
Interface Development for Hypermedia Applications in the Semantic Web

Sabrina Silva de Moura, Daniel Schwabe
Departamento de Informática, PUC-Rio

{sabrina, dschwabe}@inf.puc-rio.br

Abstract

The Semantic Web has been gaining increasing
attention, spurring a large number of initiatives to
design and implement applications in this environment.
This paper proposes an approach to specifying the user
interface to such applications, as part of the Semantic
Hypermedia Design Method. It proposes the use of an
Abstract Interface Ontology, which is mapped onto
application elements on one side and onto concrete
interface elements specified as instances of a Concrete
Interface Ontology. An implementation architecture,
based on JSP and TagLibs is also proposed.

1. Introduction

There are several proposals for designing applications

(at least, websites) in the so-called Semantic Web, mostly
RDF-based ([10][11][12]). More recently, Web
Engineering approaches have been proposed for
designing and implementing such applications, such as
the Semantic Hypermedia Design Method (SHDM)
[14][16]. This methodology applies the experience
gathered with OOHDM [18] in the context of the
Semantic Web, where it tries to leverage the formalisms
proposed for its foundation, such as RDF [13] and OWL
[19][20].

 One aspect that has received little attention is the
leveraging of these formalisms to the design and
specification of application interfaces. By design here, we
mean logical design, as opposed to layout and appearance
(graphical) design.

In this paper, we present an approach for designing
and specifying application interfaces for the Semantic
Web, as part of SHDM. This approach can be called
semantic for two reasons. The first is because the
interface is described at the level of abstraction of
information exchanges between the user and the
application, therefore closer to the task being performed.
A successive step defines the layout and appearance.

The second, perhaps more arguable, is that we use the
formalisms for the Semantic Web, which allow direct
manipulation to generate the final application. We
outline an implementation architecture that allows this
direct interpretation of the semantic specifications.

The organization of the remainder of the paper is as
follows. Section 2 presents a summary of SHDM, section
3 presents our proposal for the Interface model; section 4
discusses an implementation architecture, section 5
discusses related work and section 6 draws some
conclusions and points to future work.

2. SHDM Summary

SHDM is a model-driven approach to design web
applications using five different steps: Requirements
Gathering, Conceptual Design, Navigational Design,
Abstract Interface Design, and Implementation.

Very briefly, an SHDM design sees an application in
the Semantic Web as a view (mapping) over some
conceptual ontology describing a given problem domain.
This view is oriented towards supporting a specific set of
tasks performed by a set of users under a certain set of
roles. It as starts with a conceptual model of the
application domain, described as some ontology using
either OWL or RDFS.

Next, this conceptual ontology is mapped onto a
navigational ontology, describing the artifacts that will be
navigated and manipulated by the users. These
operations, as well as the application specific operations
(business logic) are actually accessed by the user through
an interface that isolates presentation aspects from the
application logic (both business logic and navigation).

In order to achieve separation of concerns at the
interface level, it is actually split into two parts – the
abstract interface, focusing on the information exchange
needs between the application and its users, and the
concrete interface, focusing on the look and feel, and on
the actual runtime environment (both software and
hardware aspects). Table 1 lists the artifacts produced by
each phase.

 Each step focuses on a particular aspect and produces
models, describing details about an application to be run
on the web.

The separation between conceptual and navigational
design is an important cornerstone of OOHDM that was
kept in SHDM. By explicitly separating conceptual from
navigation design, we address different concerns in web
applications. Whereas conceptual modeling and design
must reflect objects and behaviors in the application

domain, navigation design aims at organizing the
hyperspace, taking into account users’ profiles and tasks.

Table 1. SHDM artifacts
 Artifact Definition Language Description

1 Conceptual Ontology OWL-DL with
annotations and
addtional SHDM rules

Conceptual class definitons

2 Conceptual instances Conceptual Ontology Application data defined
according to the Conceptual
Ontology.

3 Navigational mapping Navigational mapping
definition vocabulary

Rules mapping conceptual
classes into navigational
classes.

