
Web Services Policy 1.5 - Primer

W3C Working Draft 18 October 2006
This version:

http://www.w3.org/TR/2006/WD-ws-policy-primer-20061018
Latest version:

http://www.w3.org/TR/ws-policy-primer
Editors:

Asir S Vedamuthu, Microsoft Corporation
David Orchard, BEA Systems, Inc.
Maryann Hondo, IBM Corporation
Toufic Boubez, Layer 7 Technologies
Prasad Yendluri, webMethods, Inc.

This document is also available in these non-normative formats: PDF, PostScript, XML, and plain text.

Copyright © 2006 World Wide Web ConsortiumW3C® (Massachusetts Institute of TechnologyMIT,
European Research Consortium for Informatics and MathematicsERCIM, Keio), All Rights Reserved.
W3C liability, trademark and document use rules apply.

Abstract
Web Services Policy 1.5 - Primer is an introductory description of the Web Services Policy language. This
document describes the policy language features using numerous examples. The associated Web Services
Policy 1.5 - Framework and Web Services Policy 1.5 - Attachment specifications provide the complete
normative description of the Web Services Policy language.

Status of this Document
This section describes the status of this document at the time of its publication. Other documents may
supersede this document. A list of current W3C publications and the latest revision of this technical report
can be found in the W3C technical reports index at http://www.w3.org/TR/.

This is the First Public Working Draft of the Web Services Policy 1.5 - Primer specification. This
Working Draft was produced by the members of the Web Services Policy Working Group, which is part
of the W3C Web Services Activity. The Working Group has not yet decided if it will advance this
Working Draft to Recommendation Status. It represents a transcription of the original contribution into the
W3C style. Several issues have already been filed on this document and are recorded in Bugzilla. The
Working Group has not yet considered these issues and how they relate to the Working Group’s plans to

1

Table of Contents

http://www.w3.org/
http://www.w3.org/TR/2006/WD-ws-policy-primer-20061018
http://www.w3.org/TR/ws-policy-primer
http://www.w3.org/Consortium/Legal/ipr-notice#Copyright
http://www.w3.org/
http://www.csail.mit.edu/
http://www.ercim.org/
http://www.keio.ac.jp/
http://www.w3.org/Consortium/Legal/ipr-notice#Legal_Disclaimer
http://www.w3.org/Consortium/Legal/ipr-notice#W3C_Trademarks
http://www.w3.org/Consortium/Legal/copyright-documents
http://www.w3.org/TR/
http://www.w3.org/Consortium/Process/tr.html#first-wd
http://www.w3.org/2002/ws/policy/
http://www.w3.org/2002/ws/Activity
http://lists.w3.org/Archives/Public/public-ws-policy/2006Jul/0001.html
http://www.w3.org/Bugs/Public/buglist.cgi?query_format=advanced&short_desc_type=allwordssubstr&short_desc=&product=WS-Policy&component=Primer

publish another document current entitled "Guidelines for Policy Assertion Authors".

Note that this Working Draft does not necessarily represent a consensus of the Working Group. Discus-
sion of this document takes place on the public public-ws-policy@w3.org mailing list (public archive) and
within Bugzilla. Comments on this specification should be made following the Description for Issues of
the Working Group.

Publication as a Working Draft does not imply endorsement by the W3C Membership. This is a draft
document and may be updated, replaced or obsoleted by other documents at any time. It is inappropriate to
cite this document as other than work in progress.

This document was produced by a group operating under the 5 February 2004 W3C Patent Policy. W3C
maintains a public list of any patent disclosures made in connection with the deliverables of the group; that
page also includes instructions for disclosing a patent. An individual who has actual knowledge of a patent
which the individual believes contains Essential Claim(s) must disclose the information in accordance
with section 6 of the W3C Patent Policy.

Table of Contents
1. Introduction [p.3]
2. Basic Concepts: Policy Expression [p.4]
 2.1 Web Services Policy [p.4]
 2.2 Simple Message [p.5]
 2.3 Secure Message [p.6]
 2.4 Other Assertions [p.7]
 2.5 Combining Policy Assertions [p.8]
 2.6 Optional Policy Assertion [p.9]
 2.7 Nested Policy Expressions [p.10]
 2.8 Referencing Policy Expressions [p.11]
 2.9 Attaching Policy Expressions to WSDL [p.13]
 2.10 Policy Automates Web Services Interaction [p.14]
3. Advanced Concepts I: Policy Expression [p.14]
 3.1 Policy Expression [p.15]
 3.2 Normal Form for Policy Expressions [p.15]
 3.3 Policy Data Model [p.18]
 3.4 Compatible Policies [p.22]
 3.5 Attaching Policy Expressions to WSDL [p.23]
 3.6 Combine Policies [p.26]
 3.7 Extensibility and Versioning [p.27]
4. Advanced Concepts II: Policy Assertion Design [p.28]
 4.1 Role of Policy Assertions [p.29]
 4.2 Parts of a Policy Assertion [p.29]
 4.3 When to design policy assertions? [p.31]
 4.3.1 Opt-in behavior [p.31]
 4.3.2 Shared behavior [p.32]
 4.3.3 Visible behavior [p.32]

2

Table of Contents

http://lists.w3.org/Archives/Public/public-ws-policy/
http://www.w3.org/Bugs/Public/buglist.cgi?query_format=advanced&short_desc_type=allwordssubstr&short_desc=&product=WS-Policy&component=Primer
http://www.w3.org/2002/ws/policy/#issues
http://www.w3.org/Consortium/Patent-Policy-20040205/
http://www.w3.org/2004/01/pp-impl/39293/status
http://www.w3.org/Consortium/Patent-Policy-20040205/#def-essential
http://www.w3.org/Consortium/Patent-Policy-20040205/#sec-Disclosure

 4.4 Guidelines for Designing Assertions [p.32]
 4.4.1 Optional Behaviors [p.33]
 4.4.2 Assertion vs. assertion parameter [p.33]
 4.4.3 Leveraging Nested Policy [p.34]
 4.4.4 Minimal approach [p.34]
 4.4.5 QName and XML Information Set representation [p.34]
 4.4.6 Policy subject and attachment points [p.35]
 4.4.7 Versioning behaviors [p.35]
 4.4.8 Versioning Policy Language [p.36]
 4.4.8.1 Policy Framework [p.37]
 4.4.8.2 Policy Attachment [p.39]
 4.5 Describing Policy Assertions [p.41]
5. Conclusion [p.41]

Appendices

A. Security Considerations [p.41]
B. XML Namespaces [p.41]
C. References [p.42]
D. Acknowledgements [p.44] (Non-Normative)
E. Changes in this Version of the Document [p.45] (Non-Normative)
F. Web Services Policy 1.5 - Primer Change Log [p.45] (Non-Normative)

1. Introduction
This document, Web Services Policy 1.5 - Primer, provides an introductory description of the Web
Services Policy language and should be read alongside the formal descriptions contained in the WS-Policy
and WS-PolicyAttachment specifications.

This document is:

for policy expression authors who need to understand the syntax of the language and understand how
to build consistent policy expressions,

for policy implementers whose software modules read and write policy expressions and

for policy assertion authors who need to know the features of the language and understand the
requirements for describing policy assertions.

This document assumes a basic understanding of XML 1.0, Namespaces in XML, WSDL 1.1 and SOAP.

Each major section of this document introduces the features of the policy language and describes those
features in the context of concrete examples.

3

1. Introduction

2. Basic Concepts: Policy Expression [p.4] covers the basic mechanisms of Web Services Policy. It
describes how to declare and combine capabilities and requirements of a Web service as policy expres-
sions, attach policy expressions to WSDL constructs such as endpoint and message, and re-use policy
expressions.

3. Advanced Concepts I: Policy Expression [p.14] this is the first advanced section that provides more
in-depth materials for policy implementers and assertion authors. It explains the basics of normalizing
policy expressions, merging policies, determining the compatibility (intersection) of policies, the policy
data model, the policy expression and the extensibility points built into the Web Services Policy language.

4. Advanced Concepts II: Policy Assertion Design [p.28] this is the second advanced section that walks
through the dimensions of a policy assertion for assertion authors. This section describes the role of policy
assertions, parts of a policy assertion, when to design policy assertions, outlines guidelines for designing
policy assertions and enumerates the minimum requirements for describing policy assertions in specifica-
tions.

This is a non-normative document and does not provide a definitive specification of the Web Services
Policy language. B. XML Namespaces [p.41] lists all the namespaces that are used in this document.
(XML elements without a namespace prefix are from the Web Services Policy XML Namespace.)

2. Basic Concepts: Policy Expression

2.1 Web Services Policy

Web services are being successfully used for interoperable solutions across various industries. One of the
key reasons for interest and investment in Web services is that they are well-suited to enable
service-oriented systems. XML-based technologies such as SOAP, XML Schema and WSDL provide a
broadly-adopted foundation on which to build interoperable Web services. The WS-Policy and WS-Poli-
cyAttachment specifications extend this foundation and offer mechanisms to represent the capabilities and
requirements of Web services as Policies.

Service metadata is an expression of the visible aspects of a Web service, and consists of a mixture of
machine- and human-readable languages. Machine-readable languages enable tooling. For example, tools
that consume service metadata can automatically generate client code to call the service. Service metadata
can describe different parts of a Web service and thus enable different levels of tooling support.

First, service metadata can describe the format of the payloads that a Web service sends and receives.
Tools can use this metadata to automatically generate and validate data sent to and from a Web service.
The XML Schema language is frequently used to describe the message interchange format within the
SOAP message construct, i.e. to represent SOAP Body children and SOAP Header blocks.

Second, service metadata can describe the ‘how’ and ‘where’ a Web service exchanges messages, i.e. how
to represent the concrete message format, what headers are used, the transmission protocol, the message
exchange pattern and the list of available endpoints. The Web Services Description Language is currently
the most common language for describing the ‘how’ and ‘where’ a Web service exchanges messages.
WSDL has extensibility points that can be used to expand on the metadata for a Web service.

4

2. Basic Concepts: Policy Expression

Third, service metadata can describe the capabilities and requirements of a Web service, i.e. representing
whether and how a message must be secured, whether and how a message must be delivered reliably,
whether a message must flow a transaction, etc. Exposing this class of metadata about the capabilities and
requirements of a Web service enables tools to generate code modules for engaging these behaviors. Tools
can use this metadata to check the compatibility of requesters and providers. Web Services Policy can be
used to represent the capabilities and requirements of a Web service.

Web Services Policy is a machine-readable language for representing the capabilities and requirements of
a Web service. These are called ‘policies’. Web Services Policy offers mechanisms to represent consistent
combinations of capabilities and requirements, to determine the compatibility of policies, to name and
reference policies and to associate policies with Web service metadata constructs such as service, endpoint
and operation. Web Services Policy is a simple language that has four elements - Policy, All ,
ExactlyOne and PolicyReference - and one attribute - wsp:Optional .

2.2 Simple Message

Let us start by considering a SOAP Message in the example below.

Example 2-1. SOAP Message

<soap:Envelope>
 <soap:Header>
 <wsa:To>http://stock.contoso.com/realquote</wsa:To>
 <wsa:Action>http://stock.contoso.com/GetRealQuote</wsa:Action>
 </soap:Header>
 <soap:Body>...</soap:Body>
</soap:Envelope>

This message uses message addressing headers. The wsa:To and wsa:Action header blocks identify
the destination and the semantics implied by this message respectively. (The prefix wsa is used here to
denote the Web Services Addressing XML Namespace. B. XML Namespaces [p.41] lists all the names-
paces and prefixes that are used in this document.)

Let us look at a fictitious scenario used in this document to illustrate the features of the policy language.
Tony is a Web service developer. He is building a client application that retrieves real time stock quote
information from Contoso, Ltd. Contoso supplies real time data using Web services. Tony has Contoso’s
advertised WSDL description of these Web services. Contoso requires the use of addressing headers for
messaging. Just the WSDL description is not sufficient for Tony to enable the interaction between his
client and these Web services. WSDL constructs do not indicate requirements such as the use of address-
ing.

(The example companies, organizations, products, domain names, e-mail addresses, logos, people, places,
and events depicted herein are fictitious. No association with any real company, organization, product,
domain name, email address, logo, person, places, or events is intended or should be inferred.)

