
Ram Soma2, Amol Bakshi1, Kanwal Gupta3,

Will Da Sie2, Viktor Prasanna1

1University of Southern California, Los Angeles
2Chevron Corp.
3Avanade Inc.

Design and Implementation of a

Semantic Web Solution for Real-time

Reservoir Management

About CiSoft

• USC-Chevron Center of Excellence for Research and Academic

Training on Interactive Smart Oilfield Technologies

• Established: December 2003

• Disciplines: Petroleum Engineering, Chemical Engineering, Material

Science, Physics, Computer Science, Electrical Engineering, Industrial

Engineering

• MS Degree in Petroleum Engineering with emphasis on Smart Oilfield

Technologies (SOFT)

• Integrated Asset Management

• Well Productivity Improvement

• Robotics and Artificial Intelligence

• Embedded and Networked Systems

• Reservoir Management

• Data Management Tools

• Immersive Visualization

RESEARCH AREAS

http://cisoft.usc.edu

http://cisoft.usc.edu/

Outline

• Integrated Asset Management

– Objectives

– Role of semantic web

– Software development methodology

• IAM Ontology

– Ontology design

– Change management and dirty queries

• Remarks

– Lessons learnt

– Areas of interest

Integrated Asset Management (IAM)

• What is IAM?

– A comprehensive transformation approach to

integrated oilfield operations

– A software application that can help asset team

members simulate decisions before making them

• Objectives

– Increase integration between different functions

– Enable asset level “what if” scenarios

– Create a knowledge base of activities and decisions

– Reduce risk and uncertainty in decision making

• Challenges

– Data silos are not interoperable

– Data is semi-structured

– Multiple organizations and classes of users
4

What IAM provides to users

• Efficient access to data and information

– Reduces time spent looking for data

– Answers complex queries across semi-structured

data sets

• Consistent view of information

– Reconciles different views of the same information

– Creates shared “situational awareness” of the asset

• Context of information creation and usage

– Leads to more meaningful interpretation of data

– Acts as organizational memory for the workflow

• Non-functional: Non-disruptive, extensible,

scalable, usable, etc.

5

The IAM “Metacatalog”

• Problem

– Simulation models embody different realizations of

uncertainty and development strategies for an asset

– Models are created by different user groups at different

times; it is difficult to maintain consistency of assumptions

– No intuitive search functionality available to domain

experts (“Show me most recently history matched model”)

• Solution: The IAM Metacatalog

– Metadata repository at the core of the IAM application

– Focus on answering “What does the data mean”? (vs.

“How do I access the data”)

– Key parameters and assumptions from various models are

extracted and stored in the metacatalog

– Also stores relationships between data objects and their

provenance

Why Semantic Web Technologies

• Expressivity and richness of data model

• Organic growth capability for domain

models/knowledge

• Inferencing and Rule Based Reasoning

• Flexibility of querying

• Ease of domain expert to understand and

contribute to domain models

• Standards based (No vendor lock-in)

• Promoted by W3C

7

IAM R&D Timeline

Populating the Metacatalog

• Most of the metadata is captured offline

• Metadata extraction by custom built parsers

IAM UI/
Agent

OWL
Inferencing

Upload to
database

Simulation
cases

Extract
Information

IAM
Application IAM KB

Simulation model
repositories

Example 1: Browse And Search

Provenance and

metadata info for

IAM data objects

Search based on metadata

Data objects

Example 2: Comparing Assumptions

Comparing a key assumption made in two

simulation cases

OOIP

Region

Names

Software Development Methodology

• Agile development using Scrum

– Iterative software development in “Sprints”

– Close collaboration with customer

• Reviews/demos after each sprint

• Flexible prioritization at sprint boundaries

• “Product Owner” role represents the stakeholders

– Less focus on formal documentation

Phases

• Development in sprints

Requirements
Ontology Spec/

Refactoring
Review

Application

Dev

• Observation: Ontology frequently modified
– Techniques for change management make methodology more

successful

Planning

Miscellaneous

• Addressed key risks of an OWL-based solution

– Performance - Benchmarking

– Limited tool support – Web service interfaces for KB

– Ongoing evaluation of alternatives

• Tech transfer to software developers

– Code and documentation

– Demos and training

• Development

– Ontology design was done with the assistance of

domain experts and end users

– CiSoft researcher acting as “Product Owner” for

Scrum team moved research into deployment

Outline

• Integrated Asset Management

– Objectives

– Role of semantic web

– Software development methodology

• IAM Ontology

– Ontology design

– Change management and dirty queries

• Remarks

– Lessons learnt

– Areas of interest

Ontology Design

• Ontology design divided into three levels to improve

modularity

• Domain independent/Upper ontologies

– Concepts common to all ontologies like time, units etc.