4 Navigation space
definition

Navigation space
definition vocabulary

Definition of the navigational
elements – contexts and
access structures (indexes).

5 Navigational Ontology OWL-DL Navigational class (node)
definitions.

6 Navigational
instances

Navigational
Ontology

Application data defined
according to the Navigational
Ontology.

7 Abstract Interface Abstract Interface
definition vocabulary

Abstract interface definition,
including abstract interface
elements and their mapping to
the navigation model and to
concrete interface widgets.

8 Concrete interface
widget ontology

Definition vocabulary
for concrete interface
widgets

Definition of possible concrete
interface widgets to be used in
the implementation

Navigational design is a key activity in the

implementation of web applications, and we advocate
that it must be explicitly separated from conceptual
modeling. In SHDM, the navigational design step
produces expressive models capable of representing web
applications, and even families of web applications.

The examples in the following sub-sections will help
clarify these concepts (we don’t include Requirements
Gathering in this paper); additional details can be found
in [14].

The information items described in the Conceptual
Model and in the Navigation Class Schema are resources
specified in RDF. The characterization of resources in
SHDM is done using OWL, expressing constraints
(restrictions), enumeration and XML Schema data types.

The typical workflow in producing these artifacts is
(the numbers in brackets refer to the first column in
Table 1):

1. Conceptual Ontology design {1}.
2. Once the Conceptual Ontology has been defined,

instances {2} can be created at anytime.
3. Navigational mapping definition {3}.
4. Navigational space specification {4}.
5. Once the navigational space has been defined, the

Navigational Ontology {5} and the corresponding
navigational instances {6} can be automatically
generated based on artifacts {1, 2, 3, 4}. It
should be noted that artifacts 5 and 6 need only be
actually materialized, instead of dynamically
computed, for optimization purposes, similarly as
in the case of materialized views for databases.

6. Abstract Interface definition {7}.

Notice that artifact 8 is typically pre-defined, culled
from existing interface definition languages, and needs
updating only when new interface technologies are
introduced.

3. Interface Specification in SHDM

As previously outlined, Conceptual design focuses on

characterizing the information elements of the
application domain, and Navigation design focuses on
supporting users in achieving their intended tasks. The
Abstract Interface design focuses on making Navigation
objects and application functionality perceptible to the
user, which must be done at the application interface.

Even while focusing on the interface, it is possible to
factor out various design concerns. At the most abstract
level, the interface functionality can be thought as
supporting information exchange between the application
and the user, including activation of functionalities. In
fact, from this standpoint, navigation is just another
(albeit distinguished) application functionality.

Since the tasks being supported drive this information
exchange, it is reasonable to expect that it will be less
sensitive to runtime environment aspects, such as
particular standards and devices being used. The design
of this aspect of the interface can be carried out by
interaction designers or software engineers.

At a more concrete level, it is necessary to define the
actual look and feel of the application, including layout,
font, color, and graphical appearance. Graphics designers
typically carry this out. This part of the design is almost
totally dependent on the particular hardware and
software runtime environment.

Such separation allows shielding a significant part of
the interaction design from inevitable technological
platform evolution, as well as from the need to support
users in a multitude of hardware and software runtime
environments.

3.1 Abstract Widget Ontology

The most abstract level is called the Abstract
Interface, focusing on the type of functionality played by
interface elements. The Abstract Interface is specified
using the Abstract Widget Ontology, which establishes
the vocabulary, shown in Figure 1.