Providers have the option to convey requirements, such as the use of addressing, through word-of-mouth
and documentation – as they always have. To interact successfully with this service, Tony may have to
read any related documentation, call someone at Contoso to understand the service metadata, or look at
sample SOAP messages and infer such requirements or behaviors.

5

2.2 Simple Message

Web Services Policy is a machine-readable language for representing these Web service capabilities and
requirements as policies. Policy makes it possible for providers to represent such capabilities and require-
ments in a machine-readable form. For example, Contoso may augment the service WSDL description
with a policy that requires the use of addressing. Tony can use a policy-aware client that understands this
policy and engages addressing automatically.

How does Contoso use policy to represent the use of addressing? The example below illustrates a policy
expression that requires the use of addressing.

Example 2-2. Policy Expression

<Policy>
 <wsap:UsingAddressing />
</Policy>

The policy expression in the above example consists of a Policy main element and a child element
wsap:UsingAddressing. Child elements of the Policy element are policy assertions. Contoso
attaches the above policy expression to a WSDL binding description.

The wsap:UsingAddressing element is a policy assertion. (The prefix wsap is used here to denote
the Web Services Addressing – WSDL Binding XML Namespace.) This assertion identifies the use of
Web Services Addressing information headers. A policy-aware client can recognize this policy assertion,
engage addressing automatically, and use headers such as wsa:To and wsa:Action in SOAP
Envelopes.

It is important to understand the association between the SOAP message and policy expression in the
above example. As you can see by careful examination of the message, there is no reference to any policy
expression. Just as WSDL does not require a message to reference WSDL constructs (such as port,
binding and portType), Web Services Policy does not require a message to reference a policy expression
though the policy expression describes the message.

2.3 Secure Message

In addition to requiring the use of addressing, Contoso requires the use of transport-level security for
protecting messages.

Example 2-3. Secure Message

<soap:Envelope>
 <soap:Header>
 <wss:Security soap:mustUnderstand="1" >
 <wsu:Timestamp u:Id="_0">
 <wsu:Created>2006-01-19T02:49:53.914Z</u:Created>
 <wsu:Expires>2006-01-19T02:54:53.914Z</u:Expires>
 </wsu:Timestamp>
 </wss:Security>
 <wsa:To>http://real.contoso.com/quote</wsa:To>
 <wsa:Action>http://real.contoso.com/GetRealQuote</wsa:Action>
 </soap:Header>
 <soap:Body>...</soap:Body>
</soap:Envelope>

6

2.3 Secure Message

The SOAP message in the example above includes security timestamps that express creation and expira-
tion times of this message. Contoso requires the use of security timestamps and transport-level security -
such as HTTPS – for protecting messages. (The prefixes wss and wsu are used here to denote the Web
Services Security and Utility namespaces.)

Similar to the use of addressing, Contoso indicates the use of transport-level security using a policy
expression. The example below illustrates a policy expression that requires the use of addressing and
transport-level security for securing messages.

Example 2-4. Addressing and Security Policy Expression

<Policy>
 <wsap:UsingAddressing />
 <sp:TransportBinding>...</sp:TransportBinding>
</Policy>

The sp:TransportBinding element is a policy assertion. (The prefix sp is used here to denote the
Web Services Security Policy XML Namespace.) This assertion identifies the use of transport-level secu-
rity – such as HTTPS - for protecting messages. Policy-aware clients can recognize this policy assertion,
engage transport-level security for protecting messages and include security timestamps in SOAP
Envelopes.

Tony can use a policy-aware client that recognizes this policy expression and engages both addressing and
transport-level security automatically.

For the moment, let us set aside the contents of the sp:TransportBinding policy assertion and
consider its details in a later section.

2.4 Other Assertions

Thus far, we explored how Contoso uses policy expressions and assertions for representing behaviors that
must be engaged for a Web service interaction. What is a policy assertion? What role does it play? In
brief, a policy assertion is a piece of service metadata, and it identifies a domain (such as messaging, secu-
rity, reliability and transaction) specific behavior that is a requirement. Contoso uses a policy assertion to
convey a condition under which they offer a Web service. A policy-aware client can recognize policy
assertions and engage these behaviors automatically.

Providers, like Contoso, have the option to combine behaviors for an interaction from domains such as
messaging, security, reliability and transactions. Using policy assertions, providers can represent these
behaviors in a machine-readable form. Web service developers, like Tony, can use policy-aware clients
that recognize these assertions and engage these behaviors automatically.

Who defines policy assertions? Where are they? Policy assertions are defined by Web services developers,
product designers, protocol authors and users. Like XML Schema libraries, policy assertions are a growing
collection. Several WS-* protocol specifications and applications define policy assertions:

7

2.4 Other Assertions

Web Services Security Policy [WS-SecurityPolicy [p.44]]

Web Services Reliable Messaging Policy [Web Services Reliable Messaging Policy [p.44]]

Web Services Atomic Transaction [Web Services Atomic Transaction [p.43]]

Web Services Business Activity Framework [Web Services Business Activity Framework [p.43]]

Devices Profile for Web Services [Devices Profile for Web Services [p.43]]

A Technical Reference for Windows CardSpace [A Technical Reference for Windows CardSpace
[p.43]]

…

2.5 Combining Policy Assertions

Policy assertions can be combined in different ways to express consistent combinations of behaviors
(capabilities and requirements). There are three policy operators for combining policy assertions:
Policy , All and ExactlyOne (the Policy operator is a synonym for All).

Let us consider the All operator first. The policy expression in the example below requires the use of
addressing and transport-level security. There are two policy assertions. These assertions are combined
using the All operator. Combining policy assertions using the Policy or All operator means that all
the behaviors represented by these assertions are required.

Example 2-5. Addressing and Security Policy Expression

<All>
 <wsap:UsingAddressing />
 <sp:TransportBinding> …</sp:TransportBinding>
</All>

In addition to requiring the use of addressing, Contoso allows either the use of transport- or message-level
security for protecting messages. Web Services Policy language can indicate this choice of behaviors in a
machine-readable form. To indicate the use of message-level security for protecting messages, Contoso
uses the sp:AsymmetricBinding policy assertion (see the example below).

Example 2-6. Asymmetric Binding Security Policy Assertion

<sp:AsymmetricBinding> …</sp:AsymmetricBinding>

The sp:AsymmetricBinding element is a policy assertion. (The prefix sp is used here to denote the
Web Services Security Policy namespace.) This assertion identifies the use of message-level security –
such as WS-Security 1.0 - for protecting messages. Policy-aware clients can recognize this policy asser-
tion, engage message-level security for protecting messages and use headers such as wss:Security in
SOAP Envelopes.

8

2.5 Combining Policy Assertions

To allow the use of either transport- or message-level security, Contoso uses the ExactlyOne policy
operator. Policy assertions combined using the ExactlyOne operator requires exactly one of the behav-
iors represented by the assertions. The policy expression in the example below requires the use of either
transport- or message-level security for protecting messages.

Example 2-7. Transport- or Message-Level Security Policy Expression

<ExactlyOne>
 <sp:TransportBinding> …</sp:TransportBinding>
 <sp:AsymmetricBinding> …</sp:AsymmetricBinding>
</ExactlyOne>

Contoso requires the use of addressing and requires the use of either transport- or message-level security
for protecting messages. They represent this combination using the All and ExactlyOne operators.
Policy operators can be mixed to represent different combinations of behaviors (capabilities and require-
ments). The policy expression in the example below requires the use of addressing and one of transport- or
message-level security for protecting messages.

Example 2-8. Addressing and Transport- OR Message-Level Security Policy Expression

<All>
 <wsap:UsingAddressing />
 <ExactlyOne>
 <sp:TransportBinding> …</sp:TransportBinding>
 <sp:AsymmetricBinding> …</sp:AsymmetricBinding>
 </ExactlyOne>
</All>

Using this policy expression, Contoso gives the choice of mechanisms for protecting messages to clients
(or requesters).

2.6 Optional Policy Assertion

Through a customer survey program, Contoso learns that a significant number of their customers prefer to
use the Optimized MIME Serialization (as defined in the MTOM specification) for sending and receiving
messages. Contoso adds optional support for the Optimized MIME Serialization and expresses this
optional behavior in a machine-readable form.

To indicate the use of optimization using the Optimized MIME Serialization, Contoso uses the
mtom:OptimizedMimeSerialization policy assertion (see the example below).

Example 2-9. Optimized MIME Serialization Policy Assertion

<mtom:OptimizedMimeSerialization />

The mtom:OptimizedMimeSerialization element is a policy assertion. (The prefix mtom is used
here to denote the Optimized MIME Serialization Policy namespace.) This assertion identifies the use of
MIME Multipart/Related serialization for messages. Policy-aware clients can recognize this policy asser-
tion and engage Optimized MIME Serialization for messages. The semantics of this assertion are reflected
in messages: they use an optimized wire format (MIME Multipart/Related serialization).

9

2.6 Optional Policy Assertion

Like Contoso’s optional support for Optimized MIME Serialization, there are behaviors that may be
engaged (in contrast to must be engaged) for a Web service interaction. A service provider will not fault if
these behaviors are not engaged. Policy assertions can be marked optional to represent behaviors that may
be engaged for an interaction. A policy assertion is marked as optional using the wsp:Optional
attribute. Optional assertions represent the capabilities of the service provider as opposed to the require-
ments of the service provider.

In the example below, the Optimized MIME Serialization policy assertion is marked optional. This policy
expression allows the use of optimization and requires the use of addressing and one of transport- or
message-level security.

Example 2-10. Optional MIME Serialization, Addressing and Transport- OR Message-Level Security
Policy Expression

<All>
 <mtom:OptimizedMimeSerialization wsp:Optional="true"/>
 <wsap:UsingAddressing />
 <ExactlyOne>
 <sp:TransportBinding> …</sp:TransportBinding>
 <sp:AsymmetricBinding> …</sp:AsymmetricBinding>
 </ExactlyOne>
</All>

Contoso is able to meet their customer needs by adding optional support for the Optimized MIME Serial-
ization. An optional policy assertion represents a behavior that may be engaged.

2.7 Nested Policy Expressions

In the previous sections, we considered two security policy assertions. In this section, let us look at one of
the security policy assertions in little more detail.

As you would expect, securing messages is a complex usage scenario. Contoso uses the sp:Trans-
portBinding policy assertion to indicate the use of transport-level security for protecting messages.
Just indicating the use of transport-level security for protecting messages is not sufficient. To successfully
interact with Contoso’s Web services, Tony must know what transport token to use, what secure transport
to use, what algorithm suite to use for performing cryptographic operations, etc. The sp:Transport-
Binding policy assertion can represent these dependent behaviors. In this section, let us look at how to
capture these dependent behaviors in a machine-readable form.

A policy assertion – like the sp:TransportBinding - identifies a visible domain specific behavior
that is a requirement. Given an assertion, there may be other dependent behaviors that need to be enumer-
ated for a Web Service interaction. In the case of the sp:TransportBinding policy assertion,
Contoso needs to identify the use of a transport token, a secure transport, an algorithm suite for performing
cryptographic operations, etc. A nested policy expression can be used to enumerate such dependent behav-
iors.

What is a nested policy expression? A nested policy expression is a policy expression that is a child
element of a policy assertion element. A nested policy expression further qualifies the behavior of its
parent policy assertion.

10

2.7 Nested Policy Expressions

In the example below, the child Policy element is a nested policy expression and further qualifies the
behavior of the sp:TransportBinding policy assertion. The sp:TransportToken is a nested
policy assertion of the sp:TransportBinding policy assertion. The sp:TransportToken asser-
tion requires the use of a specific transport token and further qualifies the behavior of the sp:Trans-
portBinding policy assertion (which already requires the use of transport-level security for protecting
messages).

Example 2-11. Transport Security Policy Assertion

<sp:TransportBinding>
 <Policy>
 <sp:TransportToken>
 <Policy>
 <sp:HttpsToken RequireClientCertificate="false" />
 </Policy>
 </sp:TransportToken>
 <sp:AlgorithmSuite>
 <Policy>
 <sp:Basic256Rsa15/>
 </Policy>
 </sp:AlgorithmSuite>
 …
 </Policy>
</sp:TransportBinding>

The sp:AlgorithmSuite is a nested policy assertion of the sp:TransportBinding policy asser-
tion. The sp:AlgorithmSuite assertion requires the use of the algorithm suite identified by its nested
policy assertion (sp:Basic256Rsa15 in the example above) and further qualifies the behavior of the
sp:TransportBinding policy assertion.

