5.1.2
columnspacing 3.5.1.2
columnspan 3.2.5.10, 3.5.1.1, 3.5.4.2, 3.5.5.9
columnwidth 3.5.1.2, 3.5.3.1
css-color-name 2.1.3.1
css-fontfamily 2.1.3.1, 3.2.2.1
definitionURL 2.3.1.3, 4.2.4.2, 4.2.8, 4.3.3, 4.3.6, 4.3.10.2, 4.3.10.4, 5.1.1, 5.2.1, 5.2.2, 5.2.3
denomalign 3.3.2.2
depth 3.3.4.1, 3.3.6.3
dir 2.5.2, 3.1.5.1, 3.3.1.1, 3.3.1.2
dir=’rtl’ 3.1.5.1
direction 3.2.10.3
display 2.5.2
displaystyle 3.2.5.11, 3.3.2.2, 3.3.3.2, 3.3.4.1, 3.3.4.2, 3.4, 3.4.1.2, 3.4.2.2, 3.4.3.2, 3.4.4.2, 3.4.5.2, 3.4.6.2, 3.4.7.2,

3.5.1.2
edge 3.5.5.4, 3.5.5.5
encoding 3.8, 4.2.4.2, 4.2.8, 4.3.10.2, 4.3.10.4, 5.1.1, 5.1.2, 5.1.3, 5.2.1, 5.2.2, 5.2.3, A.2.6
equalcolumns 3.5.1.2
equalrows 3.5.1.2
fence 3.2.5.1, 3.2.5.4, 3.2.5.11
font-family 3.2.2.1
fontfamily 2.1.3.2, 3.2.2.1, 3.2.9.4
fontsize 2.1.3.2, 2.1.3.3, 3.2.2.1, 3.3.4.2

H.2. MathML Attributes 315

fontslant 3.2.2
fontstyle 3.2.3.2, 3.2.3.3
fontweight 3.2.2.1, 3.3.6.5
form 3.2.5.7, 3.3.1.3, 3.3.4.1, 3.3.7.2, 3.3.7.3, 3.3.8.2, B.1, B.2
frame 3.5.1.2
framespacing 2.1.3.2, 3.5.1.2
groupalign 3.3.4.1, 3.5.1.2, 3.5.2.2, 3.5.4.2, 3.5.5.3, 3.5.5.4, 3.5.5.5, 3.5.5.6, 3.5.5.7, 3.5.5.10
h-unit 2.1.3.1, 2.1.3.2, 2.5.2, 3.2.5.2, 3.3.4.2
height 3.2.9.2, 3.3.4.1, 3.3.6.3
hex 4.2.3
href 4.2.7.1, 4.2.7.2, 4.5.6, 5.1.2, 5.2.2, 5.2.3, 5.4.2, 7.2.2, 7.2.3
html-color-name 3.2.2.2
id 3.2.2, 3.2.5.8, 3.2.7.3, 3.5.3.3, 4.2.6.2, 4.2.7.1, 4.2.7.2, 5.4.2
indentoffset 3.2.5.8
indentoffsetfirst 3.2.5.8
indentoffsetlast 3.2.5.8
indentstyle 3.2.5.8, 3.2.5.9
indentstylefirst 3.2.5.8
indentstylelast 3.2.5.8, 3.2.5.9
indenttarget 3.2.5.8
index 3.2.9.4
integer 2.1.3.1
justify 3.5.6.1
largeop 3.2.5.11, 3.3.4.2
length 3.2.10.2
linebreak 3.1.6.1, 3.2.5.8, 3.2.7.2
linebreakmultchar 3.2.5.8
linebreakstyle 3.2.5.8
lineleading 3.2.5.8
linethickness 3.2.10.2, 3.3.2.2, 3.3.4.1
lquote 3.2.8.2
lspace 3.2.5.7, 3.3.4.1, 3.3.6.1, 3.3.6.3, B.4
ltr 3.1.5.1
macros 2.5.2
mathbackground 3.2.2.2, 3.2.9.2
mathcolor 3.2.2.2, 3.2.7.2, 3.2.9.2
mathfamily
mathsize 3.2.7.2, 3.2.9.2, 3.2.10.2, 3.3.4.2, 7.4
mathslant
mathvariant 3.2.1.1, 3.2.2, 3.2.2.1, 3.2.3.2, 3.2.7.2, 3.2.9.2, 3.2.10.2, 6.5, 7.4
mathweight
maxsize 3.2.5.2, 3.2.5.10
minlabelspacing 3.5.1.2, 3.5.3.1, 3.5.3.3
minsize 3.2.5.2, 3.2.5.10
mode 2.5.2
monospaced 2.1.3
movablelimits 3.2.5.11, 3.4.4.2, 3.4.5.2, 3.4.6.2
movablescripts 3.3.4.2
my:background 3.6.1.1
my:color 3.6.1.1