 An abstract interface widget can be any of the
following:
• SimpleActivator, which is capable of reacting to

external events, such as mouse clicks;
• ElementExhibitor, which is able to exhibit some type

of content, such as text or images;

 AbstractInterfaceElement

SimpleActivator ElementExhibitor VariableCapturer

IndefiniteVariable PredefinedVariable

ContinuousGroup DiscreetGroup MultipleChoices SingleChoices

CompositeInterfaceElement

Figure 1. Abstract Widget Ontology

• VariableCapturer, which is able to receive (capture)
the value of one or more variables. This includes
input text fields, selection widgets such as pull-
down menus and checkboxes, etc... It generalizes
two distinct (sub) concepts;

• IndefiniteVariable, which allows entering hitherto
unknown values, such as a text string typed by the
user;

• PredefinedVariable, which stands for widgets that
allow the selection of a subset from a set of pre-
defined values; oftentimes the selection must be a
singleton. Specializations of this concept are
ContinousGroup, DiscreetGroup, MultipleChoices, and
SingleChoice. The first allows selecting a single
value from an infinite range of values; the second is
analogous, but for a finite set; the remainder are
self-evident.

• CompositeInterfaceElement, which is a composition
of any of the above.

It can be seen that this ontology captures the essential
roles that interface elements play with respect to the
interaction – either they exhibit information, or they react
to external events, or they accept information. As
customary, composite elements allow building more
complex interfaces out of simpler building blocks.

The software designer, who understands the
application logic and the kinds of information exchanges
that must be supported to carry out the operations, should
carry out the abstract interface design. This software
designer does not have to worry about usability issues, or
look and feel, which will be dealt with during the
concrete interface design, normally carried out by a
graphics (or ”experience”) designer.

Once the Abstract Interface has been defined, each
element must be mapped onto both a navigation element,
which will provide its contents, and a concrete interface
widget, which will actually implement it in a given
runtime environment. Figure 2 shows an example of an
interface for an academic website, and Figure 3 shows an
abstract representation of this interface.

Before proceeding to show how this is achieved, we
must first define the Concrete Widget ontology, which
characterizes the actual widgets available in concrete
runtime environments.

 Home

Main Menu

Professors
Students
Papers

Search

 Professors
 Students
 Papers

Professors A to Z

John Smith
PhD Computer Science, UCLA, 1981

Ph: +55 21 3114 1500
Homepage: http://www.example.edu
Email: jsmith@example.edu
Students:

• Peter Young
• Alice Wu
• Mike Shoenfeld

ç Previous | Next è

Papers

Smith, J., “Semantic Web Applications”, Proc. WWW 2005,
pp. 1-10, ACM Press, Chiba, Japan, May 2007
Bla bla bla bla bla bla bla bla bla bla bla bla bla bla bla bla
bla bla bla bla bla bla bla bla bla bla bla bla bla bla bla.
ç Previous | Next è

Figure 2. An example concrete interface

a_ElementExihibitor

a_IndefinitiVariable

a_SimpleActivator

a_CompositeInterfaceElement

a_SimpleActivator

a_CompositeInterfaceElement

a_CompositeInterfaceElement

a_AbstractInterface

a_ElementExihibitor

a_ElementExihibitor
a_SimpleActivator

a_ElementExihibitor

a_ElementExihibitor

a_ElementExihibitor

a_ElementExihibitor

a_ElementExihibitor

a_ElementExihibitor

a_CompositeActivator

a_SimpleActivator

a_SimpleActivator a_SimpleActivator

a_ElementExihibitor a_Composite
Activator

a_SimpleActivator

a_SimpleActivator

a_SimpleActivator

a_CompositeActivator

a_ElementExhibitor

a_CompositeInterfaceElement

a_CompositeInterfaceElement

a_MultipleChoices

a_MultipleChoices

a_MultipleChoices

Figure 3. Abstract widget ontology instance for the example in Figure 2.

3.2 Concrete Widget Ontology

The purpose of this ontology is to describe actual

widgets commonly available in most graphical interface
runtime environments, such as XulPlanet [5], Java Swing
[8] , User Interface Markup Language (UIML) [1] and
the PIMA project at IBM [3] among others. This
ontology, shown in Figure 4, can be extended as new
widgets appear in currently available environments.