Setting aside the details of using transport-level security, Web service developers, like Tony, can use a
policy-aware client that recognizes this policy assertion and engages transport-level security and its depen-
dent behaviors automatically. That is, the complexity of security usage is absorbed by a policy-aware
client and hidden from these Web service developers.

2.8 Referencing Policy Expressions

Contoso has numerous Web service offerings that provide different kinds of real-time quotes and book
information on securities such as GetRealQuote , GetRealQuotes and GetExtende-
dRealQuote . To accommodate the diversity of Contoso’s customers, Contoso supports multiple WSDL
bindings for these Web services. Contoso provides consistent ways to interact with their services and
wants to represent these capabilities and requirements consistently across all of their offerings without
duplicating policy expressions multiple times. How? It is simple - a policy expression can be named and
referenced for re-use.

A policy expression may be identified by an IRI and referenced for re-use as a standalone policy or within
another policy expression. There are two mechanisms to identify a policy expression: the wsu:Id and
Name attributes. A PolicyReference element can be used to reference a policy expression identified
using either of these mechanisms.

11

2.8 Referencing Policy Expressions

Example 2-12. Common Policy Expression

<Policy wsu:Id=”common”>
 <mtom:OptimizedMimeSerialization wsp:Optional="true"/>
 <wsap:UsingAddressing />
</Policy>

In the example above, the wsu:Id attribute is used to identify a policy expression. The value of the
wsu:Id attribute is an XML ID. The relative IRI for referencing this policy expression (within the same
document) is #common. If the policy document IRI is http://real.contoso.com/policy.xml
then the absolute IRI for referencing this policy expression is
http://real.contoso.com/policy.xml#common. (The absolute IRI is formed by combin-
ing the document IRI, # and the value of the wsu:Id attribute.)

For re-use, a PolicyReference element can be used to reference a policy expression as a standalone
policy or within another policy expression. The example below is a policy expression that re-uses the
common policy expression above.

Example 2-13. PolicyReference to Common Policy Expression

<PolicyReference URI="#common"/>

For referencing a policy expression within the same XML document, Contoso uses the wsu:Id attribute
for identifying a policy expression and an IRI to this ID value for referencing this policy expression using
a PolicyReference element.

The example below is a policy expression that re-uses the common policy expression within another
policy expression. This policy expression requires the use of addressing, one of transport- or
message-level security for protecting messages and allows the use of optimization.

Example 2-14. Secure Policy Expression

<Policy wsu:Id=”secure”>
 <All>
 <PolicyReference URI="#common"/>
 <ExactlyOne>
 <sp:TransportBinding> …</sp:TransportBinding>
 <sp:AsymmetricBinding> …</sp:AsymmetricBinding >
 </ExactlyOne>
 </All>
</Policy>

The Name attribute is an alternate mechanism to identify a policy expression. The value of the Name
attribute is an absolute IRI and is independent of the location of the XML document where the identified
policy expression resides in. As such, referencing a policy expression using the Name attribute relies on
additional out of band information. In the example below, the Name attribute identifies the policy expres-
sion. The IRI of this policy expression is http://real.contoso.com/policy/common .

Example 2-15. Common Policy Expression

12

2.8 Referencing Policy Expressions

<Policy Name=”http://real.contoso.com/policy/common”>
 <mtom:OptimizedMimeSerialization wsp:Optional="true"/>
 <wsap:UsingAddressing />
</Policy>

The example below is a policy expression that re-uses the common policy expression above.

Example 2-16. PolicyReference to Common Policy Expression

<PolicyReference URI="http://real.contoso.com/policy/common"/>

2.9 Attaching Policy Expressions to WSDL

A majority of Contoso’s customers use WSDL for building their client applications. Contoso leverages
this usage by attaching policy expressions to the WSDL binding descriptions.

In the example below, the SecureBinding WSDL binding description defines a binding for an inter-
face that provides real-time quotes and book information on securities. (The prefixes wsdl and tns are
used here to denote the Web Services Description language XML namespace and target namespace of this
WSDL document.) To require the use of security for these offerings, Contoso attaches the secure policy
expression in the previous section to this binding description. The WSDL binding element is a common
policy attachment point. The secure policy expression attached to the SecureBinding WSDL binding
description applies to any message exchange associated with any port that supports this binding descrip-
tion. This includes all the message exchanges described by operations in the RealTimeDataInter-
face .

Example 2-17. Secure Policy Expression Attached to WSDL Binding

<wsdl:binding name="SecureBinding" type="tns:RealTimeDataInterface" >
 <PolicyReference URI="#secure" />
 <wsdl:operation name="GetRealQuote"> …</wsdl:operation>
 …
</wsdl:binding>

In addition to providing real-time quotes and book information on securities, Contoso provides other kinds
of data through Web services such as quotes delayed by 20 minutes and security symbols through Web
services (for example GetDelayedQuote , GetDelayedQuotes, GetSymbol and GetSymbols).
Contoso does not require the use of security for these services, but requires the use of addressing and
allows the use of optimization.

Example 2-18. Open Policy Expression Attached to WSDL Binding

<wsdl:binding name="OpenBinding" type="tns:DelayedDataInterface" >
 <PolicyReference URI="#common" />
 <wsdl:operation name="GetDelayedQuote"> …</wsdl:operation>
 …
</wsdl:binding>

In the example above, the OpenBinding WSDL binding description defines a binding for an interface
that provides other kinds of data such as quotes delayed by 20 minutes and security symbols. To require
the use of addressing and allow the use of optimization, Contoso attaches the common policy expression

13

2.9 Attaching Policy Expressions to WSDL

in the previous section to this binding description. As we have seen in the SecureBinding case, the
common policy expression attached to the OpenBinding WSDL binding description applies to any
message exchange associated with any port that supports this binding description. This includes all the
message exchanges described by operations in the DelayedDataInterface .

As mentioned earlier, providers have the option to convey requirements, such as the use of addressing or
security, through word-of-mouth and documentation – as they always have. The absence of policy expres-
sions in a WSDL document does not indicate anything about the capabilities and requirements of a
service. The service may have capabilities and requirements that can be expressed as policy expressions,
such as the use of addressing, security and optimization. Or, the service may not have such capabilities
and requirements. A policy aware client should not conclude anything (other than ‘no claims’) about the
absence of policy expressions.

Service providers, like Contoso, can preserve and leverage their investments in WSDL and represent the
capabilities and requirements of a Web service as policies. A WSDL document may specify varying
behaviors across Web service endpoints. Web service developers, like Tony, can use a policy-aware client
that recognizes these policy expressions in WSDL documents and engages behaviors automatically for
each of these endpoints. Any complexity of varying behaviors across Web service endpoints is absorbed
by a policy-aware client or tool and hidden from these Web service developers.

2.10 Policy Automates Web Services Interaction

As you have seen, Web Services Policy is a simple language that has four elements - Policy, All ,
ExactlyOne and PolicyReference - and one attribute - wsp:Optional . In practice, service
providers, like Contoso, use policy expressions to represent combinations of capabilities and requirements.
Web service developers, like Tony, use policy-aware clients that understand policy expressions and
engage the behaviors represented by providers automatically. A sizable amount of complexity is absorbed
by policy-aware clients (or tools) and is invisible to these Web service developers.

Web Services Policy extends the foundation on which to build interoperable Web services, hides complex-
ity from developers and automates Web service interactions.

3. Advanced Concepts I: Policy Expression
In 2. Basic Concepts: Policy Expression [p.4] , we covered the basics of Web Services Policy language.
This is the first advanced section that provides more in-depth materials for Web Services Policy imple-
menters and assertion authors. This section covers the following topics:

What is a policy expression?

What is the normal form of a policy expression and how to normalize policy expressions?

What is the policy data model?

How to select a compatible policy alternative?

14

3. Advanced Concepts I: Policy Expression

How to attach policy expressions to WSDL constructs?

How to combine policies?

What are the extensibility points?

3.1 Policy Expression

A policy expression is the XML representation and interoperable form of a Web Services Policy. A policy
expression consists of a Policy wrapper element and a variety of child and descendent elements. Child
and descendent elements from the policy language are Policy, All , ExactlyOne and Poli-
cyReference . Other child elements of Policy , All and ExactlyOne are policy assertions. (The
Policy element plays two roles: wrapper element and operator.) Policy assertions can contain a nested
policy expression. Policy assertions can also be marked optional to represent behaviors that may be
engaged (capabilities) for an interaction. The optional marker is the wsp:Optional attribute which is
placed on a policy assertion element.

Let us take a closer look at Contoso’s policy expression (see below) from the previous section.

Example 3-1. Contoso’s Secure Policy Expression

<Policy>
 <All>
 <mtom:OptimizedMimeSerialization wsp:Optional="true"/>
 <wsap:UsingAddressing />
 <ExactlyOne>
 <sp:TransportBinding> …</sp:TransportBinding>
 <sp:AsymmetricBinding> …</sp:AsymmetricBinding >
 </ExactlyOne>
 </All>
</Policy>

The Policy element is the wrapper element. The All and ExactlyOne elements are the policy opera-
tors. All other child elements of the All and ExactlyOne elements are policy assertions from domains
such as messaging, addressing, security, reliability and transactions.

3.2 Normal Form for Policy Expressions

Web Services Policy language defines two forms of policy expressions: compact and normal form. Up to
this point, we have used the compact form. The compact form is less verbose than the normal form. The
compact form is useful for authoring policy expressions. The normal form is an intuitive representation of
the policy data model. We will look into the policy data model in the next section.

The normal form uses a subset of constructs used in the compact form and follows a simple outline for its
XML representation:

Example 3-2. Normal Form for Policy Expressions

15

3.1 Policy Expression

<Policy>
 <ExactlyOne>
 <All>
 <x:AssertionA> …</x:AssertionA>
 <y:AssertionB> …</y:AssertionB>
 …
 </All>
 <All>
 <x:AssertionA> …</x:AssertionA>
 <z:AssertionC> …</z:AssertionC>
 …
 </All>
 …
 </ExactlyOne>
<Policy/>

The normal form consists of a Policy wrapper element and has one child ExactlyOne element. This
ExactlyOne element has zero or more All child elements. Each of these All elements has zero or
more policy assertions. The PolicyReference element and wsp:Optional attribute are not used in
the normal form. And, a nested policy expression in the normal form has at most one policy alternative.

The normal form represents a policy as a collection of policy alternatives and a policy alternative as a
collection of policy assertions in a straight-forward manner.

The example below is a policy expression in the normal form. This expression contains two policy alterna-
tives: one that requires the use of transport-level security and the other that requires the use of
message-level security for protecting messages.

Example 3-3. Transport- or Message-Level Security Policy Expression in Normal Form

<Policy>
 <ExactlyOne>
 <All>
 <sp:TransportBinding> …</sp:TransportBinding>
 </All>
 <All>
 <sp:AsymmetricBinding> …</sp:AsymmetricBinding >
 </All>
 </ExactlyOne>
</Policy>

A policy expression in the compact form can be converted to the normal form. Web Services Policy
language describes the algorithm for this conversion.

Let us re-consider Contoso’s policy expression (see the example below). Contoso requires the use of
addressing and either transport- or message-level security and allows the use of optimization. This policy
expression is in the compact form and has four policy alternatives for requesters:

1. Requires the use of addressing and transport-level security

16

3.2 Normal Form for Policy Expressions

2. Requires the use of addressing and message-level security

3. Requires the use of optimization, addressing and transport-level security and

4. Requires the use of optimization, addressing and message-level security.

Example 3-4. Contoso’s Secure Policy Expression in Compact Form

<Policy wsu:Id=”secure”>
 <All>
 <PolicyReference URI=”#common”/>
 <ExactlyOne>
 <sp:TransportBinding> …</sp:TransportBinding>
 <sp:AsymmetricBinding> …</sp:AsymmetricBinding >
 </ExactlyOne>
 </All>
</Policy>

<Policy wsu:Id=”common”>
 <mtom:OptimizedMimeSerialization wsp:Optional="true"/>
 <wsap:UsingAddressing />
</Policy>

Let us look at the normal form for this policy expression. The example below is Contoso’s policy expres-
sion in the normal form. As you can see, the compact form is less verbose than the normal form. The
normal form represents a policy as a collection of policy alternatives. Each of the All operators is a
policy alternative. There are four policy alternatives in the normal form. These alternatives map to bullets
(a) through (d) above.

