
1

One day meeting on

Model-based UI

Hosted by Fabio Paternò
and the HIIS Laboratory of the
Istituto di Scienze e Tecnologie

dell'Informazione

Dave Raggett, W3C/JustSystems

ISTI, Pisa, 23 July 2008 Contact: dsr@w3.org

2

Rough Agenda

● 0915 Introductions

● 0930 Scene setting

● 1000 Work at ISTI

● 1030 Work at Telefónica

● 1100 Break

● 1130 Work at Siemens

● 1200 Work at JustSystems

● 1300 Lunch

● 1400 Pulling it all together

● 1600 Break

● 1630 Summing up and next steps

● 1700 Close

3

Scene Setting

● Model based user interfaces
● Contrast with current pratice
● XML, Semantic Web, Diagrams and Rules
● Relation to existing W3C Work
● W3C Incubator Process
● Learning from each others experiences

4

Model-based design

● Declarative versus Imperative approaches
● Describe what should happen rather than how
● Separate out different concerns, e.g.

– Application data from user interface

– Implementation details specific to platform choice

– Different roles and skills of team members
● analysts, designers, coders, testers, ...

● Greater flexibility and reduced costs
● But what hard evidence is there for these

benefits over traditional approaches?

5

Building on years of research

● There has been a lot of research into how to
build user interfaces over last 15 years

● Model-based
● Multiple layers of abstraction
● Each layer models behavior at a progressively

finer level of detail
● Functional transformations between layers
● Use delivery context to select transformation

6

Layered UI

1) Application task and domain models
 supported via diagramming languages (e.g. UML)

2) Abstract User Interface
 UI independent, e.g. select 1 from n

3) Concrete User Interface
 UI specific, e.g. set of radio buttons

4) Realization on specific device context
 may be generated via a compilation step
 for delivery to HTML, SVG, Flash, Java, .NET

with mappings defined between each layer

7

Contrast with Current Practice

● Web pages are hard to construct
– HTML, JavaScript, CSS, Images, Flash

– Variations across browsers

● Server-side is also complex
– Emphasis on scripting and libraries

● Java, Perl, Ruby on Rails, ...

● Lack of shared tools
– Designers use Photoshop to mock up pages

– Coders program in a variety of languages

– No shared machine manipulable models

8

Consequences

● Web pages don't meet requirements
● Easy to break pages due to lack of enforced

separation of data and user interface
● The details are in people's heads and lost when

they move on to new jobs and companies
● Poor quality of websites due to shortage of

really good people to develop them
● Not fulfilling the potential of the Web !

9

Benefits from using XML

● Reduced costs for development and
maintenance
– compared to non-declarative techniques

● Improved security, accessibility, usability
● Easier delivery to wide range of devices and

platforms
– through use of a layered architecture

● Facilitate people with different roles to work on
different aspects as part of a distributed team
– allow team members to focus on what they do best

10

Semantic Web

● Labelled links as building block for models
– RDF triples (Subject-Predicate-Object)

– Decoupled from syntax

– Can be used to front-end legacy systems

● Makes it easier to combine multiple information
sources

● Rich Ontologies using OWL
– Delivery Context Ontology

● User preferences, device capabilities, environment
● Key to ambient intelligence (dynamic adaptation)

11

Diagrams

● Unified Modelling Language
– Suite of diagram formats for different kinds of

models
● taxonomies, processes, state charts, ...

● BPMN business process modelling notation
● Diagrams as requirements

– Compile into Java stubs for implementation

● But how to exploit diagrams throughout the
application life cycle?

12

Rules

● Rules can be used to describe
– Actions to be taken in response to events

– Constraints that the application must conform to

● Rete algorithm for efficient rule interpretation
– Forward chaining for large rule sets

– Used in business rules engines

● High level rule languages for use with diagrams
– Making it easier to describe behaviour

– Compiled into lower level rules for execution

13

Existing W3C Work

● Data models
– XML Schema, RDF Schema, OWL

● Query languages
– XQuery for XML, SPARQL for RDF

– XPath and XSLT for XML

● UI and Presentation
– XHTML, SVG, MathML, XForms,

– CSS, XFL-FO

● Adaptation
– UWA Delivery Context Ontology, DISelect/XAF

14

Other W3C Work

● XML Binding Language (XBL)
– Bind widget to XML data

– Widget defined as a mix
● SVG, JavaScript and images

● SCXML (State Chart XML)
– Implements UML hierarchical state charts

– Event handlers expressed in XML or JavaScript
● But other rule languages are possible

● RIF (Rule Interchange Format)
– Enable transfer of rules between rule systems

15

XML for UI

● Many examples of proprietary UI markup
languages, e.g.
– Microsoft (XAML)

– Adobe (MXML)

– Lazlo (OpenLazlo)

– Nexaweb (XAL)

– Mozilla (XUL)

● Time for W3C to define an open standard?
– For authoring tools rather than run-time

– Alignment with accessibility APIs

16

XML for Concrete UI?

● Use XML for defining UI layout and controls
– vertical/horizontal/grid layout managers

– full set of controls e.g. buttons, menus, text input, ...

– associated concrete UI events

● Themes define details of appearance and
behavior on target platforms

● Compile into final UI
– HTML+JavaScript+CSS

– Java for JVM (JAR)

– ActionScript for Flash Player (SWF)

17

WAI-ARIA

● Ontology of UI controls, properties and states
– Used to enable assistive technology

18

W3C Incubator (XG) Process

● Intended as precursor to standards track work
in a W3C Working Group

● Easy to set up, low administrative overhead
● New, potentially foundational technologies

– Innovative/speculative ideas

– Ideas requiring further work

– Ideas for which there is insufficient consensus

● Work relating to Web-based applications
– Testing the foundations

– Supporting particular user communities

http://www.w3.org/2005/Incubator/about.html

http://www.w3.org/2005/Incubator/about.html

19

How to Form an XG

● Three or more W3C Members draft charter
– See charter generator

– Choice between Member-only and public mailing
list and web pages

– Main product is an XG Report published by W3C
● Initial charter for 1 year, may be extended to 2 years

● The corresponding AC Representatives then
submit the charter to W3C Management
– email xg-activity@w3.org (Member confidential)

● Reviewed by W3C Team
– Approval process typically takes two weeks

http://www.w3.org/2005/Incubator/how-to.html

http://www.w3.org/2006/02/chartergen?group=xg&makenew=Generate+charter
mailto:xg-activity@w3.org
http://www.w3.org/2005/Incubator/how-to.html

20

Potential Goals for an XG

● Collect use cases
● Identify requirements
● Evaluate existing research work and current

solutions
● Propose particular solutions
● Promote a shared vision

– Demonstrable benefits over current practice

21

Model-based UI

Questions?

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21