Figure 4. Concrete Widget Ontology

In this ontology, the names are self-describing.
CheckBoxAction, ComboBoxAction and
RadioButtonAction correspond to concrete widgets in
which the selection of the element executes the submit
action, without need for an additional confirmation step
on the user’s part.

It should be stressed that this concrete ontology, as it
stands, is very superficial. In particular, is not our
immediate goal to synthesize concrete interfaces
automatically, but rather to allow the designer to make
the choices. For this reason, we have not attempted to
describe in detail all the constraints that real widgets
must satisfy, or the properties that would help to derive a
concrete design in a fully automated way.

Therefore, for our purposes, the concrete widget
ontology is used simply to record the necessary
information to allow the generation of the JSP page and
the corresponding TagLibs, as discussed later on.

3.3 Mappings

The Abstract Interface Ontology actually contains, for
each abstract interface widget, both the mapping to
navigation (i.e., application specific) elements, and to a
concrete interface element.

The mapsTo property, which is an ObjectProperty,
represents this, as can be seen in Figure 5.

 ...
<!DOCTYPE rdf:RDF [
 <!ENTITY cwo "http://www.inf.puc-rio.br/~sabrina/ontology/CW/cwo#" >
 <!ENTITY aw o "http://www.inf.puc-rio.br/~sabrina/ontology/AW/awo#" >
]>

<rdf:RDF xmlns:cwo="&cwo;"xmlns:awo="&awo;"
 ...

<ow l:ObjectProperty rdf:ID="mapsTo">
 <rdfs:range rdf:resource="&cwo;ConcreteInterfaceElement" />
 <rdfs:domain rdf:resource="&awo;AbstractInterfaceElement" />
 </ow l:ObjectProperty>

Figure 5. Definition of the mapsTo property.

There is additional information in the ontology
restricting each abstract interface widget to compatible
concrete interface widgets, as illustrated in Figure 6. This
snippet states that the “SimpleActivator” abstract
interface widget can only be mapped into the “Link” or
“Button” concrete interface widgets.

Figure 6. Mapping restrictions for abstract and
concrete interface widgets.

Actual abstract interface widget instances are mapped
onto specific navigation elements (in the navigation
ontology) and onto concrete interface widgets (in the
Concrete Interface Widget Ontology). Figure 7 shows the
specification of the “Previous Professor” (of class
“SimpleActivator”) abstract interface widget shown in
Figure 2, which is mapped onto a “Link” concrete
interface element.

Figure 7. Mapping between abstract interface
widget and navigation element.

Figure 8 shows an example illustrating how
application functionality is integrated, giving the OWL
specification of the “Search” abstract interface element. It

is composed of two abstract widgets, “ElementExhibitor”
(lines 9-12), and “CompositeInterfaceElement” (lines 14-
46). The first shows the “Search” string, using a “Label”
concrete widget. The second aggregates the four elements
used to specify the field in which the search may be
performed, namely, three “MultipleChoices” –
SearchProfessors (lines 25-29), SearchStudents (31-35) e
SearchPapers (37-41) - and one “IndefiniteVariable” –
“SearchField” (lines 43-46).