Example 3-5. Contoso’s Policy Expression in Normal Form

<Policy>
 <ExactlyOne>
 <All> <!-- - - - - - - - - - - - - - Policy Alternative (a) -->
 <wsap:UsingAddressing/>
 <sp:TransportBinding> …</sp:TransportBinding>
 </All>
 <All> <!-- - - - - - - - - - - - - - Policy Alternative (b) -->
 <wsap:UsingAddressing/>
 <sp:AsymmetricBinding> …</sp:AsymmetricBinding >
 </All>
 <All> <!-- - - - - - - - - - - - - - Policy Alternative (c) -->
 <mtom:OptimizedMimeSerialization />
 <wsap:UsingAddressing/>
 <sp:TransportBinding> …</sp:TransportBinding>
 </All>
 <All> <!-- - - - - - - - - - - - - - Policy Alternative (d) -->
 <mtom:OptimizedMimeSerialization />
 <wsap:UsingAddressing/>
 <sp:AsymmetricBinding> …</sp:AsymmetricBinding>
 </All>
 </ExactlyOne>
</Policy>

17

3.2 Normal Form for Policy Expressions

The wsp:Optional attribute, nested policy expression and PolicyReference element are
converted to their corresponding normal form. The wsp:Optional attribute converts to two alterna-
tives, one with and the other without the assertion. A policy alternative containing an assertion with a
nested policy expression that has multiple policy alternatives converts to multiple policy alternatives
where the assertion contains a nested policy expression that has at most one policy alternative.

The PolicyReference element is replaced with its referenced policy expression. Just as other service
metadata languages, Web Services Policy does not mandate any specific policy retrieval mechanism. Any
combination of any retrieval mechanisms in any order may be used for referencing policy expressions.
Example retrieval mechanisms are:

Do nothing. A policy expression with the referenced IRI is already known to be available in a local
cache or chip (embedded systems).

Use the referenced IRI and retrieve an existing policy expression from the containing XML docu-
ment: a policy element with an XML ID.

Use the referenced IRI and retrieve a policy expression from some policy repository (local or remote)
or catalog. Policy tools may use any protocols (say Web Services Metadata Exchange) for such meta-
data retrieval. These protocols may require additional out of band information.

Attempt to resolve the referenced IRI on the Web. This may resolve to a policy element or a resource
that contains a policy element.

If the referenced policy expression is in the same XML document as the reference, then the policy expres-
sion should be identified using the wsu:Id (XML ID) attribute and referenced using an IRI reference to
this XML ID value.

3.3 Policy Data Model

In the previous section, we considered the normal form for policy expressions. As we discussed, the
normal form represents a policy as a collection of policy alternatives. In this section, let us look at the
policy data model.

Contoso uses a policy to convey the conditions for an interaction. Policy-aware clients, like the one used
by Tony (as explained earlier in 2. Basic Concepts: Policy Expression [p.4]), view policy as an
unordered collection of zero or more policy alternatives. A policy alternative is an unordered collection of
zero or more policy assertions. A policy alternative represents a collection of behaviors or requirements or
conditions for an interaction. In simple words, each policy alternative represents a set of conditions for an
interaction. The diagram below describes the policy data model.

18

3.3 Policy Data Model

Figure 3-1. WS-Policy Data Model

A policy-aware client uses a policy to determine whether one of these policy alternatives (i.e. the condi-
tions for an interaction) can be met in order to interact with the associated Web Service. Such clients may
choose any of these policy alternatives and must choose exactly one of them for a successful Web service
interaction. Clients may choose a different policy alternative for a subsequent interaction. It is important to
understand that a policy is a useful piece of metadata in machine-readable form that enables tooling, yet is
not required for a successful Web service interaction. Why? Web service developers, like Tony, could use
the documentation, talk to the service providers, or look at message traces to infer these conditions for an
interaction. Developers continue to have these options, as they always had.

19

3.3 Policy Data Model

As we discussed, a policy assertion identifies a domain specific behavior or requirement or condition. A
policy assertion has a QName that identifies its behavior or requirement or condition. In the XML repre-
sentation, the QName of the assertion element is the QName of the policy assertion. A policy assertion
may contain assertion parameters and a nested policy.

The assertion parameters are the opaque payload of an assertion. Parameters carry additional useful pieces
of information necessary for engaging the behavior described by an assertion. In the XML representation,
the child elements and attributes of an assertion are the assertion parameters.

We considered nested policy expressions in the context of a security usage scenario. Let us look at its
shape in the policy data model. In the normal form, a nested policy is a policy that has at most one policy
alternative and is owned by its parent policy assertion. The policy alternative in a nested policy represents
a collection of dependent behaviors or requirements or conditions that qualify the behavior of its parent
policy assertion.

A policy-aware client supports a policy assertion if the client engages the behavior or requirement or
condition indicated by the assertion. A policy-aware client supports a policy alternative if the client
engages the behaviors represented by all the assertions in the alternative. A policy-aware client supports a
policy if the client engages the behaviors represented by at least one of the policy alternatives.

In the previous section, we saw how the normal form of a policy expression represents a policy as a
collection of policy alternatives. By policy language design, the normal form of a policy expression
directly maps to the policy data model:

Each child element of Policy/ExactlyOne/All maps to a policy assertion.

Each Policy/ExactlyOne/All element and policy assertions which correspond to its children
map to a policy alternative.

The Policy/ExactlyOne element maps to a collection of policy alternatives.

The Policy wrapper element and policy alternatives which correspond to the Policy/Exactly-
One element map to a policy.

The diagram below describes this mapping from the normal form of a policy expression to the policy data
model.

20

3.3 Policy Data Model

21

3.3 Policy Data Model

Figure 3-2. Mapping from Normal Form to Policy Data Model

3.4 Compatible Policies

A provider, like Contoso, and a requester, like Tony’s policy-aware client, may represent their capabilities
and requirements for an interaction as policies and want to limit their message exchanges to mutually
compatible policies. Web Services Policy defines an intersection mechanism for selecting compatible
policy alternatives when there are two or more policies.

The example below is a copy of Contoso’s policy expression (from 3.2 Normal Form for Policy Expres-
sions [p.15]). As we saw before, Contoso offers four policy alternatives. Of them, one of the policy alter-
natives requires the use of addressing and transport-level security.

Example 3-6. Contoso’s Policy Expression

<Policy>
 <ExactlyOne>
 <All> <!-- - - - - - - - - - Contoso’s Policy Alternative (a) -->
 <!-- - - - - - - - - - - - - - - - - - Policy Assertion (c1) -->
 <wsap:UsingAddressing/>
 <!-- - - - - - - - - - - - - - - - - - Policy Assertion (c2) -->
 <sp:TransportBinding> …</sp:TransportBinding>
 </All>
 …
 </ExactlyOne>
</Policy>

Tony’s organization requires the use of addressing and transport-level security for any interaction with
Contoso’s Web services. Tony represents these behaviors using a policy expression illustrated in the
example below in normal form. This policy expression contains one policy alternative that requires the use
of addressing and transport-level security.

Example 3-7. Tony’s Policy Expression in Normal Form

<Policy>
 <ExactlyOne>
 <All> <!-- - - - - - - - - - - - - - Tony’s Policy Alternative -->
 <!-- - - - - - - - - - - - - - - - - - Policy Assertion (t1) -->
 <sp:TransportBinding> …</sp:TransportBinding>
 <!-- - - - - - - - - - - - - - - - - - Policy Assertion (t2) -->
 <wsap:UsingAddressing/>
 </All>
 </ExactlyOne>
</Policy>

Tony lets his policy-aware client select a compatible policy alternative in Contoso’s policy. How does this
client select a compatible policy alternative? It is simple – it uses the policy intersection. That is, Tony’s
policy-aware client uses these two policy expressions (Tony’s and Contoso’s) and the policy intersection
to select a compatible policy alternative for this interaction. Let us look at the details of policy intersec-
tion.

22

3.4 Compatible Policies

For two policy assertions to be compatible they must have the same QName. And, if either assertion has a
nested policy, both assertions must have a nested policy and the nested policies must be compatible. For
example, policy assertions (c2) and (t1) have the same QName, sp:TransportBinding . For this
discussion, let us assume that these two assertions have compatible nested policies. These two assertions
are compatible because they have the same QName and their nested policies are compatible.

Two policy alternatives are compatible if each policy assertion in one alternative is compatible with a
policy assertion in the other and vice-versa. For example, policy assertions (c1) and (c2) in Contoso’s
policy alternative are compatible with policy assertions (t2) and (t1) in Tony’s policy alternative.
Contoso’s policy alternative (a) and Tony’s policy alternative are compatible because assertions in these
two alternatives are compatible.

Two policies are compatible if a policy alternative in one is compatible with a policy alternative in the
other. For example, Contoso’s policy alternative (a) is compatible with Tony’s policy alternative.
Contoso’s policy and Tony’s policy are compatible because one of Contoso’s policy alternative is compat-
ible with Tony’s policy alternative.

For this interaction, Tony’s policy-aware client can use policy alternative (a) to satisfy Contoso’s condi-
tions or requirements.

Similarly, policy intersection can be used to check if providers expose endpoints that conform to a stan-
dard policy. For example, a major retailer might require all their supplier endpoints to be compatible with
an agreed upon policy.

3.5 Attaching Policy Expressions to WSDL

In 2. Basic Concepts: Policy Expression [p.4] , we looked into how Contoso attached their policy expres-
sions to the WSDL binding element. In addition to the WSDL binding element, a policy expression
can be attached to other WSDL elements such as service , port , operation and message . These
elements are the WSDL policy attachment points in a WSDL document.

The WSDL attachment points are partitioned (as illustrated below) into four policy subjects: message,
operation, endpoint and service. When attached, capabilities and requirements represented by a policy
expression apply to a message exchange or message associated with (or described by) a policy subject.

23

3.5 Attaching Policy Expressions to WSDL

Figure 3-3. Policy Subjects and Effective Policy in WSDL

The WSDL service element represents the service policy subject. Policy expressions associated with a
service policy subject apply to any message exchange using any of the endpoints offered by that service.

24

3.5 Attaching Policy Expressions to WSDL

The WSDL port , binding and portType elements collectively represent the endpoint policy subject.
Policy expressions associated with an endpoint policy subject apply to any message exchange made using
that endpoint.

The WSDL binding/operation and portType/operation elements collectively represent the
operation policy subject. Policy expressions associated with an operation policy subject apply to the
message exchange defined by that operation.

The WSDL binding/operation/input , portType/operation/input , and message
element collectively represent the message policy subject for the input message. The WSDL
binding/operation/output , portType/operation/output , and message element collec-
tively represent the message policy subject for the output message. The WSDL binding/opera-
tion/fault , portType/operation/fault , and message element collectively represent the
message policy subject for the fault message. Policy expressions associated with a message policy subject
apply only to that message.

In the example below, the policy expression is attached to an endpoint policy subject.

Example 3-8. Contoso’s Policy Expression Attached to WSDL binding Element

<wsdl:binding name="SecureBinding" type="tns:RealTimeDataInterface" >
 <PolicyReference URI="#secure" />
 <wsdl:operation name="GetRealQuote"> …</wsdl:operation>
 …
</wsdl:binding>

If multiple policy expressions are attached to WSDL elements that collectively represent a policy subject
then the effective policy of these policy expressions applies. The effective policy is the combination of the
policy expressions that are attached to the same policy subject. For example, the effective policy of an
endpoint policy subject is the combination of policy expressions attached to a WSDL port element,
policy expressions attached to the binding element referenced by this port, and policy expressions
attached to the portType element that is supported by this port. Let us consider how to combine policy
expressions in the next section.

Most of the policy assertions are designated for the endpoint, operation or message policy subject. The
commonly used WSDL attachment points are:

Policy Subject Commonly used attachment point (s)

Endpoint binding element

Operation binding/operation element

Message binding/operation/input and binding/operation/output elements

25

3.5 Attaching Policy Expressions to WSDL

3.6 Combine Policies

Multiple policy expressions may be attached to WSDL constructs. Let us consider how Contoso could
have used multiple policy expressions in a WSDL document. In the example below, there are two policy
expressions #common2 and #secure2 attached to the SecureBinding WSDL binding and Real-
TimeDataPort WSDL port descriptions.