316 Appendix H. Index (Non-Normative)

name 4.2.6.2, 4.2.8, 4.3.6, 5.1.1, 5.2.1, 5.2.2, 5.2.3
namedbreakstyle 3.2.5.2, 3.2.5.8, 3.3.4.2
namedspace 3.2.5.2, 3.3.4.2
newline 3.2.7.2
notation 3.3.9.1, 3.3.9.2
numalign 3.3.2.2
number 2.1.3.1
open 3.3.8.2
order 4.3.14.2
other 2.1.4, 2.3.3
overflow 3.1.6.1
rowalign 3.3.4.1, 3.5.1.2, 3.5.2.2, 3.5.4.2
rowlines 3.5.1.2
rowspacing 3.5.1.2
rowspan 3.2.5.10, 3.5.1.1, 3.5.4.2, 3.5.5.9
rquote 3.2.8.2
rspace 3.2.5.7, B.4
schemaLocation 7.2.1
scriptlevel 2.1.3.3, 3.2.2.1, 3.2.5.11, 3.3.2.2, 3.3.3.2, 3.3.4.1, 3.3.4.2, 3.4, 3.4.1.2, 3.4.2.2, 3.4.3.2, 3.4.4.2, 3.4.5.2,

3.4.6.2, 3.4.7.2, 3.5.1.2, B.4
scriptminsize 3.3.4.2
scriptsizemultiplier 3.3.4.2
selection 3.6.1.1
separator 3.2.5.1, 3.2.5.4, 3.2.5.11
separators 3.3.8.2
side 3.5.1.2, 3.5.3.1, 3.5.3.3
spacing 3.2.10.2
src 3.2.9.2, 3.2.9.4
stretchy 3.2.5.10, 3.3.4.1
style 2.1.3.3, 2.1.4, 3.2.2, 3.3.4.2
subscriptshift 3.4.1.2, 3.4.3.2
superscriptshift 3.4.2.2, 3.4.3.2
symmetric 3.2.5.10
type 4.2.3, 4.2.4.1, 4.3.1, 4.3.2, 4.3.3, 4.3.7, 4.3.10.1, 4.3.13.3, 4.3.14.1, 4.3.14.3, 4.3.14.4, 4.3.14.5, 4.3.14.6,

4.3.14.7, 4.3.14.8, 4.3.14.9, 4.3.14.10, 4.3.14.11, 4.3.14.12, 4.3.14.13, 4.3.15.3, 4.3.15.4, 4.3.19.12
v-unit 2.1.3.1, 2.1.3.2, 2.5.2, 3.2.2.1, 3.2.5.2, 3.3.4.2
valign 2.5.2, 3.2.9.2
width 3.2.9.2, 3.2.10.2, 3.3.4.1, 3.3.6.1, 3.3.6.3, 3.5.1.2
xlink:href 2.1.4, 7.3.2
xml:id 2.1.3.3, 2.1.4, 2.5.2, 5.4.2
xml:space 2.1.5
xmlns 2.5.1
xref 2.1.4, 3.2.2, 5.4.2

	Mathematical Markup Language Specification
	 Introduction
	 Mathematics and its Notation
	 Origins and Goals
	 Design Goals of MathML

	 A First Example

	 MathML Fundamentals
	 MathML Syntax and Grammar
	 General Considerations
	 Children versus Arguments
	 MathML Attribute Values
	 Attributes Shared by all MathML Elements
	 Collapsing Whitespace in Input

	 Interfacing MathML with other contexts
	 Conformance
	 MathML Conformance
	 Handling of Errors
	 Attributes for unspecified data

	 Future Extensions
	 Style Sheets
	 XML Extensions to MathML
	 Scientific Documents
	 XML Extensions to MathML

	 Embedding MathML in other Documents
	 MathML and Namespaces
	 The Top-Level math Element

	 Presentation Markup
	 Introduction
	 What Presentation Elements Represent
	 Terminology Used In This Chapter
	 Required Arguments
	 Elements with Special Behaviors
	 Directionality
	 Linebreaking of Expressions
	 Summary of Presentation Elements

	 Token Elements
	 MathML characters in token elements
	 Mathematics style attributes common to token elements
	 Identifier (mi)
	 Number (mn)
	 Operator, Fence, Separator or Accent (mo)
	 Text (mtext)
	 Space (mspace)
	 String Literal (ms)
	 Using images to represent symbols (mglyph)
	 Line mline