 ...
1 <awo:CompositeInterfaceElement rdf:ID="Search">
2 <awo:fromIndex>idxSearch</awo:fromIndex>
3 <awo:mapsTo rdf:resource="&cwo;Composition"/>
4 <awo:isRepeated>false</awo:isRepeated>
5 <awo:hasInterfaceElement rdf:resource="#TitleSearch"/>
6 <awo:hasInterfaceElement rdf:resource="#SearchElements"/>
7 </awo:CompositeInterfaceElement>
8
9 <awo:ElementExihibitor rdf:ID="TitleSearch">
10 <awo:visualizationText>Search</awo:visualizationText>
11 <awo:mapsTo rdf:resource="&cwo;Label"/>
12 </awo:ElementExihibitor>
13
14 <awo:CompositeInterfaceElement rdf:ID="SearchElements">
15 <awo:fromIndex>idxSearch</awo:fromIndex>
16 <awo:abstractInterface>SearchResult</awo:abstractInterface>
17 <awo:mapsTo rdf:resource="&cwo;Form"/>
18 <awo:isRepeated>false</awo:isRepeated>
19 <awo:hasInterfaceElement rdf:resource="#SearchProfessors"/>
20 <awo:hasInterfaceElement rdf:resource="#SearchStudents"/>
21 <awo:hasInterfaceElement rdf:resource="#SearchPapers"/>
22 <awo:hasInterfaceElement rdf:resource="#SearchField"/>
23 </awo:CompositeInterfaceElement>
24
25 <awo:MultipleChoices rdf:ID="SearchProfessors">
26 <awo:fromElement>SearchProfessors</awo:fromElement>
27 <awo:fromAttribute>section</awo:fromAttribute>
28 <awo:mapsTo rdf:resource="&cwo;CheckBox"/>
29 </awo:MultipleChoices>
30
31 <awo:MultipleChoices rdf:ID="SearchStudents">
32 <awo:fromElement>SearchProfessors</awo:fromElement>
33 <awo:fromAttribute>section</awo:fromAttribute>
34 <awo:mapsTo rdf:resource="&cwo;CheckBox"/>
35 </awo:MultipleChoices>
36
37 <awo:MultipleChoices rdf:ID="SearchPapers">
38 <awo:fromElement>SearchProfessors</awo:fromElement>
39 <awo:fromAttribute>section</awo:fromAttribute>
40 <awo:mapsTo rdf:resource="&cwo;CheckBox"/>
41 </awo:MultipleChoices>
42
43 <awo:IndefiniteVariable rdf:ID="SearchField">
44 <awo:mapsTo rdf:resource="&cwo;TextBox"/>
4546 </awo:IndefiniteVariable>

...

Figure 8. Example of the OWL specification of
the “Search” part of Figure 2.

The CompositeInterfaceElement element, in this case,
has the properties: fromIndex, isRepeated, mapsTo,
abstractInterface, and hasInterfaceElement. The
fromIndex property in line 2 indicates to which
navigational Index this element belongs. This property is
mandatory if no antecessor element of type
compositInterfaceElement has declared it. The
association with the “idxSearch” navigation element in

line 2; enables the generation of the link to the actual
code that will run the search. Even though this example
shows an association with a navigation element, it could
just as well be associated with a call to application
functionality such as “buy.”

The isRepeated property indicates if the components
of this element are repetitions of a single type (false in
this case). The mapsTo property indicates which concrete
element corresponds to this abstract interface element.
The abtractInterface property specifies the abstract
interface that will be activated when this element is
triggered. The hasInterfaceElement indicates which
elements belong to this element.

The ElementExhibitor element has the
visualizationText and mapsTo properties. The former
represents the concrete object to be exhibited, in this case
the string “Search.”

The MultipleChoices element has the fromElement,
fromAttribute, and mapsTo properties. The fromElement
and fromAttribute property indicate the corresponding
element and navigational attribute in the navigational
ontology, respectively. The IndefiniteVariable element
has the mapsTo property

4. The implementation architecture

Figure 9 outlines the implementation architecture.

Starting with the SHDM navigation and abstract
interface designs, the corresponding ontology instances
are input into a JSP generator, which instantiates the
interface as a JSP file using TagLibs. The interpreter uses
the Jena library to manipulate the ontology information.

The actual TagLib code used is determined by the
concrete widget definition that has been mapped onto the
corresponding abstract widget. The abstract interface
determines the nesting structure of elements in the
resulting page. It is expected that the designer will group
together functionally related elements.