Example 3-9. Multiple Policy Expressions Attached to Endpoint Policy Subject

<Policy wsu:Id=”common2”>
 <mtom:OptimizedMimeSerialization wsp:Optional="true"/>
 <wsap:UsingAddressing />
</Policy>
<Policy wsu:Id=”secure2”>
 <ExactlyOne>
 <sp:TransportBinding> …</sp:TransportBinding>
 <sp:AsymmetricBinding> …</sp:AsymmetricBinding >
 </ExactlyOne>
</Policy>
<wsdl:binding name="SecureBinding" type="tns:RealTimeDataInterface" >
 <PolicyReference URI="#secure2" />
 <wsdl:operation name="GetRealQuote"> …</wsdl:operation>
 …
</wsdl:binding>
<wsdl:service name=”RealTimeDataService”>
 <wsdl:port name=”RealTimeDataPort” binding=”tns:SecureBinding”>
 <PolicyReference URI="#common2"/>
 …
 </wsdl:port>
</wsdl:service>

As we discussed before, the WSDL port , binding and portType elements collectively represent the
endpoint policy subject. In the example above, the #common2 and #secure2 policy expressions
attached to the SecureBinding WSDL binding and RealTimeDataPort WSDL port descriptions
collectively apply to any message exchange associated with the RealTimeDataPort WSDL port.

As in the example above, multiple policy expressions may be attached to Web service constructs that
collectively represent a single policy subject. When there are multiple policy expressions attached to the
same policy subject then the effective policy or combination of these policy expressions apply to the asso-
ciated policy subject.

The effective policy is the combination of two or more policy expressions attached to the same policy
subject. The combination of two policy expressions, also known as the merged policy expression, is a new
policy expression that combines these two policy expressions using the All policy operator.

The policy expression below is the combination of the two policy expressions attached to the Secure-
Binding WSDL binding and RealTimeDataPort WSDL port descriptions. The #common2 policy
expression has two policy alternatives. The #secure2 policy expression has two policy alternatives. The
combination of these two policies is equivalent to Contoso’s secure policy in 2. Basic Concepts: Policy
Expression [p.4] and has four policy alternatives. In other words, the combination of two policies is the
cross product of alternatives in these two policies.

26

3.6 Combine Policies

Example 3-10. Effective Policy of the Endpoint Policy Subject in the Previous Example

<Policy>
 <All>
 <Policy>
 <mtom:OptimizedMimeSerialization wsp:Optional="true"/>
 <wsap:UsingAddressing/>
 </Policy>
 <Policy>
 <ExactlyOne>
 <sp:TransportBinding> …</sp:TransportBinding>
 <sp:AsymmetricBinding> …</sp:AsymmetricBinding >
 </ExactlyOne>
 </Policy>
 </All>
</Policy>

Of course, the above policy expression can be normalized. There are four policy alternatives in the normal
form. As we have seen in the policy data model, a policy is an unordered collection of policy alternatives.
That is, the order of policy alternatives is insignificant. Therefore, the order of combining these policy
expressions is insignificant.

3.7 Extensibility and Versioning

Web Services Policy language is an extensible language by design. The Policy , ExactlyOne , All
and PolicyReference elements are extensible. The Policy , ExactlyOne and All elements allow
child element and attribute extensibility. The PolicyReference element allows attribute extensibility.
Extensions must not use the policy language XML namespace name. A consuming processor processes
known attributes and elements, ignores unknown attributes and treats unknown elements as policy asser-
tions.

Web Services Policy language enables simple versioning practices that allow requesters to continue the
use of any older policy alternatives in a backward compatible manner. This allows service providers, like
Contoso, to deploy new behaviors using additional policy assertions without breaking compatibility with
clients that rely on any older policy alternatives.

The example below represents a Contoso version 1 policy expression. This expression requires the use of
addressing and transport-level security for protecting messages.

Example 3-11. Contoso’s Version 1 Policy Expression

<Policy>
 <ExactlyOne>
 <All>
 <wsap:UsingAddressing/>
 <sp:TransportBinding> …</sp:TransportBinding>
 </All>
 </ExactlyOne>
</Policy>

27

3.7 Extensibility and Versioning

Over time, Contoso adds support for advanced behaviors: requiring the use of addressing and
message-level security for protecting messages. They added this advanced support without breaking
compatibility with requesters that rely on addressing and transport-level security. The example below is
Contoso’s version 2 policy expression. In this version, Contoso’s adds a new policy alternative that
requires the use of addressing and message-level security. The clients that rely on addressing and trans-
port-level security may continue to interact with Contoso’s using the old policy alternative. Of course,
these clients have the option to migrate from using old policy alternatives to new policy alternatives.

Example 3-12. Contoso’s Version 2 Policy Expression

<Policy>
 <ExactlyOne>
 <All>
 <wsap:UsingAddressing/>
 <sp:TransportBinding> …</sp:TransportBinding>
 </All>
 <All> <!-- - - - - - - - - - - - - - - - NEW Policy Alternative -->
 <wsap:UsingAddressing/>
 <sp:AsymmetricBinding> …</sp: AsymmetricBinding >
 </All>
 </ExactlyOne>
</Policy>

When Contoso added support for advanced behaviors, they spent time to plan for the continued support for
existing clients, the smooth migration from using current to advanced behaviors, and the switch to use
only the advanced behaviors in the near future (i.e. sun-setting current behaviors). In this versioning
scenario, policy can be used to represent current and advanced behaviors in a non-disruptive manner: no
immediate changes to existing clients are required and these clients can smoothly migrate to new function-
ality when they choose to. This level of versioning support in policy enables the same class of versioning
best practices built into WSDL constructs such as service, port and binding.

Let us look at tooling for unknown policy assertions. As service providers, like Contoso, incrementally
deploy advanced behaviors, some requesters may not recognize these new policy assertions. As discussed
before, these requesters may continue to interact using old policy alternatives. New policy assertions will
emerge to represent new behaviors and slowly become part of everyday interoperable interaction between
requesters and providers. Today, most tools use a practical tolerant strategy to process new or unrecog-
nized policy assertions. These tools consume such unrecognized assertions and designate these for user
intervention. As you would recognize, there is nothing new in this practice. This is similar to how a proxy
generator that generates code from WSDL creates code for all the known WSDL constructs and allows
Web service developers to fill in code for custom or unknown constructs in the WSDL.

4. Advanced Concepts II: Policy Assertion Design
In the previous section, we covered in-depth materials for Web Services Policy implementers. This is the
second advanced section that walks through the dimensions of a policy assertion for assertion authors.
This section covers the following topics:

28

4. Advanced Concepts II: Policy Assertion Design

What is the role of policy assertions?

What are the parts of a policy assertion?

When to design policy assertions?

What are the guidelines for designing policy assertions?

What are the minimum requirements for describing policy assertions?

4.1 Role of Policy Assertions

As you have seen, Web Services Policy is a simple language that has four elements -Policy, All ,
ExactlyOne and PolicyReference - and one attribute - wsp:Optional . Policy is a flexible
language to represent consistent combinations of behaviors using policy operators: Policy, All and
ExactlyOne. Policy is an expressive language and capable of representing behaviors from a variety of
domains. Let us look for the key parts that unlock this potential.

Service providers combine behaviors for an interaction from domains such as messaging, security, reliabil-
ity and transactions. To enable clients to engage these behaviors, services require some way to advertise
these behaviors. Providers require machine readable metadata pieces that identify these behaviors. A
policy assertion is a machine-readable metadata piece that requires the use of a behavior identified by the
assertion. Web service developers can use policy-aware clients that recognize these assertions and engage
their corresponding behaviors automatically.

Policy assertions are the key parts and play a central role to unlock the potential offered by the Web
Services Policy language. Assertions are defined by product designers, protocol authors, protocol imple-
menters and Web service developers.

Policy assertion authors identify behaviors required for Web services interactions and represent these
behaviors as policy assertions. By designing policy assertions, assertion authors make a significant contri-
bution to automate Web services interactions and enable advanced behaviors.

4.2 Parts of a Policy Assertion

As we discussed, a policy assertion identifies a domain specific behavior or requirement or condition. A
policy assertion has a QName that identifies its behavior or requirement or condition. A policy assertion
may contain assertion parameters and a nested policy.

Let us look at the anatomy of a policy assertion from the security domain. The policy expression in the
diagram below uses the sp:IssuedToken policy assertion. This assertion illustrates the use of assertion
parameters and nested policy.

29

4.1 Role of Policy Assertions

Figure 4-1. sp:IssuedToken Policy Assertion

The sp:IssuedToken element is a policy assertion that identifies the use of a security token – such as
SAML token - issued by a third party for protecting messages. A policy assertion is an XML element. The
QName of this element represents the behavior identified by this policy assertion.

The sp:IssuedToken policy assertion has three parameters: @sp:IncludeToken , sp:Issuer
and sp:RequestSecurityTokenTemplate .

The sp:IncludeToken attribute is a parameter that contains information on whether a security token
should be included in messages or an external reference to the key of this security token should be used.
The sp:Issuer parameter is an endpoint reference to a security token issuer. The sp:RequestSecu-
rityTokenTemplate parameter contains the necessary information to request a security token from
the specified issuer. Parameters are the opaque payload of a Policy Assertion, carry useful information for
engaging the behavior described by an assertion and are preserved through policy processing such as
normalize, merge and intersection. requesters may use policy intersection to select a compatible policy

30

4.2 Parts of a Policy Assertion

alternative for an interaction. Assertion parameters do not affect the outcome of policy intersection.

For the sp:Issuer policy assertion parameter, the assertion author uses the natural XML structural rela-
tionships (the child elements and attributes) and encodes the relationship between an assertion and its
parameters in a machine readable form. Assertion parameters may be represented as child XML elements
or attributes of an assertion. The policy language allows assertion authors to strongly tie the relationship
between an assertion and its parameters using the natural XML structural relationships.

The sp:IssuedToken policy assertion has a nested policy expression. The sp:RequireInter-
nalReference element is a nested policy assertion of the sp:IssuedToken policy assertion. The
sp:RequireInternalReference assertion requires the use of an internal reference for referencing
the issued token. A nested policy assertion further qualifies a dependent behavior of its parent policy
assertion. As mentioned earlier, requesters may use policy intersection to select a compatible policy alter-
native for an interaction. Nested policy assertions affect the outcome of policy intersection.

The sp:IssuedToken security policy assertion identifies a visible domain specific behavior: the use of
a security token – such as SAML token - issued by a third party for protecting messages. This behavior is
relevant to a Web service interaction. For the sake of discussion, let us assume that Contoso requires the
use of a SAML token issued by a third party. Service providers, like Contoso, must convey this usage and
all the necessary information to obtain this security token for Web service developers. This is a key piece
of metadata for a successful interaction with Contoso’s Web services.

4.3 When to design policy assertions?

As we illustrated in the previous section, requiring the use of a security token issued by a third party is
represented as a policy assertion. In simple words, a policy assertion identifies a domain specific behavior:

That is a requirement

That is relevant to an interoperable Web service interaction

That is relevant to an interaction that involves two or more Web service participants

That applies to its associated policy subject such as service, endpoint, operation and message.

Given that interoperability and automation are the motivations, policy assertions that represent opt-in,
shared and visible behaviors are useful pieces of metadata. Such assertions enable tooling and improve
interoperability. The key to understanding when to design policy assertions is to have clarity on the char-
acteristics of a behavior represented by a useful policy assertion: opt-in, shared and visible.

4.3.1 Opt-in behavior

An opt-in behavior refers to a requirement that providers and requesters must deliberately choose to
engage for a successful web service interaction. Examples of such behaviors are the use of optimization,
message-level security, reliable messaging and atomic transaction. Policy assertions are not necessary to
interoperate on widespread assumed behaviors. An example of an assumed behavior is the use of UTF-8
or UTF-16 text encoding for XML messages.

31

4.3 When to design policy assertions?

4.3.2 Shared behavior

A shared behavior refers to a requirement that is relevant to an interoperable Web service interaction and
involves two or more participants. If an assertion only describes one participant’s behavior (non-shared
behavior) then the assertion is not relevant to an interoperable interaction. Non-shared behaviors do not
add any value for tooling or interoperability. An example of a non-shared behavior is the use of logging or
auditing by the provider.

requesters may use the policy intersection to select a compatible policy alternative for a Web service inter-
action. If an assertion only describes one participant’s behavior then this assertion will not be present in
the other participants’ policy and the policy intersection will unnecessarily produce false negatives.

