Telefonica I+D

MyMobileWeb

Model-Based Ul W3C XG

Telefénica I1+D's Input

MIMISTERI o
DE INDUST RiA, TURISMO
¥ COMERCIO

FIT-350405-2007-1
FIT-350401-2006-2

1

Background

« Developing applications for the Ubiquitous Web is hard. Main
reason:

« (X)HTML is a general purpose language designed to create hypertext
documents in the web, but not for describing user interfaces
intended to work on multiple devices or modes of interaction

* Developers have always been demanding more powerful
abstraction mechanisms. As a result, the market has responded
with declarative and imperative solutions:

» Ajax Toolkits

« Propietary, tag-based, higher-level abstraction layers

« What about open standards? Alternatives (all of them
insufficient):

« XHTML + XFORMS + Javascript and/or DIAL
e HTML 5+ Web Forms 2.0

« There is a big yet-to-be-explored potential for declarative authoring
languages for Ul

0
)
=
[
IS
o
=
>
=

» Applying existing research results on model-based Ul dev.

Model-Based Ul .- Overview

UML
Ontologies

Standard
Languages
SCXML?

Task / Dialog Models

Mapping

Abstract User Interface
Model

Mapping -
Domain Model

Standard
Concrete Ul
components /
Mechanisms

Mapping

Extended DIAL
XForms?

Concrete User
Interface Model

0
)
=
[
IS
o
=
>
=

Physical Layer

0
)
=
[
IS
o
=
>
=

Abstract vs Concrete Ul (I)

Tag-based abstraction technologies deal with the concrete Ul
representation but not with the abstract Ul

» This leads to problems in the presence of multiple delivery
contexts

DIAL might be the starting point towards an abstract Ul
language

» We could think of what is missing in DIAL for being an abstract
Ul language

» DIAL modularization can save us the day

We can work in standard mechanisms for mapping between
the abstract Ul and the concrete Ul

» Via adaptation policies
» Setting up layers that are on top of web browser technologies

In the long term, we should think of the standardization of
upper layers such us task-based models and dialogue
description

0
)
=
[
IS
o
=
>
=

Mapping Abstract - Concrete Ul (ll)

The mappings between abstract and concrete Ul determines how an
abstract component is finally 'rendered' in a delivery context

For multiple delivery contexts it can be needed multiple mappings
* Rendering / mapping / binding policies (a name should be chosen)

In MyMobileWeb the mapping between the abstract and concrete
user interface is done by means of a CSS property that can take
different well-known values. Examples:

« A select element (in the abstract Ul layer) can be rendered as a set of
radio buttons, as a pull down list, or as a list of links

» A command element can be rendered as a link or as a button

The mechanism is similar to the 'appearance’ property specified in
the CSS 3 Basic User Interface Module

» http://www.w3.org/TR/css3-ui/

http://www.w3.org/TR/css3-ui/

Mapping Abstract - Concrete Ul (lll)

» Changing the mapping between different delivery contexts is very
simple

« Just setting up different CSSs using Media Queries (executed at server
side if necessary)

« The CSS-based approach is quite simple and useful but

» ltis not very flexible for specifying presentation properties at the level of
the concrete Ul, due to the lack of nesting in CSS (see example 1)

 When the developer needs customized concrete Ul representations it
fails, although technologies like XBL can fill the gap

* There is a mixing of layers (browser layer and Ul definition layer)
« Example 1

« If the command is mapped to a link | want the link font to be normal

« |If the command is mapped to a button | want the button font to be bold

0
)
=
[
IS
o
=
>
=

» This problem can be workarounded using CSS pseudo-classes but it is
not very flexible

Adaptation Policies (I)

 |nstructions given by the developer to guide the
adaptation process through different delivery contexts

» Kind of policies
« Styling policies
« Layout policies

* Rendering policies (mapping between the abstract and
concrete user interface)

« Content Selection policies
« Pagination policies

0
)
=
[
IS
o
=
>
=

0
)
=
[
IS
o
=
>
=

Adaptation Policies (ll)

« For defining adaptation policies it is necessary to

Set up a common and extensible framework for
adaptation policies

For each kind of policies define a “vocabulary of
properties” that will be used for defining the policies

Have a language that allow to choose between different
policies for different Delivery Contexts.

Possible work items for the XG

* Brainstorming

« Make XForms more abstract
« Standardize common well-known mappings

« Standardize how to create mappings with SVG, SMIL,
etc.

« Standardize how to extend common mappings in a
flexible manner

» Standardize how to create extended mappings

« Standardize how to specify presentation properties at the
level of the concrete Ul

« Standardize mechanisms for specifying mapping policies

0
)
=
[©
IS
o
=
>
=

 |ssue:

« Standardizing common mappings implies standardize
concrete Ul components

e Reuse ARIA work?

0
)
=
[
IS
o
=
>
=

Conclusions

There is a gap wrt open, standards-based declarative models
for UWA and ,in particular, in the user interface area

Existing open standards are insufficient.

AJAX and propietary tag-based abstractions are more and
more popular but create and extreme dependency on
specific toolkits.

There is an opportunity for pushing forward the model-based
Ul approach exploiting the advantages that it presents when
dealing with multiple delivery contexts

» This should be done incrementally, first introducing the
abstract Ul vs the concrete Ul approach and then going
beyond, introducing task and dialog models for Ul (three-
layer approach)

* Issue: What happens in those cases where people want
to develop at the concrete level?

There are a bunch of technologies that might be standarized
by the UWA WG

 We do need to set up a roadmap and prioritize
10

0
)
=
[
IS
o
=
>
=

Thank you for your attention

11

http://mymobileweb.morfeo-project.org/

	Página 1
	Página 2
	Página 3
	Página 4
	Página 5
	Página 6
	Página 7
	Página 8
	Página 9
	Página 10
	Página 11