• Domain ontology

– Model of the elements in the asset

– Uses elements from upper ontologies

• Application specific ontologies:

– Elements specific to a given application or workflow

– Uses elements from upper and domain ontologies

Domain Ontology

Application

Specific

 Ontologies

MDC DSE Events

Tool specific

Ontologies

IAM Ontologies: Domain Ontology

IAM Ontologies: Metadata ontology

Metadata for
data objects

Entities from
domain
ontology

Implementation

• OWL data store + SPARQL querying

• Current implementation uses Jena OWL API

– Two reasoners

• Rule based reasoner (Jena)

• Tableaux reasoner (Pellet)

– OWL data stored in Jena RDBMS, file system

• Web service API to abstract data store (Apache

Axis2)

• Various applications that use MDC

Supporting Iterative Development

• Ontologies are modified in every sprint

Demo/

Feedback

Requirements Ontology Spec Review
Application

Dev
Planning

Demo/

Feedback

Requirements Ontology Spec Review
Application

Dev
Planning

Demo/

Feedback

Change Management Problem

Ontology

O

Message schemas

X

SPARQL QUERIES

Q

Knowledge Base

KB

Ontology

O’

Message schemas

X’

SPARQL QUERIES

Q’

Knowledge Base

KB’

ΔO

Code

C

Code

C’

ΔC

Detect dirty queries that are invalidated when an ontology is modified

ΔK

ΔM

ΔQ

Space of RDF graphsOWL graphs

Dirty Queries

WFT,OWL

Q2

Q1

Dirty

WF’TOWL

EXTT’(Q) ∩ (WF’ T,OWL\ WFT,OWL) != Φ

V EXTT(Q) ∩ (WFT,OWL\ WF’ T,OWL) != Φ

Change handling

• Detect ontology changes

• Evaluate Query, EXT(Q)

• Compute the impact/semantics of changes,

WF’T,OWL\ WFT,OWL

• Match query and changes

Capture Change
Semantics of

Change

Query

Evaluation

Detect

Dirty

Queries

Implementation

• Protégé plugin

– Jena, Pellet, SPARQL parser

Outline

• Integrated Asset Management

– Objectives

– Role of semantic web

– Software development methodology

• IAM Ontology

– Ontology design

– Change management and dirty queries

• Remarks

– Lessons learnt

– Areas of interest

Lessons learnt

• Ontology design

– Plan schema changes carefully and do not change

schema often

– Keep OWL ontology small and modular; use OWL imports

• Performance

– Track performance through product development cycle

– Consider performance enhancing components (caching) in

architecture

• Be cognizant of OWL features your tool supports

– Very few are fully compliant with standards

• Design for change

– Use SPARQL querying

– Separate KB querying components from business logic

and UI

– Active area of work- expect big improvements soon

Features we missed

• SPARQL

– Rollup/aggregation queries. E.g. get the aggregate of

OOIP for region as sum of OOIPs of contained regions

– Results as triples

– XPath like expressions. E.g. get sub-tree under X

• Updating materialized OWL knowledge bases

– Solved problem in research

• Better XML-OWL/RDF interoperability

– SPARQL-XML (?)

– OWL/RDF- XML (Gloze)

Areas of interest

• Ontology extension

– Modeling events

– Capturing data provenance

• Performance improvements

– Developing representative benchmarks

– Evaluating various RDF triple stores

– Algorithms for parallel OWL inferencing

• Change management

– Managing evolution of schema and instance data

– Efficient techniques to track changes to OWL KBs

Some of our publications

• R. Soma, Viktor Prasanna, Detecting dirty queries during iterative development of OWL-

based applications, 7th International Conference on Ontologies, DataBases, and

Applications of Semantics (ODBASE 2008), Monterrey, Mexico, Nov 11 - 13, 2008.

• R. Soma, Viktor Prasanna, Parallel Inferencing for OWL Knowledge Bases, International

Conference on Parallel Processing (ICPP-2008), September 2008.

• R. Soma, Viktor Prasanna, A Data Partitioning Approach for Parallelizing Rule Based

Inferencing for Materialized OWL Knowledge Bases, International Conference on Parallel

and Distributed Computing and Communication Systems (PDCCS), September 2008.

• R. Soma, Amol Bakshi, Viktor Prasanna, W. DaSie and B. Bourgeois, Semantic-web

technologies for Oil-field Management, SPE Intelligent Energy Conference and

Exhibition, April 2008.

• R. Soma, Amol Bakshi, Viktor Prasanna, A Semantic Framework for Integrated Asset

Management, Proceedings of The Seventh IEEE International Symposium on Cluster

Computing and the Grid (CCGrid), 2007

• R. Soma , A. Bakshi, V. K. Prasanna, and W. Da Sie, A Model-Based Framework for

Developing and Deploying Data Aggregation Workflows, 4th International Conference on

Service Oriented Computing (ICSOC), December 2006.

Backup

Change capture

• Well studied problem
– All changes to OWL, representation, capture..

• Use Protégé plugin

Query evaluation

• Evaluate triple patterns (TP)
– “Projecting” TP to WFT,OWL

– Observations:

• All OWL statements are either type, property

or identity assertions

• Triple pattern can have variable or constant in

each of its 3 places: 2*2*2= 8 types of triple

patterns

• Evaluate graph pattern
– Based on semantics of connectors

Semantics of change

• Not all changes modify WF
– Lexical Changes: Names of entities, properties, easy to handle

– Extensional: Modifies WF

– Assertional: Does not change WF but adds rules

– Cardinality: Does not change WF but adds/removes constraints

• Determine WF’OWL\ WFOWL from changes
– About 50 kinds of changes to OWL ontology

WFT,OWL

Matching

• Aggregate changes

• Handle Lexical change: String search/replace

• Compare extension of query with semantics of

change
– If they have some element in common  dirty

– E.g. EXT(Q) = P (ALL_Persons X rdf:type X Person) U

P(ALL_Persons X IOP X I U L)

– Sem(ch) = {ALL_Persons’ != ALL_Persons}