4.3.3 Visible behavior

A visible behavior refers to a requirement that manifests on the wire. Web services provide interoperable
machine-to-machine interaction among disparate systems. Web service interoperability is the capability of
disparate systems to exchange data using common data formats and protocols such as messaging, security,
reliability and transaction. Such data formats and protocols manifest on the wire. Providers and requesters
only rely on these wire messages that conform to such formats and protocols for interoperability. If an
assertion describes a behavior that does not manifest on the wire then the assertion is not relevant to an
interoperable interaction.

For example, say an assertion describes the privacy notice information of a provider and there is an associ-
ated regulatory safeguard in place on the provider’s side. Such assertions may represent business or regu-
latory level metadata but do not add any value to interoperability.

If an assertion has no wire- or message-level visible behavior, then the interacting participants may require
some sort of additional non-repudiation mechanism to indicate compliance with the assertion. Introducing
an additional non-repudiation mechanism adds unnecessary complexity to processing a policy assertion.

4.4 Guidelines for Designing Assertions

The policy language allows assertion authors to invent their own XML dialects to represent policy asser-
tions. The policy language builds on natural XML nesting and leverages XML Schema validation. The
policy language relies only on the QName of the policy assertion XML element. Everything else is left for
the policy assertion authors to design. The policy language offers plenty of options to assertion authors
such as independent assertions, dependent assertions, nested policies and assertion parameters.

The description of a policy assertion should identify a single domain specific behavior in an objective
manner and answer the following questions:

What is the behavior? (In the previous section, we discussed the characteristics of a behavior repre-
sented by a useful policy assertion.)

What are the assertion parameters?

32

4.4 Guidelines for Designing Assertions

Are there any dependent behaviors, and how are they represented?

What is the assertion’s QName and XML information set representation?

What is the policy subject of this behavior?

What are the attachment points?

As you would have expected, the policy assertion design is more than a technical design. Given that inter-
operability and automation are the motivations, policy assertion design is a business process to reach
agreements with relevant stakeholders for interoperability and tooling. Setting aside the business aspects
of the design, the rest of this section walks through a few tradeoffs or dimensions to consider and provides
technical guidelines for designing policy assertions.

4.4.1 Optional Behaviors

A policy assertion identifies a domain specific behavior that is a requirement relevant to a Web Service
interaction. Policy assertions can be marked optional using the wsp:Optional attribute marker to repre-
sent behaviors that may be engaged (capabilities) for an interaction. It is important to note that behavior
(policy assertion) and optional representation (wsp:Optional attribute) are distinct ideas of the Web
Services Policy language. Conflating these distinct ideas unnecessarily disrupts scenarios that depend on
the policy intersection: if an assertion indicates an optional behavior and this assertion is not present in the
other participants’ policy then the policy intersection will unnecessarily produce false negatives.

Best practice: use the wsp:Optional attribute to indicate optional behaviors.

4.4.2 Assertion vs. assertion parameter

Policy assertion parameters are the opaque payload of an assertion. Parameters carry additional useful
information for engaging the behavior described by an assertion and are preserved through policy process-
ing such as normalize, merge and policy intersection. requesters may use policy intersection to select a
compatible policy alternative for an interaction. Assertion parameters do not affect the outcome of policy
intersection.

In the example below, sp:Body and sp:Header elements are the two assertion parameters of the
sp:SignedParts policy assertion (this assertion requires the parts of a message to be protected). These
two parameters identify the parts of a wire message that should be protected. These parameters carry addi-
tional useful information for engaging the behavior that is irrelevant to compatibility tests.

Example 4-1. Policy Assertion with Assertion Parameters

<Policy>
 <sp:SignedParts>
 <sp:Body />
 <sp:Header />
 </sp:SignedParts>
 …
</Policy>

33

4.4 Guidelines for Designing Assertions

Best practice: represent useful (or additional) information necessary for engaging the behavior represented
by a policy assertion as assertion parameters.

4.4.3 Leveraging Nested Policy

As we have seen before, a nested policy expression further qualifies the dependent behaviors of its parent
policy assertion. When we consider nested policy there is always two or more policy assertions involved.
The following design questions below can help you to determine when to use nested policy expressions:

Are these assertions designed for the same policy subject?

Do these assertions represent dependent behaviors?

If the answers are yes to both of these questions then leveraging nested policy expressions is a good idea.
Keep in mind that a nested policy expression participates in the policy intersection algorithm. If a
requester uses policy intersection to select a compatible policy alternative then the assertions in a nested
policy expression play a first class role in the outcome. There is one caveat to watch out for: policy asser-
tions with deeply nested policy can greatly increase the complexity of a policy and should be avoided
when they are not needed.

Best practice: represent dependent behaviors that apply to the same policy subject using nested policy
assertions.

4.4.4 Minimal approach

How big should an assertion be? How many assertion parameters should the assertion enumerate? How
many dependent behaviors should the assertion enumerate? It is always good to start with a simple
working policy assertion that allows extensibility. As your design work progresses, you may add more
parameters or nested policy assertions to meet your interoperability needs.

Best practice: start with a simple working assertion that allows extensibility.

4.4.5 QName and XML Information Set representation

As mentioned before, Web Services Policy language allows assertion authors to invent their own XML
dialects to represent policy assertions. The policy language relies only on the policy assertion XML
element QName. This QName is unique and identifies the behavior represented by a policy assertion.
Assertion authors have the option to represent an assertion parameter as a child element (by leveraging
natural XML nesting) or an attribute of an assertion. The general guidelines on when to use XML
elements versus attributes apply.

The syntax of an assertion can be represented using an XML outline (plus an XML schema document). If
the assertion has a nested policy expression then the assertion XML outline can enumerate the nested
assertions that are allowed.

Best practice: use a unique QName to identify the behavior and provide an XML outline (plus an XML
schema document) to specify the syntax of an assertion.

34

4.4 Guidelines for Designing Assertions

4.4.6 Policy subject and attachment points

A behavior identified by a policy assertion applies to the associated policy subject. If a policy assertion is
to be used with WSDL, policy assertion authors must specify a WSDL policy subject. What is the policy
subject of this behavior?

If the behavior applies to any message exchange using any of the endpoints offered by a service then
the subject is the service policy subject.

If the behavior applies to any message exchange made using an endpoint then the subject is the
endpoint policy subject.

If the behavior applies to any message exchange defined by an operation then the subject is the opera-
tion policy subject.

If the behavior applies to an input message then the subject is the message policy subject - similarly
for output and fault message policy subjects.

For a given WSDL policy subject, there may be several attachment points. For example, there are three
attachment points for the endpoint policy subject: the port , binding and portType element. Policy
assertion authors should identify the relevant attachment point when defining a new assertion. To deter-
mine the relevant attachment points, authors should consider the scope of the attachment point. For
example, an assertion should only be allowed in the portType element if the assertion reasonably
applies to any endpoint that ever references that portType . Most of the known policy assertions are
designed for the endpoint, operation or message policy subject. The commonly used attachment points for
these policy subjects are outlined in 3.5 Attaching Policy Expressions to WSDL [p.23] .

The service policy subject is a collection of endpoint policy subjects. The endpoint policy subject is a
collection of operation policy subjects and etc. As you can see, the WSDL policy subjects compose natu-
rally. It is quite tempting to associate the identified behavior to a broader policy subject than to a fine
granular policy subject. For instance, it is convenient to attach a supporting token assertion (defined by the
Web Services Security Policy specification) to an endpoint policy subject instead of a message policy
subject. For authoring convenience, an assertion author may allow the association of an assertion to multi-
ple policy subjects. If an assertion is allowed to be associated with multiple policy subjects then the asser-
tion author has the burden to describe the semantics of multiple instances of the same assertion attached to
multiple policy subjects at the same time. The best practice is to choose the most granular policy subject
that the behavior applies to.

Best practice: specify a policy subject, choose the most granular policy subject that the behavior applies to
and specify a preferred attachment point.

4.4.7 Versioning behaviors

Over time, there may be multiple equivalent behaviors emerging in the Web Service interaction space.
Examples of such multiple equivalent behaviors are WSS: SOAP Message Security 1.0 vs. 1.1 and
WS-Addressing August 2004 version vs. WS-Addressing W3C Recommendation. These equivalent
behaviors are mutually exclusive for an interaction. Such equivalent behaviors can be modeled as indepen-
dent assertions. The policy expression in the example below requires the use of WSS: SOAP Message

35

4.4 Guidelines for Designing Assertions

Security 1.0.

Example 4-2. Message-level Security and WSS: SOAP Message Security 1.0

<Policy>
 <sp:Wss10> …</sp:Wss10>
</Policy>

The policy expression in the example below requires the use of WSS: SOAP Message Security 1.1. These
are multiple equivalent behaviors and are represented using distinct policy assertions.

Example 4-3. Message-level Security and WSS: SOAP Message Security 1.1

<Policy>
 <sp:Wss11> …</sp:Wss11>
</Policy>

Best practice: use independent assertions for modeling multiple equivalent behaviors.

4.4.8 Versioning Policy Language

Editorial note

The WG is contemplating moving some or all of this material into a non-normative appendix of the
framework or attachment document. User feedback is solicited

Over time, the Policy WG or third parties can version or extend the Policy Language with new or modified
constructs. These constructs may be compatible or incompatible with previous versions. Some of the
possible new constructs that have been mentioned previously are: new operators, operator cardinality,
policy identification, compact syntax, Policy Inclusion, security, referencing, attachment points, alterna-
tive priority, effective dating, negotiation.

WS-Policy provides extensibility points on 6 elements with a combination of attribute and/or element
extensibility. The possible extensibility points with their current extensibility - including some outstanding
issues related to extensibility - are:

1. Policy: element from ##other namespace and any attribute

2. PolicyReference: any attribute and a proposal to add any element ExactlyOne, All: element from
##other namespace, no attribute extensibility

3. PolicyAttachment: element from ##other namespace and any attribute

4. AppliesTo: any element and any attribute

36

4.4 Guidelines for Designing Assertions

4.4.8.1 Policy Framework

WS-Policy Framework 1.5 specifies that any element that is not known inside a Policy, ExactlyOne or All
will be treated as an assertion. The default value for wsp:Optional="false", which means after normaliza-
tion it will be inside an ExactlyOne/All operator.

Let us show an example with a hypothetical new operator that is a Choice with a minOccurs and a maxOc-
curs attributes, ala XSD:Choice, in a new namespace. We use the wsp16 prefix to indicate a hypothetical
Policy Language 1.6 that is intended to be compatible with Policy Language 1.5:

Example 4-4. Policy containing 1.5 and 1.6 Policies.

<wsp:Policy>
 <wsp:ExactlyOne>
 <wsp16:Choice wsp16:minOccurs="1" wsp16:maxOccurs="2">
 ...
 </wsp16:Choice>
 <wsp:All>
 ...
 </wsp:All>
 </wsp:ExactlyOne>
</wsp:Policy>

The normalization rule for wsp:Optional="false" would be applied to the wsp16:Choice, yielding the
following expression:

Example 4-5. Normalized Policy containing 1.5 and 1.6 Policies

<wsp:Policy>
 <wsp:ExactlyOne>
 <wsp:ExactlyOne>
 <wsp:All>
 <wsp16:Choice wsp16:minOccurs="1" wsp16:maxOccurs="2">
 ...
 </wsp16:Choice>
 </wsp:All>
 </wsp:ExactlyOne>
 <wsp:All>
 ...
 </wsp:All>
 </wsp:ExactlyOne>
</wsp:Policy>

Alternatively, the wsp:Optional could be set to "true" on the choice, as in:

Example 4-6. Policy containing explicit wsp:Optional="true"

<wsp:Policy>
 <wsp16:Choice wsp16:minOccurs="1" wsp16:maxOccurs="2"
wsp:Optional="true">
 ...
 </wsp16:Choice>
</wsp:Policy>

37

4.4 Guidelines for Designing Assertions

The normalized form will be:

Example 4-7. Normalized policy

<wsp:Policy>
 <wsp:ExactlyOne>
 <wsp:All>
 <wsp16:Choice wsp16:minOccurs="1" wsp16:maxOccurs="2">
 ...
 </wsp16:Choice>
 </wsp:All>
 <wsp:All/>
 </wsp:ExactlyOne>
</wsp:Policy>

Because the wsp16:Choice alternative isn’t understood in either normalized form, it will not be chosen as
one of the alternatives and will effectively be ignored. Policy intersection may be more difficult with such
compatible extensions. For example, the previous will "look" like it has a wsp16:Choice typed assertion.
To determine intersection with a Policy that does not have the wsp16:Choice type assertion, domain
specific processing would have to be done. However, there is an alternative that does not have the
wsp16:Choice, so intersection would yield the expected result.