In Figure 10 we illustrate parts of the JSP code that is
generated of the “HomePage” abstract interface widget.

This code first establishes the URIs corresponding to
the TagLibs. It is possible to use different instances of the
TagLib implementations by changing this declaration.
Thus, for each possible concrete widget, a different
implementation of the TagLib code will generate the
desired HTML (or any other language) rendition for that
widget.

Abstract
Widget

Ontology

OOHDM model
(perceptible

objects)

The designer
generates the
abstract interface
ontology instance
according to SHDM

Generate
JSP code

and TagLibs

The TagLib code generate
the actual HTML code
corresponding to the
concrete widget

Using the abstract widget
ontology instance, JSP code is
generated, using especially
defined TagLibs, one for each
Abstract Interface widget

+ Navigation
Objects

Mapping rule
interpreter

Concrete
Interface
Instance

Figure 9. Outline of the implementation
architecture

The actual values of navigation elements manipulated
in the page are stored in Java Beans, which are declared
first. The element property, generated in the JSP file,
contains calls to the bean that the Tag Library uses to
generate the visualized HTML code.

Our current simple implementation of the TagLib
code simply wraps each element with a “DIV” CSS tag,
with its own ID, and its CSS class defined according to
its abstract widget type. In this way, we can attach CSS
style sheets to the generated HTML to produce the final
page rendering.

This concrete page definition format allows a large
degree of flexibility for the graphic designer, given the
expressive power of CSS, both in terms of layout itself
and in terms of formatting aspects. Nevertheless, if a
more elaborate page layout is desired, it is possible to edit
the generated JSP page manually, altering the relative
order of generated elements. For a more automated
approach, it might be necessary to apply XSLT
transformations to the JSP page.

 <%@ page contentType="text/html; charset=ISO-8859-1" language="java" %>
<%@ page import="shdm.data.*" %>

<jsp:useBean id="idxMainMenu" class="shdm.data.Index" scope="request"/>
<jsp:useBean id="idxSearch" class="shdm.data.Index" scope="request"/>
<%@ taglib uri='/WEB-INF/tlds/utilsTeste.tld' prefix="shdm"%>

<HTML> <HEAD> <TITLE>Concrete Home Page </TITLE> </HEAD> <BODY>

...
<DIV> <shdm:ElementExihibitor name="TitleSearch"

 mapsTo="Label" visualizationText="Search">
</shdm:ElementExihibitor> </DIV>

<DIV> <shdm:CompositeInterfaceElement name="Search"
 isRepeated="false" mapsTo="Composition"
 fromIndex="idxSearch">

 <DIV> <shdm:CompositeInterfaceElement name="SearchElements"
 mapsTo="Form" isRepeated="false"
 fromIndex="idxSearch"

 abstractInterface="SearchResult">

 <DIV> <shdm:MultipleChoices name="SearchProfessors"
 element='<%=(Anchor)idxSearch

 .getEntry("SearchProfessors")
 .getAttribute("section")%>'

 fromElement="SearchProfessors"
 fromAttribute="section"
 mapsTo="CheckBox">

 </shdm:MultipleChoices> </DIV>

 <DIV> <shdm:MultipleChoices name="SearchStudents"

 element='<%=(Anchor)idxSearch
 .getEntry("SearchStudents")

 .getAttribute("section")%>'
 fromElement="SearchStudents"

 mapsTo="CheckBox"
 fromAttribute="section">

 </shdm:MultipleChoices> </DIV>

 <DIV> <shdm:MultipleChoices name="SearchPapers"
 element='<%=(Anchor)idxSearch

 .getEntry("SearchPapers")
 .getAttribute("section")%>'

 mapsTo="CheckBox"
 fromElement="SearchPaperrs"

 fromAttribute="section">
 </shdm:MultipleChoices> </DIV>

 <DIV> <shdm:IndefiniteVariable name="SearchField"
 mapsTo="TextBox" cols="10">
 </shdm:IndefiniteVariable> </DIV>

 </shdm:CompositeInterfaceElement> </DIV>
</shdm:CompositeInterfaceElement> </DIV>
 ...
</BODY> </HTML>

Figure 10. Generated JSP code.