	 General Layout Schemata
	 Horizontally Group Sub-Expressions (mrow)
	 Fractions (mfrac)
	 Radicals (msqrt, mroot)
	 Style Change (mstyle)
	 Error Message (merror)
	 Adjust Space Around Content (mpadded)
	 Making Sub-Expressions Invisible (mphantom)
	 Expression Inside Pair of Fences (mfenced)
	 Enclose Expression Inside Notation (menclose)

	 Script and Limit Schemata
	 Subscript (msub)
	 Superscript (msup)
	 Subscript-superscript Pair (msubsup)
	 Underscript (munder)
	 Overscript (mover)
	 Underscript-overscript Pair (munderover)
	 Prescripts and Tensor Indices (mmultiscripts)

	 Tabular Math
	 Table or Matrix (mtable)
	 Row in Table or Matrix (mtr)
	 Labeled Row in Table or Matrix (mlabeledtr)
	 Entry in Table or Matrix (mtd)
	 Alignment Markers
	 mcolumn

	 Enlivening Expressions
	 Bind Action to Sub-Expression (maction)

	 Elementary Math
	 Addition, Subtraction, and Multiplication
	 Long Division
	 Repeating decimal

	 Semantics and Presentation

	 Content Markup
	 Introduction
	 Strict Content MathML
	 The structure of MathML Content Expressions
	 Encoding OpenMath Objects
	 Numbers (cn)
	 Symbols and Identifiers
	 Function Application (apply)
	 Bindings and Bound Variables (bind)
	 Structure Sharing (share)
	 Attribution via semantics
	 In Situ Error Markup

	 Pragmatic Content MathML
	 Pragmatic Numbers (cn)
	 Operator Elements
	 Pragmatic Elements with Attributes
	 Bindings with apply
	 Container Markup
	 Symbols and Identifiers With Presentation MathML
	 Elementary MathML Types on Operator and Container Elements
	 Qualifiers for Bound Variables
	 Lifted Associative Commutative Operators
	 basic elements
	 Arithmetic, Algebra and Logic
	 Relations
	 Calculus and Vector Calculus
	 Theory of Sets
	 Sequences and Series
	 Elementary classical functions
	 Statistics
	 Linear Algebra
	 Constant and Symbol Elements

	 Deprecated content Elements
	 Declare (declare)

	 Rendering of Content Elements
	 Numbers
	 Symbols and Identifiers
	 Applications
	 Binders
	 Attributions
	 Structure Sharing
	 Rest

	 Mixing Several Markups
	 Semantic Annotations
	 Annotation elements
	 Annotation references
	 Alternate representations
	 Flattening semantic annotations

	 Elements for Semantic Annotations
	 The semantics element
	 The annotation element
	 The annotation-xml element

	 Combining Presentation and Content Markup
	 Presentation Markup in Content Markup
	 Content Markup in Presentation Markup

	 Parallel Markup
	 Top-level Parallel Markup
	 Parallel Markup via Cross-References

	 Characters, Entities and Fonts
	 Introduction
	 Unicode Character Data
	 Entity Declarations
	 Special Characters Not in Unicode
	 Mathematical Alphanumeric Symbols
	 Non-Marking Characters

	 MathML interactions with the Wide World
	 Invoking MathML Processors: namespace, extensions, and mime-types
	 Recognizing MathML in an XML Model
	 Resource Types for MathML Documents
	 Names of MathML Encodings

	 Transferring MathML in Desktop Environments
	 Basic Transfer Flavors' Names and Contents
	 Recommended Behaviors when Transferring
	 Discussion
	 Examples

	 Combining MathML and Other Formats
	 Mixing MathML and HTML
	 Linking
	 Images
	 MathML and Graphical Markup

	 Using CSS with MathML

	 MathML3 Content Dictionaries
	 Parsing MathML
	 Use of MathML as Well-Formed XML
	 Using the RelaxNG Schema for MathML3
	 Full MathML
	 The Grammar for Presentation MathML
	 The Grammar for Strict Content MathML3
	 The Grammar for Pragmatic MathML
	 Deprecated Features
	 MathML as a module in a RelaxNG Schema

	 Using the MathML DTD
	 Using the MathML XML Schema

	 Operator Dictionary (Non-Normative)
	 Format of operator dictionary entries
	 Indexing of operator dictionary
	 Choice of entity names
	 Notes on lspace and rspace attributes
	 Operator dictionary entries

	 Sample CSS Style Sheet for MathML (Non-Normative)
	 Glossary (Non-Normative)
	 Working Group Membership and Acknowledgments (Non-Normative)
	 The Math Working Group Membership
	 Acknowledgments

	 Changes (Non-Normative)
	 Changes between MathML 2.0 Second Edition and MathML 3.0

	 References (Non-Normative)
	 Index (Non-Normative)
	 MathML Elements
	 MathML Attributes