Note: it is possible to add new names to the existing namespace, such as:

Example 4-8. Policy containing 1.5 and 1.6 Policies all in the 1.5 namespace

<wsp:Policy>
 <wsp:ExactlyOne>
 <wsp:Choice wsp:minOccurs="1" wsp:maxOccurs="2">
 ...
 </wsp:Choice>
 <wsp:All>
 ...
 </wsp:All>
 </wsp:ExactlyOne>
</wsp:Policy>

Notice that using a new namespace can result in backwards and forwards compatibility if normalization
results in an optional alternative.

Best practice: insert new elements in an optional alternative or mark with wsp:Optional="true".

Incompatible versions of the Policy language may be indicated by a new namespace name for at least the
new and/or incompatible elements or attributes. Imagine that the Choice operator is required by a future
version of Policy, then there will be a new namespace for the Policy element. We use the wsp20 prefix to
indicate a hypothetical Policy Language 2.0 that is intended to be incompatible with Policy Language 1.5:

Example 4-9. Policy containing 2.0 only Policies.

38

4.4 Guidelines for Designing Assertions

<wsp20:Policy>
 <wsp20:ExactlyOne>
 <wsp20:Choice wsp:minOccurs="1" wsp:maxOccurs="2">
 ...
 </wsp20:Choice>
 ...
 </wsp20:ExactlyOne>
</wsp20:Policy>

The new Policy operator could be embedded inside an existing Policy element:

Example 4-10. Policy containing 2.0 (incompatible with 1.5) Policies embedded in wsp 1.5 Policy.

<wsp:Policy>
 <wsp20:Choice wsp:minOccurs="1" wsp:maxOccurs="2">
 ...
 </wsp20:Choice>
 ...
</wsp20:Policy>

This will be treated as an Assertion for normalization and intersection computation. This will result in only
one alternative that requires the wsp20:Choice, the intended behaviour for incompatible changes.

Best practice: use a new namespace for new incompatible construct and insert inside either: new Policy
element OR existing All for future incompatible policy extensions.

A future version of WS-Policy could support the current operators in the existing namespace, such as:

Example 4-11. Policy containing 1.5 operator in 2.0 Policy

<wsp20:Policy>
 <wsp:ExactlyOne>
 <wsp20:Choice wsp:minOccurs="1" wsp:maxOccurs="2">
 ...
 </wsp20:Choice>
 ...
 </wsp:ExactlyOne>
</wsp20:Policy>

It is difficult to predict whether this functionality would be useful. The future version of WS-Policy
doesn’t appear to be precluded from doing this.

4.4.8.2 Policy Attachment

Policy attachment provides WSDL 1.1 and UDDI attachment points. It appears that exchange of Policy
will be in the context of WSDL or UDDI. WRT WSDL, the policy model is an extension of the WSDL
definition. As such, it is likely that future versions of Policy will be exchanged as multiple Policy expres-
sions within a WSDL. One alternative is that there would be a separate WSDL for each version of Policy.
The problem of how to specify and query for compound documents is very difficult, so it is more likely
that each version of Policy will be exchanged within a WSDL.

39

4.4 Guidelines for Designing Assertions

We show an example of a new version of policy that allows QName reference to Policies in the PolicyRef-
erence:

Example 4-12. WSDL containing 1.5 and 2.0 (compatible with 2.0) Policy References.

<wsdl11:binding name="StockQuoteSoapBinding" type="fab:Quote" >
 <wsoap12:binding style="document"
 transport="http://schemas.xmlsoap.org/soap/http" />
 <wsp:Policy>
 <wsp:ExactlyOne>
 <wsp:All>
 <wsp:PolicyReference URI="#RmPolicy"
wsdl11:required="true" />
 <wsp:PolicyReference URI="#X509EndpointPolicy"
wsdl11:required="true" />
 </wsp:All>
 <wsp:All>
 <wsp:PolicyReferenceByQName ref="rmp:RMAssertion"
wsdl11:required="true" />
 <wsp:PolicyReferenceByQName ref="sp:AsymmetricBinding"
wsdl11:required="true" />
 </wsp:All>
 </wsp:ExactlyOne>
 </wsp:Policy>
 <wsdl11:operation name="GetLastTradePrice" >
 ...

The PolicyReference element is attribute extensible. One example of an addition is a list of backup URIs
for the PolicyReference:

Example 4-13. WSDL containing 1.5 and 2.0 (compatible with 2.0) Policy References.

<wsdl11:binding name="StockQuoteSoapBinding" type="fab:Quote" >
 <wsoap12:binding style="document"
 transport="http://schemas.xmlsoap.org/soap/http" />
 <wsp:Policy>
 <wsp:ExactlyOne>
 <wsp:All>
 <wsp:PolicyReference URI="" wsp16:alternateURIs="URI*"
wsdl11:required="true" />
 <wsp:PolicyReference URI="" wsp16:alternateURIs="URI*"
wsdl11:required="true" />
 </wsp:All>
 </wsp:ExactlyOne>
 </wsp:Policy>
 <wsdl11:operation name="GetLastTradePrice" >
 ...

The policy framework specification says that any unknown attributes are ignored. A Policy 1.5 processor
will not understand the wsp16:alternateURI attribute, it will be ignored. A Policy 1.6 processor will under-
stand the alternate URIs so it won’t be ignored.

40

4.4 Guidelines for Designing Assertions

PolicyAttachment and AppliesTo also have extensibility points. We choose not to illustrate these at this
time.

4.5 Describing Policy Assertions

Thus far, we walked through the dimensions of a policy assertion and guidelines for authoring policy
assertions. Let us look at what are the minimum requirements for describing policy assertions in specifica-
tions:

1. Description must clearly and completely specify the syntax (plus an XML Schema document) and
semantics of a policy assertion.

2. If there is a nested policy expression, description must declare it and enumerate the nested policy
assertions that are allowed.

3. A policy alternative may contain multiple instances of the same policy assertion. Description must
specify the semantics of parameters and nested policy (if any) when there are multiple instances of a
policy assertion in the same policy alternative.

4. If a policy assertion is to be used with WSDL, description must specify a WSDL policy subject –
such as service, endpoint, operation and message.

5. Conclusion
Service providers use Web Services Policy to represent combinations of behaviors (capabilities and
requirements). Web service developers use policy-aware clients that understand policy expressions and
engage the behaviors represented by providers automatically. These behaviors may include security, relia-
bility, transaction, message optimization, etc. Web Services Policy is a simple language, hides complexity
from developers, automates Web service interactions, and enables secure, reliable and transacted Web
Services.

A. Security Considerations
Security considerations are discussed in the Web Services Policy Framework [p.44] document.

B. XML Namespaces
The table below lists XML Namespaces that are used in this document. The choice of any namespace
prefix is arbitrary and not semantically significant.

41

5. Conclusion

Table B-1. Prefixes and XML Namespaces used in this specification.

Prefix XML Namespace Specifications

mtom http://schemas.xmlsoap.org/ws/2004/09/policy/optimizedmimeserialization [WS-OptimizedSerializationPolicy]

soap http://www.w3.org/2003/05/soap-envelope
[SOAP 1.2 Messaging Framework
[p.43]]

sp http://schemas.xmlsoap.org/ws/2005/07/securitypolicy [WS-SecurityPolicy [p.44]]

wsa http://www.w3.org/2005/08/addressing [WS-Addressing Core [p.43]]

wsap http://www.w3.org/2006/05/addressing/wsdl
[WS-Addressing WSDL Binding
[p.43]]

wsdl http://schemas.xmlsoap.org/wsdl/ [WSDL 1.1 [p.44]]

wsp http://www.w3.org/2006/07/ws-policy
[Web Services Policy Framework
[p.44] , Web Services Policy
Attachment [p.44]]

wss http://docs.oasis-open.org/wss/2004/01/oasis-200401-wss-wssecurity-secext-1.0.xsd [WS-Security 2004 [p.44]]

wst http://schemas.xmlsoap.org/ws/2005/02/trust [WS-Trust [p.44]]

wsu http://docs.oasis-open.org/wss/2004/01/oasis-200401-wss-wssecurity-utility-1.0.xsd [WS-Security 2004 [p.44]]

C. References
[MTOM]

SOAP Message Transmission Optimization Mechanism, M. Gudgin, N. Mendelsohn, M. Nottingham
and H. Ruellan, Editors. World Wide Web Consortium, 25 January 2005. This version of the SOAP
Message Transmission Optimization Mechanism Recommendation is
http://www.w3.org/TR/2005/REC-soap12-mtom-20050125/. The latest version of SOAP Message
Transmission Optimization Mechanism is available at http://www.w3.org/TR/soap12-mtom/.

[SOAP 1.1]
Simple Object Access Protocol (SOAP) 1.1, D. Box, et al, Editors. World Wide Web Consortium, 8
May 2000. Available at http://www.w3.org/TR/2000/NOTE-SOAP-20000508/.

42

C. References

http://131.107.72.15/MTOM_Service_Indigo/
http://www.w3.org/TR/2005/REC-soap12-mtom-20050125/
http://www.w3.org/TR/soap12-mtom/
http://www.w3.org/TR/soap12-mtom/
http://www.w3.org/TR/2000/NOTE-SOAP-20000508/

[SOAP 1.2 Messaging Framework]
SOAP Version 1.2 Part 1: Messaging Framework, M. Gudgin, M. Hadley, N. Mendelsohn, J-J.
Moreau, H. Frystyk Nielsen, Editors. World Wide Web Consortium, 24 June 2003. This version of
the SOAP Version 1.2 Part 1: Messaging Framework Recommendation is
http://www.w3.org/TR/2003/REC-soap12-part1-20030624/. The latest version of SOAP Version 1.2
Part 1: Messaging Framework is available at http://www.w3.org/TR/soap12-part1/.

[XOP]
XML-binary Optimized Packaging, M. Gudgin, N. Mendelsohn, M. Nottingham and H. Ruellan,
Editors. World Wide Web Consortium, 25 January 2005. This version of the XML-binary Optimized
Packaging Recommendation is http://www.w3.org/TR/2005/REC-xop10-20050125/. The latest
version of XML-binary Optimized Packaging is available at http://www.w3.org/TR/xop10/.

[WS-Addressing Core]
Web Services Addressing 1.0 - Core, M. Gudgin, M. Hadley, and T. Rogers, Editors. World Wide
Web Consortium, 9 May 2006. This version of the Web Services Addressing 1.0 - Core Recommen-
dation is http://www.w3.org/TR/2006/REC-ws-addr-core-20060509/. The latest version of Web
Services Addressing 1.0 - Core is available at http://www.w3.org/TR/ws-addr-core.

[WS-Addressing WSDL Binding]
Web Services Addressing 1.0 - WSDL Binding, M. Gudgin, M. Hadley, T. Rogers and Ü. Yalçinalp,
Editors. World Wide Web Consortium, 29 May 2006. This version of the Web Services Addressing
1.0 - WSDL Binding is http://www.w3.org/TR/2006/CR-ws-addr-wsdl-20060529/. The latest version
of Web Services Addressing 1.0 - WSDL Binding is available at
http://www.w3.org/TR/ws-addr-wsdl.

[Web Services Atomic Transaction]
Web Services Atomic Transaction, L. P. Cabrera, et al, Authors. Arjuna Technologies, Inc., BEA
Systems, Inc., Hitachi Software, Inc., IONA Technologies, Inc., International Business Machines
Corporation, and Microsoft Corporation, February 2005. Available at
http://schemas.xmlsoap.org/ws/2004/10/wsat/.

[Web Services Business Activity Framework]
Web Services Business Activity Framework, L. P. Cabrera, et al, Authors. Arjuna Technologies, Inc.,
BEA Systems, Inc., Hitachi Software, Inc., IONA Technologies, Inc., International Business
Machines Corporation, and Microsoft Corporation, February 2005. Available at
http://schemas.xmlsoap.org/ws/2004/10/wsba/.