5. Related work

Although we have not been able to identify other
proposals exactly along the same lines as the one
reported here, there are a few proposals, some
commercial, aiming at generating “abstract interface”
definitions similar to the ones proposed by SHDM,
although typically at a lower level of abstraction –
corresponding to the concrete widget ontology outlined
here.

Among these proposals, we mention XUL [5], Laszlo
System [6] User Interface Markup Language (UIML) [1]
and the PIMA project at IBM [3].

The XUL language, based on XML, allows the
definition of interfaces, which require an interpreter to be
rendered. Similarly, the Laszlo system proposes an

interesting interface architecture. An XML interface
description is fed to an interpreter, written in Java, which
in turn produces a Flash interface that is served to the
client browser. This allows creating much richer
interfaces than using HTML, even when using DHTML
and JavaScript.

The UIML proposal is similar, but is able to describe
the interface elements at a somewhat more abstract level,
however still more concrete than the abstract interface
proposed here. The implementation strategy for its
various renderers is similar strategy than the one outlined
here.

Our proposal could generate XUL, UIML or Laszlo
code instead of HTML.

The PIMA project aims at defining a platform-
independent application specification, and it aims at
proposing similarly abstract descriptions of interface
elements, among others.

The Web Modeling Language (WebML) [4] is a
modeling approach for Web applications, similar to
SHDM. In WebML, the closest counterpart to the
abstract interface is the hypertext specification, but it is
defined using elements characterized by more concrete
functional properties. For example, a MultipleChoice
abstract widget could correspond to both an IndexUnit
and a MultiChoice IndexUnit. In other words, the
components in a WebML page specification carry more
application semantics than in our proposal.

6. Conclusions

We have presented the interface specification aspects
of SHDM, and outlined the implementation strategy we
are currently pursuing.

The ultimate evaluation of our approach is not so
much the usability of the final interface as it is its
capability of representing complex interaction patterns
found in typical web applications. We have successfully
described several such interfaces using the abstract
widget ontology, and generated most of them. In some
cases, complex designs require manual change in the
generated nesting model.

We are investigating refinements to the abstract and
concrete interface ontologies, to accommodate interfaces
that are more complex. Another direction being pursued
is examining the implementation architecture, both to try
different template engines, such as Velocity, in the
current version, and with other runtime environments,
such as the ones mentioned in the previous section.

Finally, another line of investigation is exploring
extensions to the model to accommodate adaptative
hypermedia applications, as described in [2]. An
important sub-problem here is the automatic generation
of concrete interfaces, where usability guidelines, device

constraints, and user preferences are taken into account,
at either “compile time,” or during runtime.

Acknowledgement. This work was partially supported by
grants from Conselho Nacional de Desenvolvimento Científico
e Tecnológico – CNPq, Brazil, and from CAPES, Brazil.

7. References

[1] Abrams, M.; Helms, J. User Interface Markup Language
(UIML) – Specification, 2002, available at
http://www.uiml.org/specs docs/ uiml30-revised-02-12-02.pdf

[2] Assis, P.S.; Schwabe, D.; Barbosa, S.; “A Meta Model for
Adaptive Hypermedia Applications”, ED-Media 2004, Lugano,
Switzerland, June 2004.

[3] Banavar, G.; Becky, J.; Gluzbergy, E.; Munson, J.;
Sussman, J.; Zukowski, D. 2000, Challenges: An Application
Model for Pervasive Computing, available at
http://www.research.ibm.com/PIMA/Documents/Mobicom2000
.pdf

[4] Ceri, S.; Fraternali, P.; Bongio, A. Web Modeling
Language (WebML): a Modeling Language for Designing Web
Sites, March 2000, available at:
http://webml.org/webml/upload/ent5/1/ www9.pdf

[5] Deakin, N. Xul Tutorial, 2004, Disponível em:
http://www.xulplanet.com/

[6] Laszlo System, Inc, Laszlo Tutorials 2002, Disponível em:
http://www.laszlosystems.com/developers/learn/documentation/
tutorials/index.php

[7] Schwabe, D.; Rossi, G. The Object-Oriented Hypermedia
Design Model (OOHDM), 2003, Disponível em:
http://www.telemidia.puc-rio.br/oohdm/oohdm.html

[8] Sun, http://java.sun.com/products/jfc/

[9] Assis, P. S.; Schwabe, D.; Barbosa, S.D.J., “Meta-models
for Adaptive Hypermedia Applications and Meta-
adaptation”, Proc. of ED-Media 2004, forthcoming. Lugano,
Switzerland, Jul. 2004.

[10] Corcho, O.; Gomez-Pérez, A.; López-Cima, A.; López-
García, V., Suárez-Figueroa, M-d-C; “ODESeW. Automatic
Generation of Knowledge Portals for Intranets and Extranets”,
Proceedings ISWC 2003, LNCS 2870, Springer Verlag,
October 2003, pp 802 – 817. ISBN: 3-540-20362-1.

[11] Golbeck, J.; Alford, A. and Hendler, J.; Handbook of
Human Factors in Web Design, chapter in Proctor, R; Vu, K-P.
(eds) Organization and Structure of Information using
Semantic Web Technologies. 2003 (available at
http://www.mindswap.org/papers/Handbook.pdf).

[12] Jin, Y., Decker, S., Wiederhold, G.: “OntoWebber:
Building Web Sites Using Semantic Web Technologies”,
http://www-db.stanford.edu/~yhjin/docs/owedbt.pdf.

[13] Lassila, O.; Swick, R.: "Resource Description Framework
(RDF) Model and Syntax Specification", W3C
Recommendation 22 February 1999, http://www.w3.org/TR/
1999/REC-rdf--syntax-19990222/.

[14] Lima, F.: “Modeling applications for the Semantic Web”,
PhD Thesis, Pontifícia Universidade Católica do Rio de
Janeiro, Rio de Janeiro, Brasil, 2003. (in Portuguese)

[15] Lima, F., Schwabe, D.: “Modeling Applications for the
Semantic Web”, In Proc. of the 3rd Int. Conference on Web
Engineering (ICWE 2003), Oviedo, Spain, July 2003. Lecture
Notes in Computer Science 2722, Springer Verlag, Heidelberg,
2003. pp 417-426. ISBN 3-540-40522-4.

[16] Lima, F.; Schwabe, D.: “Application Modeling for the
Semantic Web”, Proceedings of LA-Web 2003, Santiago, Chile,
Nov. 2003. IEEE Press, pp. 93-102, ISBN (available at
http://www.la-web.org).

[17] Rossi, G., Schwabe, D. and Lyardet, F.: "Web
Application Models Are More than Conceptual Models" In
Proc. of the ER'99, Paris, France, November 1999, Springer,
239-252.

[18] Schwabe, D. and Rossi, G.: "An object-oriented approach
to Web-based application design" Theory and Practice of
Object Systems (TAPOS), October 1998, 207-225.

[19] Smith, M.; McGuinness, D.; Volz, R.; Welty, C.: “Web
Ontology Language (OWL) Guide Version 1.0”, W3C Working
Draft 4 November 2002,: http://www.w3.org/TR/owl-guide/

[20] van Harmelen, F.; Hendler, J.; Horrocks, I.; McGuinness,
D.; Patel-Schneider, P.; Stein, L.: Web Ontology Language
(OWL), Reference Version 1.0, W3C Working Draft 21
February 2003, http://www.w3.org/TR/owl-ref/