[Devices Profile for Web Services]
Devices Profile for Web Services, S. Chan, et al, Authors. Intel Corporation, Lexmark, Inc., Microsoft
Corporation, and Richo Software, Inc., February 2006. Available at
http://schemas.xmlsoap.org/ws/2006/02/devprof/.

[A Technical Reference for Windows CardSpace]
A Technical Reference for Windows CardSpace, Authors, Microsoft Corporation, August 2005.
Available at http://download.microsoft.com/down-
load/5/4/0/54091e0b-464c-4961-a934-d47f91b66228/infocard-techref-beta2-published.pdf.

[WS-MetadataExchange]
Web Services Metadata Exchange (WS-MetadataExchange), K. Ballinger, et al, Authors. BEA
Systems Inc., Computer Associates International, Inc., International Business Machines Corporation,
Microsoft Corporation, Inc., SAP AG, Sun Microsystems, and webMethods, September 2004. Avail-
able at http://schemas.xmlsoap.org/ws/2004/09/mex/

43

C. References

http://www.w3.org/TR/2003/REC-soap12-part1-20030624/
http://www.w3.org/TR/soap12-part1/
http://www.w3.org/TR/soap12-part1/
http://www.w3.org/TR/2005/REC-xop10-20050125/
http://www.w3.org/TR/xop10/
http://www.w3.org/TR/xop10/
http://www.w3.org/TR/2006/REC-ws-addr-core-20060509/
http://www.w3.org/TR/ws-addr-core/
http://www.w3.org/TR/ws-addr-core/
http://www.w3.org/TR/2006/CR-ws-addr-wsdl-20060529/
http://www.w3.org/TR/ws-addr-wsdl
http://www.w3.org/TR/ws-addr-wsdl
http://schemas.xmlsoap.org/ws/2004/10/wsat/
http://schemas.xmlsoap.org/ws/2004/10/wsba/
http://schemas.xmlsoap.org/ws/2006/02/devprof/
http://download.microsoft.com/download/5/4/0/54091e0b-464c-4961-a934-d47f91b66228/infocard-techref-beta2-published.pdf
http://schemas.xmlsoap.org/ws/2004/09/mex/

[WSDL 1.1]
Web Services Description Language (WSDL) 1.1, E. Christensen, et al, Authors. World Wide Web
Consortium, March 2001. Available at http://www.w3.org/TR/2001/NOTE-wsdl-20010315.

[WSDL 2.0 Core Language]
Web Services Description Language (WSDL) Version 2.0 Part 1: Core Language, R. Chinnici, J. J.
Moreau, A. Ryman, S. Weerawarana, Editors. World Wide Web Consortium, 27 March 2006. This
version of the WSDL 2.0 specification is http://www.w3.org/TR/2006/CR-wsdl20-20060327. The
latest version of WSDL 2.0 is available at http://www.w3.org/TR/wsdl20.

[Web Services Policy Framework]
Web Services Policy 1.5 - Framework, A. S. Vedamuthu, D. Orchard, M. Hondo, T. Boubez and P.
Yendluri, Editors. World Wide Web Consortium, 18, October 2006. This version of the Web Services
Policy 1.5 - Framework specification is at http://www.w3.org/TR/2006/WD-ws-policy-20060927/ .
The latest version of Web Services Policy 1.5 - Framework is available at
http://www.w3.org/TR/ws-policy/.

[Web Services Policy Attachment]
Web Services Policy 1.5 - Attachment, A. S. Vedamuthu, D. Orchard, M. Hondo, T. Boubez and P.
Yendluri, Editors. World Wide Web Consortium, 18, October 2006. This version of the Web Services
Policy 1.5 - Attachment specification is at
http://www.w3.org/TR/2006/WD-ws-policy-attach-20060927/ . The latest version of Web Services
Policy 1.5 - Attachment is available at http://www.w3.org/TR/ws-policy-attach/.

[Web Services Reliable Messaging Policy]
Web Services Reliable Messaging Policy, S. Bates, et al, Authors. BEA Systems, Inc., International
Business Machines Corporation, Microsoft Corporation, and TIBCO Software Inc., February 2005.
Available at http://schemas.xmlsoap.org/ws/2005/02/rm/policy/.

[WS-Security 2004]
Web Services Security: SOAP Message Security 1.0, A. Nadalin, C. Kaler, P. Hallam-Baker and R.
Monzillo, Editors. Organization for the Advancement of Structured Information Standards, March
2004. Available at http://docs.oasis-open.org/wss/2004/01/oasis-200401-wss-soap-message-secu-
rity-1.0.pdf.

[WS-SecurityPolicy]
WS-SecurityPolicy v1.0, A. Nadalin, M. Gudgin, A. Barbir, and H. Granqvist, Editors. Organization
for the Advancement of Structured Information Standards, 8 December 2005. Available at
http://www.oasis-open.org/committees/download.php/15979/oasis-wssx-ws-securitypolicy-1.0.pdf.

[WS-Trust]
Web Services Trust Language (WS-Trust), S. Anderson, et al, Authors. Actional Corporation, BEA
Systems, Inc., Computer Associates International, Inc., International Business Machines Corporation,
Layer 7 Technologies, Microsoft Corporation, Oblix Inc., OpenNetwork Technologies Inc., Ping
Identity Corporation, Reactivity Inc., RSA Security Inc., and VeriSign Inc., February 2005. Available
at http://schemas.xmlsoap.org/ws/2005/02/trust.

D. Acknowledgements (Non-Normative)
This document is the work of the W3C Web Services Policy Working Group.

44

D. Acknowledgements (Non-Normative)

http://www.w3.org/TR/2001/NOTE-wsdl-20010315
http://www.w3.org/TR/2006/CR-wsdl20-20060327/
http://www.w3.org/TR/wsdl20/
http://www.w3.org/TR/2006/WD-ws-policy-20060927/
http://www.w3.org/TR/ws-policy/
http://www.w3.org/TR/2006/WD-ws-policy-attach-20060927/
http://www.w3.org/TR/ws-policy-attach/
http://www.w3.org/TR/ws-policy-attach/
http://schemas.xmlsoap.org/ws/2005/02/rm/policy/
http://docs.oasis-open.org/wss/2004/01/oasis-200401-wss-soap-message-security-1.0.pdf
http://www.oasis-open.org/committees/download.php/15979/oasis-wssx-ws-securitypolicy-1.0.pdf
http://schemas.xmlsoap.org/ws/2005/02/trust
http://www.w3.org/2002/ws/policy/

Members of the Working Group are (at the time of writing, and by alphabetical order): Dimitar Angelov
(SAP AG), Abbie Barbir (Nortel Networks), Charlton Barreto (Adobe Systems Inc.), Sergey Beryozkin
(IONA Technologies, Inc.), Vladislav Bezrukov (SAP AG), Toufic Boubez (Layer 7 Technologies), Paul
Cotton (Microsoft Corporation), Jeffrey Crump (Sonic Software), Glen Daniels (Sonic Software), Ruchith
Fernando (WSO2), Christopher Ferris (IBM Corporation), William Henry (IONA Technologies, Inc.),
Frederick Hirsch (Nokia), Maryann Hondo (IBM Corporation), Tom Jordahl (Adobe Systems Inc.),
Philippe Le Hégaret (W3C/MIT), Jong Lee (BEA Systems, Inc.), Mark Little (JBoss Inc.), Ashok Malho-
tra (Oracle Corporation), Monica Martin (Sun Microsystems, Inc.), Jeff Mischkinsky (Oracle Corpora-
tion), Dale Moberg (Cyclone Commerce, Inc.), Anthony Nadalin (IBM Corporation), David Orchard
(BEA Systems, Inc.), Fabian Ritzmann (Sun Microsystems, Inc.), Daniel Roth (Microsoft Corporation),
Sanka Samaranayake (WSO2), Felix Sasaki (W3C/Keio), Skip Snow (Citigroup), Yakov Sverdlov
(Computer Associates), Mark Temple-Raston (Citigroup), Asir Vedamuthu (Microsoft Corporation),
Sanjiva Weerawarana (WSO2), Ümit Yalçinalp (SAP AG), Prasad Yendluri (webMethods, Inc.).

Previous members of the Working Group were: Bijan Parsia (University of Manchester), Seumas Soltysik
(IONA Technologies, Inc.)

The people who have contributed to discussions on public-ws-policy@w3.org are also gratefully acknowl-
edged.

E. Changes in this Version of the Document (Non-Normative)
A list of substantive changes since the previous publication is below:

Replaced URI with IRI.

Added a new section - Versioning Policy Language.

Moved ’Security Considerations’ section to the Web Services Policy 1.5 - Framework.

F. Web Services Policy 1.5 - Primer Change Log (Non-Norma-
tive)

45

E. Changes in this Version of the Document (Non-Normative)

http://lists.w3.org/Archives/Public/public-ws-policy/

Date Author Description

20060816 ASV
Created first draft per action item 2 from the Austin F2F. This draft is based on a
contribution from Microsoft.

20060829 ASV Implemented the resolution for issue 3561: replaced URI with IRI.

20060919 DBO Implemented the action 26 to add versioning material to primer.

20060924 TIB
Implemented the editorial action 35 to move the Security Considerations section to
the Framework document.

20060924 TIB
Implemented the editorial action 36 to insert a reference to the Security Considera-
tions section from the Framework document.

20060926 PY Made a first pass at the changes to address issues reported by Paul Cotton.

20060928 PY
Completed making remaining changes to address issues reported by Paul Cotton.
Fixing up the Acknowledgements is pending

46

F. Web Services Policy 1.5 - Primer Change Log (Non-Normative)

http://www.w3.org/2006/07/12-ws-policy-minutes.html#action02
http://lists.w3.org/Archives/Public/public-ws-policy/2006Jul/0001.html
http://www.w3.org/2006/08/23-ws-policy-minutes.html#action06
http://www.w3.org/Bugs/Public/show_bug.cgi?id=3561
http://www.w3.org/2005/06/tracker/wspolicyeds/actions/26
http://www.w3.org/2005/06/tracker/wspolicyeds/actions/35
http://www.w3.org/2005/06/tracker/wspolicyeds/actions/36
http://lists.w3.org/Archives/Public/public-ws-policy/2006Sep/0165.html
http://lists.w3.org/Archives/Public/public-ws-policy/2006Sep/0165.html

	Web Services Policy 1.5 - Primer
	W3C Working Draft 18 October 2006
	Abstract
	Status of this Document
	Table of Contents
	Appendices

	1. Introduction
	2. Basic Concepts: Policy Expression
	2.1 Web Services Policy
	2.2 Simple Message
	2.3 Secure Message
	2.4 Other Assertions
	2.5 Combining Policy Assertions
	2.6 Optional Policy Assertion
	2.7 Nested Policy Expressions
	2.8 Referencing Policy Expressions
	2.9 Attaching Policy Expressions to WSDL
	2.10 Policy Automates Web Services Interaction

	3. Advanced Concepts I: Policy Expression
	3.1 Policy Expression
	3.2 Normal Form for Policy Expressions
	3.3 Policy Data Model
	3.4 Compatible Policies
	3.5 Attaching Policy Expressions to WSDL
	3.6 Combine Policies
	3.7 Extensibility and Versioning

	4. Advanced Concepts II: Policy Assertion Design
	4.1 Role of Policy Assertions
	4.2 Parts of a Policy Assertion
	4.3 When to design policy assertions?
	4.3.1 Opt-in behavior
	4.3.2 Shared behavior
	4.3.3 Visible behavior

	4.4 Guidelines for Designing Assertions
	4.4.1 Optional Behaviors
	4.4.2 Assertion vs. assertion parameter
	4.4.3 Leveraging Nested Policy
	4.4.4 Minimal approach
	4.4.5 QName and XML Information Set representation
	4.4.6 Policy subject and attachment points
	4.4.7 Versioning behaviors
	4.4.8 Versioning Policy Language
	4.4.8.1 Policy Framework
	4.4.8.2 Policy Attachment

	4.5 Describing Policy Assertions

	5. Conclusion
	A. Security Considerations
	B. XML Namespaces
	C. References
	D. Acknowledgements †Non-Normative‡
	E. Changes in this Version of the Document †Non-Normative‡
	F. Web Services Policy 1.5 - Primer Change Log †Non-Normative‡

